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SI-A. Amplitude equation 

1. Externally driven resonator 

The equation of motion of an externally driven nonlinear resonator is given by: 
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2𝑥 + �̃�𝑥3 = 𝐺 cos(𝜔𝑡) (SI1) 

where 𝑥 is the signal amplitude of the resonator, 𝑚 is its effective mass, 𝑘 = 𝑚𝜔0
2 is its effective 

spring constant and resonance frequency respectively, �̃� is the cubic spring constant, or Duffing 

parameter, Γ is the linear damping rate and �̃� is the external driving force. 

We are interested in solutions �̃�(𝑡) that are slow modulations of the linear resonance 

oscillations and so we introduce a dimensionless slow time scale 𝑇 = 𝜀𝜔0𝑡 and displacement 

amplitude 𝐴: �̃� =
1

2
�̃�0𝐴(𝑇)ⅇⅈ𝜔0𝑡 + 𝑐. 𝑐. + ⋯; where the small expansion parameter 𝜀 and the 

displacement scale �̃�0 are chosen for convenience as detailed below, 𝑐. 𝑐. stands for complex 

conjugate, and the ellipses (···) denote small corrections from higher harmonic that we will not 

need. Following the procedure outlined elsewhere1, secular perturbation theory leads to the 

equation of motion for the slow modulations 
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with  
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For the expansion procedure to be consistent 𝛾, 𝛼 must be 𝑂(1) quantities. Thus we 

choose the scale factors 𝜀 = Γ 𝑚𝜔0⁄ = 𝑄−1 and 𝑥0
2 = 𝑚𝜔0

2 �̃�𝑄⁄  so that in the absence of 

fluctuations the values of 𝛾, 𝛼 are unity. In the presence of parameter fluctuations in Γ and �̃� this 

leads to: 𝛾 = 1 + Ξγ(𝑇) and 𝛼 = 1 + Ξα(𝑇), with Ξγ, Ξα representing the slow time noise 
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sources characterizing the fluctuations. As the amplitude is locked to the driving force, we can 

also express it as 𝐴 = 𝑎ⅇⅈ𝜑ⅇⅈΩ𝑇 and therefore obtain: 
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2. Heavily saturated oscillator 

We reproduce all the previous steps to arrive at the amplitude equation describing the 

slow-time motion of a heavily saturated oscillator, which is: 
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with 𝑠 being the saturation level of the feedback function and Δ the phase delay present in the 

feedback loop. We substitute 𝐴 = 𝑎ⅇⅈ𝜙(𝑇) into Eq. (SI5), which yields:  
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It is clear that Eqs. (SI4) and (SI6) are equivalent, however, in the case of an externally 

driven resonator, the control parameters determining the motion are the driving frequency Ω and 

amplitude 𝐺; while in the case of a heavily saturated oscillator, those parameters are the feedback 

phase Δ and amplitude 𝑠, see Figure S1. 

It is also possible to separate Eq. (SI6) into real and imaginary parts to obtain: 
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(SI7) 

where Ω is the oscillation frequency. After the steady state is reached, we obtain: 
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𝑠

𝛾
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which is Eq. (1) in the main manuscript, describing the limit cycle of a heavily saturated 

oscillator. 

 

 

Figure S1 Resonant response curves showing the differences between an externally driven resonator 

(a) where the dynamics are determined by the frequency (Ω) of the external force; and a heavily 

saturated oscillator (b), where the operational point is determined by the feedback phase. It is 

therefore possible to see that in the first case (a) there are regions with several solutions and one of 

them is unstable (dashed lines), whereas in the second case both amplitude and frequency are 

single-valued functions of the phase, so no instability is found. 
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SI-B. Location of optimized operational points 

Using the expressions in Table 1 of the main manuscript, we can easily find the sets of 

operational points that minimize the contribution to phase noise coming from noise in parameter 

Δ and coming from thermomechanical noise through amplitude-phase conversion. We present 

those sets in the following Figure S2. 

 

Figure S2 Operational points of a heavily saturated oscillator, highlighting the sets of points where 

different contributions to the phase noise are canceled, in particular the contribution due to 

fluctuations in Δ and the contribution due to amplitude-phase converted thermomechanical noise. 

Notice how the second family of DCPs approaches the ADP set for high levels of drive. 
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SI-C. Experimental determination of noise intensities 

1. Thermomechanical noise 

Thermomechanical noise enters the dynamical equations as a random force 𝜉𝑇ℎ(𝑡), so Eq. 

(SI1) can be written including this noise term as: 

𝑚
ⅆ2𝑥

ⅆ𝑡2
+ Γ

ⅆ𝑥

ⅆ𝑡
+ 𝑚𝜔0

2𝑥 + �̃�𝑥3 = 𝐺 cos(𝜔𝑡) + 𝜉𝑇ℎ(𝑡) (SI9) 

where the magnitude of the noise is imposed by the fluctuation-dissipation theorem: 

⟨𝜉𝑇ℎ(�̃�)𝜉𝑇ℎ(�̃�′)⟩ = 2Γ𝑘𝐵𝒯𝛿(𝑡 − 𝑡′), where 𝑘𝐵 is the Boltzmann constant and 𝒯 is the 

temperature. If we apply the rescaling steps described before and elsewhere1, we end up with the 

following amplitude equation with noise: 

ⅆ𝐴

ⅆ𝑇
= 𝑓(𝐴) + Ξ𝑇ℎ(𝑇) (SI10) 

where 𝑓(𝐴) are the deterministic terms described previously and Ξ𝑇ℎ(𝑇) is the dimensionless 

equivalent of 𝜉𝑇ℎ(�̃�). Ξ𝑇ℎ(𝑇) is a complex quantity (Ξ𝑇ℎ = Ξ𝑅 + ⅈΞ𝐼) that defines the intensity of 

the noise for our model as: 

⟨Ξ𝑅(𝑇) Ξ𝑅(𝑇′)⟩ = ⟨Ξ𝐼(𝑇) Ξ𝐼(𝑇′)⟩ = 𝐼𝑇ℎ𝛿(𝑇 − 𝑇′) (SI11) 

with 𝐼𝑇ℎ =
𝑘𝐵𝒯𝑄0�̃�0

𝑚2𝜔0
4 . In order to estimate 𝐼𝑇ℎ we measure the frequency 𝜔0 and quality factor 𝑄0 

through a linear resonant sweep. We estimate the mass, 𝑚, through careful inspection in a 

scanning electron microscope (SEM) to determine the beam’s dimensions, as well as through 

subsequent finite element modeling (FEM) simulations. Finally, we estimate �̃�0 following the 

method detailed elsewhere2, by analyzing the resonant responses for increasing drive levels. 

Assuming that the beam remains at room temperature (as suggested by FEM results for 

the temperature distribution for the voltages used in these experiments), the intensity of 

thermomechanical noise is:  

𝐼𝑇ℎ ≈ 1.5 · 10−5 (SI12) 
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2. Noise in 𝚫 

To estimate the magnitude of the noise in the feedback phase 𝐼Δ, we first characterize the 

phase noise introduced by different components in the feedback loop. We do that by comparing 

the phase noise of a monotonic signal from an Agilent N5180 to that same signal after passing 

the component under test. We find that the contribution from other components are negligible 

compared to that of the resonator transduction and the first low noise amplifier in the gain chain. 

 

Figure S3 Thermomechanical and system (or transduction) noise in our resonator after first amplifier 

stage in the gain chain. 

 

In a linear gain chain, the noise in Δ is evaluated as the ratio between the non-thermal 

noise in the signal and the squared oscillation amplitude: 𝐼Δ = 𝑆𝑎 𝑎2⁄ . By measuring the noise 

after the first amplifier stage, we can calibrate the transduction noise using the thermomechanical 

noise (see Figure S3), giving 𝐼Δ = 4𝐼𝑇ℎℜ/𝑎2, with ℜ ≈ 4.5. However, as we have described, our 

gain chain is not linear but operates in the heavily saturated regime. By considering a tanh (𝑥) 

amplifier gain curve in the highly saturated limit, we obtain: 

𝐼Δ ≈
8

3

𝐼𝑇ℎℜ

𝑎 · 𝑠
≈ 12

𝐼𝑡ℎ

𝑎 · 𝑠
 (SI13) 

but the actual proportionality coefficient in Eq. (SI13) might be slightly different depending on 

the actual amplifier gain curve. 
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3. Noise in 𝒔 

Noise in the magnitude of the output signal of the linear amplifier stages is suppressed by 

the subsequent limiter and variable attenuator. However these elements may also add noise, 

resulting in noise in the saturation parameter 𝑠. We estimate this noise in the saturation 

parameter 𝑠 by sending a monotonic signal from an Agilent N5180 through the limiter and 

variable attenuator. We compare the phase noise and the power spectrum of the signal before and 

after the limiting stage. While phase noise affects both measurements, noise in 𝑠 is only visible 

in the power spectrum. We observe, however, the same result in both measurements, 

approximately 2.5 · 10−12 𝑉2/Hz when the saturation level is 28.15 mV, corresponding to 𝑠 =

3.473. This implies that the noise in the saturation level should be smaller than 𝜁 =

10−13 𝑉2/Hz. Translating to the scaled variables we can now write: 

𝐼𝑠 =
𝜔0

𝑄
(

𝑠

28.15 mV
)

2

𝜁 ≤ 6 · 10−5 (SI14) 

4. Adjustment of the noise intensities 

Using the expressions Table 1 in the main manuscript, and the intensities calculated 

above; we can predict the total phase noise by adjusting the rest of the intensities. 

We first consider only the contributions from thermomechanical noise and noise in Δ for 

which we have independent estimates. We find that either one of these two noise sources 

dominates the phase noise across the whole explored parameter space, except for a small region 

about the optimal operating point. To optimize the fitting we set 𝐼𝑇ℎ = 1.5 · 10−5 and 𝐼Δ = 9
𝐼𝑡ℎ

𝑎·𝑠
. 

For the latter, the slight difference (9 versus 12) with the value estimated in Eq. (SI13) is 

motivated to improve the fitting for small values of saturation. We then focus on the region close 

to ADP and DCP-2 where these two noise sources are insufficient to account for the measured 

oscillator noise to obtain a value of the noise in the frequency parameter: 𝐼𝜔0
= 0.7 · 10−4.  

Finally, we study the region around Δ = 90o, and we see that to obtain a better fit with 

the experimental data, noise in the saturation parameter needs to be much smaller than the upper 

bound set by Eq. (SI14). However the consequence is that we need some other source of noise 

that grows much faster with the saturation level than the noise in the saturation. Looking at Table 

1, we see that both noise in 𝛼 and 𝛾 grow faster than noise in 𝑠, and so we set both fluctuations to 

be around ∼ 10−6. Choosing fluctuations in 𝛾 to be slightly larger provides a much better match 

to the experiments. The final values for the intensities were: 𝐼𝑠 ∼ 5 · 10−6, 𝐼𝛼 = 10−6, 𝐼𝛾 = 2 ·

10−6.  
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SI-D. Effect of fluctuations in frequency 

As discussed in the main manuscript, we observe an improvement in the phase noise at 

larger driving power (beyond the nonlinear threshold). This improvement, however, is bounded 

by fluctuations in the resonance frequency of the device itself. If these device fluctuations were 

to be cancelled or reduced, the improvement would be much more significant. In the following 

figure we present the comparison of the predictions of the model with and without the 

contribution due to fluctuations in the resonance frequency. 

 

Figure S4 (a-e) Comparison of the model prediction for the total phase noise accounting for (orange) 

and not accounting for (purple) frequency fluctuations of the mechanical device. (f) Shows the 

minimum phase noise for each saturation value. It can be clearly seen how the frequency 

fluctuations soon become the limiting factor. An improvement of 10 dBc/Hz should be possible if the 

fluctuations in frequency were minimized. 
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