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I. Fabrication	process	flow	

The	fabrication	of	our	devices	 is	very	similar	 to	 the	one	already	reported[S1].	 It	 is	
performed	on	dices	of	a	silicon	wafer	that	has	been	prepared	with	a	2	m	thick	layer	of	SiO2,	
20	nm	thick	AlN	seed	layer,	100	nm	thick	Mo,	50	nm	thick	AlN	active	layer	and	40	nm	thick	
Mo.	Fig.	S1	shows	an	schematic	representation	of	the	process	flow.	We	start	by	patterning	
the	top	Mo	layer	to	define	some	mesas	that	are	later	used	for	the	mechanical	devices.	We	do	
that	depositing	an	Al	thin	layer	via	lift‐off	with	PMMA	and	performing	a	dry	etching	of	Mo	
with	SF6	(Fig.	S1.a).	KOH	is	used	to	remove	Al	and	AlN	simultaneously	using	Mo	as	a	mask	
for	 the	 latter	 (Fig.	 S1.b).	We	 perform	 a	 dry	 etch	 of	 the	 two	Mo	 layers	 in	 order	 to	 define	
electrical	paths,	actuation	electrodes	and	piezometallic	loops	for	detection.	We	do	this	in	a	
two	steps	process	using	ZEP	as	a	mask	and	SF6	as	the	etching	species	(Fig.	S1.c).	We	 later	
pattern	 the	 mechanical	 devices	 using	 a	 strontium	 fluoride	 (SrF2)	 mask	 and	 chlorine	 dry	
etching	of	the	stack	(Fig.	S1.d).	In	order	to	contact	the	top	Mo	on	the	mechanical	devices,	we	
deposit	SrF2	isolation	“bridges”	and,	subsequently,	we	perform	a	lift‐off	of	Au,	also	defining	
our	contact	pads	(Fig.	S1.e).	We	finally	release	the	mechanical	structures	via	a	wet	etching	
using	buffered	HF	(Fig.	S1.f).	

	

	

Fig.	 S1	 |	 Fabrication	 process	 flow.	 Surface	 nanomachining	 process	 flow	 for	
piezoelectric	AlN	NEMS.	a)	Definition	of	mesa,	 followed	by	a	dry	etch	of	Mo.	b)	KOH	wet	
etching	of	AlN	and	Al	mask.	c)	Patterning	of	 top	and	bottom	Mo	to	define	electrodes	and	
transduction	 structures	 (actuation	 and	 detection).	 d)	 Definition	 of	 the	 mechanical	
structures	 via	 dry	 etching	 of	 the	 four‐layered	 stack.	 e)	 Insulating	 bridges	 in	 SrF2	 are	
deposited,	 followed	 by	 Au	 deposition	 to	 define	 contact	 pads	 and	 to	 contact	 top	 Mo.	 f)	
Release	of	mechanical	structures	using	BHF	wet	etching.	
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II. Theoretical	analysis	of	the	PFO	

To	analyze	the	behavior	of	equation	(1)	from	the	main	text,	it	is	convenient	to	focus	
on	 the	 slow	modulations	 of	 the	 resonator	 oscillations.	We	 follow	 the	 approach	 reviewed	
elsewhere[S2].	The	displacement	of	the	beam	is	given	in	terms	of	a	slowly	varying	complex	
modulation	function	or	amplitude	ܣሺݐሻ	by:	

ሻݐሺݔ ∝ ሻ݁௜ఠబ௧ݐሺܣ ൅ ܿ. ܿ. ൅⋯	 (S1)	

with	߱଴	the	 resonant	 frequency	 of	 the	 beam.	 The	 ···	 in	 Eq.	 (S1)	 represent	 higher	
harmonics	which	will	be	small	for	the	range	of	oscillation	amplitudes	we	need	to	consider,	
and	will	be	neglected	from	hereon.	The	squared,	amplified,	filtered	around	2f,	phase	shifted	
feedback	signal	is	

෨ܨ ൌ ଶ݁௜୼݁௜ଶఠబ௧ܣଶሻ|ܣ|ሺܨ ൅ ܿ. ܿ. 	 (S2)	

with	ܨሺݕሻ	the	gain	function	of	the	amplifier	filter	circuit	that	we	take	to	be	

ሻݕሺܨ ൌ
Γ

1 ൅ ቀ
Γ
ቁݏ ݕ

	 (S3)	

This	 gives	 a	 linear	 gain	Γ	of	 the	 squared	 signal	 at	 small	 amplitudes,	 and	 at	 large	
amplitudes	ܨሺݕሻ → 	value	saturated	the	on	takes	signal	feedback	the	that	so	ݕ/ݏ

෨ܨ ൌ ݏ ൉ ݁௜ሺఏሺ்ሻା୼ሻ݁௜ଶఠబ௧ ൅ ܿ. ܿ. 	 (S4)	

with	ߠ	the	phase	of	ܣ	and	ݏ	the	saturation	amplitude	of	the	amplifier.	The	feedback	
is	applied	multiplicatively	to	the	displacement	of	the	beam.	Keeping	the	resonant	terms	at	
݁௜ఠబ௧	gives	 the	 amplitude	 equation	 describing	 the	 resonator	 and	 parametric	 feedback	
system	

ܣ݀
݀ܶ

ൌ െ
1
2
ܣ ൅

1
8
ଶሻ݅݁௜୼|ܣ|ሺܨൣ ൅ 3݅ െ 	ܣଶ|ܣ|൧ߟ (S5)	

Here	 we	 have	 introduced	 the	 slow	 scaled	 time	ܶ ൌ ߱଴ݐ/ܳ	so	 that	 times	 are	

measured	 in	units	of	 the	 inverse	 line	width	of	 the	 linear	 resonator.	The	 term	െ
ଵ

ଶ
	on	ܣ the	

right	hand	side	of	Eq.	(S5)	is	the	linear	decay	rate	of	undriven	oscillations	in	the	resonator	
in	these	units.	The	proportionality	constant	in	Eq.	(S1)	is	chosen	so	that	the	frequency	shift	

due	to	the	nonlinearity	in	the	resonator	is	
ଷ

଼
	for	amplitude	the	that	means	which		ଶ߱଴/ܳ|ܣ|

the	 onset	 of	 bistability	 in	 the	 driven	 response	 of	 the	 resonator	 is	|ܣ|௖ଶ ൌ
଼

ଷ

ଵ

√ଷିఎ
.	 The	 term	

depending	on	ߟ	arises	 from	 the	nonlinear	dissipation.	For	a	 system	with	direct	 sinusoidal	
drive,	 such	 as	 to	 initiate	 the	 oscillations	or	 the	 setup	 studied	 in	 Fig.	 2	 there	would	be	 an	
additional	term	on	the	right	hand	side	of	Eq.	(S5):	݃݁௜ఆ்	with	Ω	being	the	frequency	of	the	
drive	 relative	 to	 the	 linear	 resonant	 frequency	 expressed	 in	 units	 of	 the	 resonance	
linewidth.	
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For	small	amplitudes	of	 feedback,	 the	gain	function	will	be	 in	the	 linear	regime.	In	
this	case	the	nonlinear	term	in	Eq.	(S5)	becomes:	

1
8
ሾ݅ሺ3 ൅ ଶሻ|ܣ|ሺܨ cosሺ߂ሻሻ െ ሺߟ ൅ ଶሻ|ܣ|ሺܨ sinሺ߂ሻሻሿ|ܣ|ଶܣ	 (S6)	

so	 that	 the	 feedback	 circuit	 can	 be	 used	 to	 tune	 either	 the	 nonlinear	 frequency	
pulling	or	 the	nonlinear	dissipation	of	 the	 resonator	depending	on	 the	choice	of	 feedback	
phase	Δ,	as	demonstrated	in	Fig.	2.	

For	sufficiently	strong	feedback,	Eq.	(S5)	supports	sustained	oscillations.	Although	it	
is	 straightforward	 to	 solve	 the	 equation	 in	 general,	 in	 the	 experimental	 setup	 once	 the	
oscillations	 develop	 the	 feedback	 system	 is	 almost	 always	 in	 the	 limit	 of	 saturated	 gain	
function,	 and	 so	 we	 illustrate	 the	 results	 for	 this	 case.	 This	 corresponds	 to	 setting	
ଶ|ܣ|ଶሻ|ܣ|ሺܨ → 	in	as	amplitude,	fixed	with	drive	parametric	to	corresponds	this	that	Note	.ݏ
usual	 parametric	 experiments,	 but	 with	 a	 phase	 given	 by	 the	 signal	 phase	 plus	 the	
additional	phase	from	the	feedback	loop.	Of	course	in	the	present	case,	the	parametric	drive	
comes	from	the	feedback	of	the	amplified	output	of	the	resonator,	and	not	from	an	external	
a.c.	drive	signal.	

For	 self‐sustained	 oscillations	 we	 set	ܣሺܶሻ ൌ ܽሺܶሻ݁௜ఏሺ்ሻ	and	 use	 Eq.	 (S5)	 to	 find	
equations	for	the	amplitude	and	phase	

݀ܽ
݀ܶ

ൌ െܽ ൬
1
2
൅
1
8
ݏ ሻ൰߂ሺ݊݅ݏ െ

1
8
	ଷܽߟ (S7)	

ߠ݀
݀ܶ

ൌ
1
8
ݏ cosሺΔሻ ൅

3
8
ܽଶ	 (S8)	

Note	that	the	term	amplifying	the	magnitude	is	proportional	to	ݏ sinሺΔሻ,	so	that	for	
some	 values	 of	Δ	and	 for	 large	 enough	ݏ,	 the	 feedback	 gain	 can	 overcome	 the	 linear	

dissipation	 and	 can	 bring	 the	 system	 into	 oscillation.	 For	 steady	 state	 oscillations	
ௗ௔

ௗ்
ൌ 0,	

ௗఏ

ௗ்
ൌ Ω.	This	gives	the	frequency	of	oscillations:	

Ω ൌ
3
8
ଵିߟ̅ݏ sinሺΔ ൅ δሻ െ

3
2
	ଵିߟ (S9)	

providing	ݏ sinሺെߜሻ ൐ 4,	 with	̅ିߟଶ ൌ ଶߟ ൅
ଵ

ଽ
	and	tanሺߜሻ ൌ

ఎ

ଷ
.	 The	 parameter	ߟ	is	 the	

nonlinear	damping,	and	is	expected	to	be	small,	so	we	can	approximate	̅ߟ ൎ ߜ	and	ߟ ൎ 0.	

In	 our	 experimental	 implementation	 the	 feedback	 phase	 shift	Δ	has	 a	 frequency	
dependent	 component	 from	 the	 filters	 in	 addition	 to	 the	 voltage	 controlled	 value	߶.	Over	
the	tuning	range	of	the	oscillator	this	can	be	approximated	as	linear	so	that	

Δ ≃ ߶ െ 	ߗܿ (S10)	



SUPPLEMENTARY	INFORMATION	
A	Nanoscale	Parametric	Feedback	Oscillator,	L.G.	Villanueva	et	al.	 	 												10/2011	

	

S4
	

where	 we	 find	ܿ ≃ 1/53.	 Equations	 (S9)	 and	 (S10)	 were	 used	 to	 construct	 the	
theory	curves	in	Fig.	3c.	

We	 can	 also	 analyze	 the	 stability	 of	 the	 steady	 state	 oscillations,	 and	 the	 effect	 of	
additional	noise	terms	in	the	equation	of	motion.	It	is	convenient	to	write	Eqs.	(S7)	and	(S8)	
in	the	general	form	

݀ܽ
݀ܶ

ൌ ௔݂ሺܽ, Δሻ	 (S11)	

ߠ݀
݀ܶ

ൌ ఏ݂ሺܽ, Δሻ	 (S12)	

and	we	generalize	the	feedback	phase	equation	(S10)	to	

Δ ≃ ߶ െ ܿ
ߠ݀
݀ܶ
	 (S13)	

The	equations	for	the	stability	analysis	about	a	steady	oscillation	are	

ܽߜ݀
݀ܶ

ൌ
߲ ௔݂

߲ܽ
ܽߜ ൅

߲ ௔݂

߲Δ
	Δߜ (S14)	

ߠߜ݀
݀ܶ

ൌ
߲ ఏ݂

߲ܽ
ܽߜ ൅

߲ ఏ݂

߲Δ
	Δߜ (S15)	

Using	Eq.	(S13)	we	can	evaluate	ߜΔ	in	terms	of	
ௗఋఏ

ௗ்
,	and	then	calculate	

ௗఋఏ

ௗ்
	in	terms	of	

	gives	then	(S14)	Eq.	into	Substituting	(S15).	Eq.	from	ܽߜ

ܽߜ݀
݀ܶ

ൌ ቎
߲ ௔݂

߲ܽ
െ ܿ

߲ ௔݂

߲Δ

߲ ఏ݂
߲ܽ

1 ൅ ܿ
߲ ఏ݂
߲Δ

቏ 	ܽߜ (S16)	

The	oscillations	are	stable	(unstable)	if	the	term	in	the	braces	is	negative	(positive).	
On	the	other	hand	the	steady	state	amplitude‐phase	shift	curve	is	determined	by	

݀ܽ
݀߶

ൌ െ ቎
߲ ௔݂

߲ܽ
െ ܿ

߲ ௔݂

߲Δ

߲ ఏ݂
߲ܽ

1 ൅ ܿ
߲ ఏ݂
߲Δ

቏

ିଵ

߲ ௔݂

߲Δ
ቌ1 െ

ܿ
߲ ఏ݂
߲Δ

1 ൅ ܿ
߲ ఏ݂
߲Δ

ቍ	 (S17)	

The	quantity	in	the	braces	in	Eqs.	(S16)	and	(S17)	is	the	same.	Thus	the	change	from	

stability	to	instability	occurs	when	
ௗ௔

ௗథ
ൌ ∞,	i.e.	at	the	“nose”'	of	the	ܽሺ߶ሻ	curve.	It	is	easy	to	

check	that	݀Ω/݀߶	is	also	infinite	here,	so	the	instability	can	also	be	identified	as	the	nose	of	
the	Ωሺ߶ሻ	curve.	

Various	 different	 noise	 sources	may	 be	 important	 in	 the	 experiment,	 for	 example	
noise	from	the	feedback	amplifier	or	other	electronic	noise,	and	thermomechanical	noise	in	
the	resonator.	These	can	be	modeled	by	adding	appropriate	stochastic	terms	to	Eq.	(S5).	An	
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important	noise	term	is	 likely	 to	be	phase	 fluctuations	 in	the	 feedback	 loop,	which	can	be	
modeled	 by	 adding	 a	 stochastic	 term	 to	 the	 feedback	 phase	Δ,	 and	 it	 is	 particularly	
straightforward	 to	 analyze	 the	 effect	 of	 this	 term	 for	 frequency	 offsets	 from	 oscillator	
frequency	small	compared	with	the	dissipative	relaxation	rate	of	the	resonator.	

The	analysis	for	oscillator	frequency	fluctuations	arising	from	noise	in	the	feedback	
phase	is	similar.	The	equations	for	small	fluctuations	are	the	same	as	Eqs.	(S14)	and	(S15),	
with	,ܽߜ	,ߠߜ	ߜΔ	now	the	stochastic	fluctuations.	

For	frequency	offsets	from	the	oscillator	frequency	less	than	ቀ
డ௙ೌ

డ௔
ቁ
ିଵ
	we	can	ignore	

the	time	derivative	term	in	Eq.	(S14).	This	means	we	can	calculate	an	explicit	equation	for	
the	oscillator	phase	fluctuations	

ߠߜ݀
݀ܶ

ൌ ൬
߲ ௔݂

߲ܽ
൰
ିଵ

൤
߲ ఏ݂

߲Δ
߲ ௔݂

߲ܽ
െ
߲ ఏ݂

߲ܽ
߲ ௔݂

߲Δ
൨ Δߜ ൌ

݀Ω
݀Δ

	Δߜ (S18)	

The	last	equality	follows	by	direct	calculation,	and	is	physically	obvious	since	we	are	
treating	the	magnitude	as	adiabatically	following	the	feedback	phase	fluctuations.	Thus,	we	
see	 that	 for	 operating	 points	 where	 the	ΩሺΔሻ	curve	 is	 flat,	 or,	 including	 the	 frequency	
dependent	phase	Eq.	(S10),	where	Ωሺ߶ሻ	is	flat,	there	is	no	oscillator	frequency	fluctuations	
due	to	noise	in	the	feedback	phase.	This	result	is	analogous	to	that	of	Greywall	and	Yurke	for	
an	oscillator	based	on	a	nonlinear	(Duffing)	resonator	with	a	direct	drive	feedback	system	
at	f,	with	the	operating	point	chosen	to	be	at	the	critical	amplitude	of	the	resonator	for	the	
onset	of	bistability.	
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III. PFO	applicability	criterion	

PFO	architecture	 is	not	only	 restricted	 to	 the	 type	of	device	 shown	 in	 the	present	
manuscript.	This	broad	applicability	makes	this	architecture	very	compelling.	The	criterion	
whether	 a	 particular	 resonator	 can	 be	 used	 with	 PFO	 topology	 is	 that	 it	 is	 possible	 to	
parametrically	tune	the	natural	frequency	of	the	device	more	than	twice	the	linewidth:	

߲݂
߲ܸ
ฬ
௏೘ೌೣ

൉ ௠ܸ௔௫ ൉
ܳ

଴݂
൐ 2	 (S19)	

Where	V	 should	be	understood	not	only	as	voltage	(as	 it	 is	referred	here)	but	 in	a	
more	general	way	as	the	external	variable,	that	tunes	the	device	frequency.	Vmax	represents	
the	maximum	voltage	that	can	be	applied	to	the	device	in	practice	–	in	general	this	is	limited	
by	 considerations	 such	 as	 dielectric	 breakdown	 (relevant	 for	 the	 piezoelectric	 actuation	
employed	 in	our	work),	 the	maximum	tolerable	device	heating,	 input/output	crosstalk,	or	
similar	effects.	Q	and	 f0	are	 the	quality	 factor	and	characteristic	resonant	 frequency	of	 the	
resonator,	Q/	f0	being	the	linewidth	of	the	device.	

This	 criterion	 is	 a	 direct	 consequence	 of	 the	 theory	 for	 parametrically	 excited	
resonators,	where	it	is	known[S2]	that	the	onset	of	instability	occurs	when	the	parametric	
drive	 is	 high	 enough	 as	 to	 compensate	 the	 linear	 damping	 term	which,	 in	 turn,	 happens	
when	 the	 frequency	 is	 being	 tuned	 twice	 the	 linewidth.	 Another	 way	 of	 interpreting	 Eq.	
(S19)	is	that	the	maximum	voltage	you	can	apply	to	the	device	is	higher	than	the	parametric	
threshold	voltage,	defined	by:	

௧ܸ௛ ൌ 2 ଴݂

ܳ
߲݂
߲ܸ
ฬ
௏೟೓

൘ 	 (S20)	

We	can	define	the	following	dimensionless	parameter	

Ը ൌ
1
2
߲݂
߲ܸ
ฬ
௏೘ೌೣ

൉ ௠ܸ௔௫ ൉
ܳ

଴݂
	 (S21)	

and	 evaluate	 it	 for	 different	 devices.	 It	 represents	 the	 maximum	 frequency	 shift	
attainable	for	a	given	device,	expressed	in	terms	of	number	of	resonant	linewidths,	at	Vmax.	
If,	for	a	given	device,	we	find	Ը	to	be	higher	than	1,	it	is	then	capable	of	being	used	to	build	a	
PFO.	As	the	maximum	voltage	depends	on	the	device	itself,	and	the	tunability	also	depends	
on	 the	applied	voltage,	here	we	report	some	numbers	obtained	 from	a	survey	of	 state‐of‐
the‐art	resonators,	assuming	voltages	used	in	the	literature.	
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Table	S1	|	Comparison	of	different	resonators	to	be	used	with	PFO	topology	

Device  Ref.  ૙ (MHz)ࢌ Q  Vmax (V)  Tunability (kHz/V)  ব 

AlN bulk  [S3]  225  2000  10 
Not reported, 

estimated ≈ 2 
0.01 

AlN bulk  ‐  2000  2000  10 
Not reported, 

estimated ≈ 200 
1 

Si disk  [S4]  1150  104  10  1000  1 

AlN beam  NA  105  850  10  35  3 

AlN beam  ‐  15  1200  10  35  30 

Si beam  [S5]  10  3600  10  10  45 

CNTs  [S6]  50  100  10  4000  80 

CNTs  [S7]  250  104  10  300  120 

Graphene  [S7]  175  104  10  300  175 

Graphene  [S8]  50  125  20  6000  300 

Si3N4 

beam 
[S9]  8  105  20  10  2500 

	

The	 compilation	 in	 Table	 S1	 shows	 that	 it	 should	 be	 possible	 to	 implement	 PFOs	
with	 a	majority	 of	 NEMS	 and	MEMS	 oscillators	 reported	 in	 the	 literature.	 For	 traditional	
MEMS	resonators	this	implies	that	it	should	be	possible	to	improve	oscillator	stability	down	
to	 the	 thermal	noise	 limit.	This	has	not	been	yet	attained	by	any	mechanical	oscillator.	 In	
addition,	 given	 the	 fact	 that	 undesirable	 cross‐talk	 is	 circumvented	 by	 the	 use	 of	 our	
proposed	 architecture,	 even	 the	 smallest	 and	most	 challenging	 devices	 (CNTs,	 Graphene,	
etc.)	should	self‐sustain	oscillations	when	incorporated	into	PFO	topology.	This	could	have	
tremendous	impact	in	fields	of	small	scale	frequency	standards	and	mass	sensing.	
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IV. Parametric	Feedback	oscillation	condition	

An	interesting	question	is	for	which	values	of	the	parameters	space	determining	the	
system	 it	 is	 possible	 to	 attain	 the	 onset	 of	 self‐sustained	 oscillations.	 For	 traditional	
oscillators	with	direct‐drive	feedback	at	f,	such	proper	choice	of	parameters	is	determined	
by	the	‘Barkhausen	criterion’	[S10].	As	we	point	out	in	the	main	text,	this	criterion	does	not	
apply	to	the	PFO	topology.	Here	we	determine	a	new	set	of	criteria	to	ensure	oscillation	in	
PFO	by	evaluating	the	parameter	space	within	which	 it	 is	possible	 to	attain	self‐sustained	
oscillations.	 From	Eq.	 (S5),	we	 can	derive	 the	 following	 two	 equations,	 analogous	 to	 (S7)	
and	(S8):		

െ4 െ ଶܽߟ ൌ ሺ|ܽ|ଶሻܨ sinሺΔሻ ܽଶ	 (S22)	

Ω ൌ
1
8
ሺ|ܽ|ଶሻܨ cosሺΔሻ ܽଶ ൅

3
8
ܽଶ	 (S23)	

Equation	(S22)	provides	a	general	criterion	required	to	sustain	PFO	oscillations,	 it	
implies	 that	 the	 feedback	 gain	 needs	 to	 be	 large	 enough	 so	 that	 its	 projection	 on	 the	
damping	quadrature	compensates	both	linear	and	non‐linear	damping.	We	first	extract	the	
oscillator	frequency,	which	directly	relates	to	the	amplitude	of	oscillation,	regardless	of	the	
feedback	gain,	in	a	similar	manner	to	Eq.	(S9)	for	saturated	gain:	

Ω ൌ െ൬
1
2
൅
1
8
ଶ൰ܽߟ cotሺΔሻ ൅

3
8
ܽଶ	 (S24)	

For	a	PFO,	as	has	been	pointed	out	in	the	paper,	the	self‐sustained	oscillating	state	
can	only	be	attained	if	the	system	is	initially	driven	by	an	external	“direct	drive”	source.	The	
nature	of	that	initial	driving	force	is	not	restricted;	for	example,	it	can	be	sinusoidal	(direct	
drive	at	the	resonance	 frequency	 f0),	an	 impulse,	a	step	function,	etc.	The	requirement	for	
such	drive	 is	simply	to	generate	 initial	motion	 in	the	resonator	that,	after	being	amplified	
and	 passed	 through	 the	 nonlinear	 element,	 becomes	 sufficiently	 large	 to	 compensate	 the	
linear	and	nonlinear	dissipation	(similar	to		Eq.	(S22)).	
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V. Theoretical	modeling	of	the	mode‐coupling	feature	

We	 now	 model	 the	 phenomenon	 giving	 rise	 to	 the	 local	 flattening	 of	 the	
frequency/phase	curve	(depicted	in	the	inset	to	Fig.	3C	of	the	main	manuscript).	We	assume	
this	arises	when	feedback	to	the	oscillating	mode	is	reduced	by	“spurious”	absorption	into	a	
second	 spatial	mode	 of	 the	 resonator	 that	 becomes	 directly	 driven	when	 its	 frequency	 is	
resonant	 with	 the	 2f	 feedback.	 To	 model	 this	 phenomenon	 we	 introduce	 frequency‐
dependent	decrease	in	the	saturated	feedback	 s 	through	a	resonant	absorption	term.	This	
is	achieved	by	replacing	Eq.	(S9)	with	a	new	term,	

ݏ → ݏ

ۉ

1ۇ െ
ߣ ൬ ଶ݂
2ܳଶ

൰
ଶ

ሺ2݂ െ ଶ݂ሻଶ ൅ ൬ ଶ݂
2ܳଶ

൰
ଶ

ی

	ۊ (S25)	

Here	 ଶ݂,	ܳଶ	are	the	resonant	frequency	and	quality	factor	of	the	second	mode,	and	ߣ	
a	constant	depending	on	the	coupling	of	the	drive	system	to	this	mode.	In	Fig.	S2	we	show	
the	result	of	this	expanded	theoretical	model,	where	the	flattening	feature	can	be	observed	
around	16.25	MHz.		

	

Fig. S2 | Theoretical prediction of  the mode‐coupling  feature. Theoretical prediction of PFO 

frequency  as  a  function of externally  controlled phase  shift  including  the effect of  a  second 

mechanical mode with a natural frequency around 32.5 MHz. 
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VI. Experimental	characterization	of	the	nonlinear	element	

We	experimentally	characterize	the	transfer	function	of	the	nonlinear	element	in	the	
feedback	loop	presented	in	Fig.	2	of	the	main	manuscript.	To	do	that,	we	send	a	signal	to	the	
nonlinear	element	at	a	frequency	߱	and	monitor	the	power	transferred	at	2߱.	The	result	is	
presented	in	Fig.	S3.	

	

Fig. S3 | Transfer function of the nonlinear element. Experimental plot (scattered data) of the 

amplitude after the nonlinear element (monitored at 2߱) as a function of the input amplitude 

(at ߱). Red  line represents the nonlinear fitting of our experimental data to a function of the 

type described in Eq. (S3). 
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VII. Thermomechanical	limit	of	the	frequency	stability	

An	 important	 fundamental	 noise	 limit	 of	 any	 mechanical	 oscillator	 is	 set	 by	 its	
thermomechanical	noise.	If	we	consider	a	mechanical	oscillator	which	in	this	limit,	its	phase	
noise	can	be	estimated	via	Leeson’s	formula	to	be:	

ेሺΔωሻ ൌ 10 log ൬
݇஻ܶ
௢௦௖ܳܧ

߱଴

Δ߱ଶ൰	 (S26)	

Here,	 we	 replot	 the	 results	 from	 Fig.	 3D	 in	 the	 main	 paper	 together	 with	 the	
fundamental	limit	of	the	system	in	Fig.	S4.	

	

Fig. S4 | Phase noise comparison. Experimental phase noise measurements presented  in the 

main paper and thermomechanical limit. 
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