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We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical
resonators. Our experimental implementation allows unprecedented observation and control of parameters
governing the dynamics of synchronization. We find close quantitative agreement between experimental
data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the
synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key
for sensor and clock applications. Our work establishes that oscillator networks constructed from
nanomechanical resonators form an ideal laboratory to study synchronization— given their high-quality
factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.
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Synchronization is a ubiquitous phenomenon both in the
physical and biological sciences. It has been observed to
occur over a wide range of scales—from the ecological [1],
with oscillation periods of years, to the microscale [2], with
oscillation periods of milliseconds. Although synchro-
nization has been extensively studied theoretically [3-5],
relatively few experimental systems have been realized
that provide detailed insight into the underlying dynamics.
Here we show that oscillators based on nanoelectrome-
chanical systems (NEMS) can readily enable the resolution
of such details, while providing many unique advantages
for experimental studies of nonlinear dynamics [6-8]. In
addition, nanomechanical systems might prove useful for
exploring quantum synchronization [9,10].

Nanomechanical oscillators also have been exploited
for a variety of applications [11-13]. In particular, nano-
scale mechanics exhibits enhanced nonlinearity [14,15]
and tunability [16,17], which has been used to suppress
feedback noise [18,19] and create new types of electro-
mechanical oscillators [20-22]. These oscillators may find
application as mass [23], gas [24,25], or force sensors [26],
without the need of an external frequency source.

Building frequency sources from arrays of NEMS may
yield enhanced applicability, but is challenging. For exam-
ple, statistical deviations in batch fabrication inevitably
lead to undesirable array dispersion [24]. If an array has
appreciable frequency dispersion, global sensor responsiv-
ity gets reduced. However, if the elements of the array are
made into a self-sustained oscillators and synchronized
with one another, then the array responsivity will recover
due to a reduction in phase noise [3]. Since NEMS have
numerous applications, and are useful in studying nonlinear
dynamics, we set an important milestone by demonstrating
synchronization in nanomechanical systems.

There are previous reports of synchronization in micro-
or nanomechanical systems. However, these do not, in fact,

0031-9007/14/112(1)/014101(5)

014101-1

PACS numbers: 05.45.Xt, 05.40.Ca, 07.05.Dz, 85.85.4j

demonstrate the phenomenon as conventionally defined [3]
—that is, the phase locking of weakly coupled self-
sustained oscillators. Shim et al. [27] reported synchroni-
zation of the driven excitations in coupled resonators,
not self-sustained oscillators. Zhang et al. [28] reported
self-sustained oscillations excited by radiation pressure in
optomechanical resonators, coupled through the evanescent
optical field. However, the model and data presented in
Zhang et al. reflect strong coupling [29], with the energy to
excite the oscillations equal to the energy to couple the
devices. This strong coupling inevitably leads to confusion
between synchronization of individual oscillators and the
excitation of a single coupled mode.

Our experiment is designed to unambiguously demon-
strate canonically defined synchronization with a pair of
weakly coupled oscillators. This is accomplished by
employing an additional feedback loop, separate from the
feedback loop necessary to sustain oscillations, to couple the
resonant devices. This coupling can be modified via analog
electronics, allowing full control of all relevant parameters.
Importantly, it can set to a value where the coupling is a
weak perturbation on the individual oscillator dynamics.
Since all of these parameters are carefully calibrated, we
can make quantitative comparisons with theory, yielding an
ideal platform to elucidate synchronization. Our implemen-
tation is scalable to thousands of devices through standard
methods of large-scale integration. To show the applicability
of synchronized NEMS, we measure the phase noise of the
oscillators, and demonstrate the reduction in phase noise
theoretically expected from noise averaging.

We describe our system with a set of equations similar
to the model theoretically examined by Aronson et al. [30],
except that here our oscillation amplitude is not constrained
by nonlinear dissipation, but rather by amplifier saturation.
We scale the amplitude by the level of saturation and
examine the system dynamics in slow time, 7'~ Q * t * @y,
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where Q is the quality factor of the driven response of
the resonators and @, the linear resonance frequency of
the NEMS device when under driven excitation, and ¢
is the real time in seconds. In the slow time dynamics,
feedback loop time delays are represented by a phase
shift. The resulting equations for the amplitudes a,, for
each oscillator and phase difference ¢ between them
are [29]

da a 1_p i
== tpTpausne (O

where —, + corresponds to a;, a,, respectively. Here Aw
is the difference between the resonant frequencies of the
devices, a is the measure of frequency pulling (which is
the increase in frequency proportional to the square of
the amplitude), and g is the coupling strength. Note that
our coupling here is not dissipative, but reactive, in
contrast to most studies of synchronization to date [31].
Reactive coupling inevitably leads to the amplitudes
playing a key role in the synchronization, as previously
shown theoretically [31,32]. The parameters Aw, a, and
p, which we call the synchronization parameters, set the
dynamics ofthe system: the stable fixed points of Egs. (1) and
(2),forexample, yield synchronized states. These parameters
are expressed in units of the devices’ resonance line
width, @y/ Q.

To construct an experiment with independent control of the
synchronization parameters we use the setup shown in Fig. 1.
The NEMS devices are two piezoelectrically actuated, pie-
zoresistively detected [14], doubly clamped beams 10 ym
long, 210 nm thick, and 400 nm wide. In the oscillator loop,
the signal is strongly amplified (gain stage, g) into a diode
limiter (saturation stage, s) in order to ensure the feedback
signal to the beam is of constant magnitude. Therefore, the
feedback signal is a strongly nonlinear function of the device
displacement [19]. On the other hand, the coupling loop is
kept linear; the feedback is directly proportional to the
displacement over the full range of experimental values.
For the oscillator loop, the signal is fed back in phase with
the beams velocity. For the coupling loop, this signal is fed
into the beams in phase with the displacement. This causes
the coupling loop to be reactive and the oscillator loop to
be dissipative. The synchronization parameters are each
controlled by a dc voltage. Adjusting oscillator feedback
saturation controls frequency pulling a, adjusting coupling
feedback amplitudes controls coupling S, and adjusting
piezovoltage controls frequency detuning Aw [29].

This system is designed to be integrable within CMOS
technologies. The system consists of transistor amplifiers,
saturation diodes, direction couplers (capacitors), and
phase shifters. Here we use adjustable attenuators; these
may also be implemented with adjustable amplifiers. The
phase shifters can be implemented with fixed resistance-
capacitance filters. However, we note that if we
measure the piezoelectric response in addition to the
piezoresistive response, we are able to directly capture
both the in-phase and out-of-phase response of the oscil-
lators. Since all parameters are controlled with dc voltages,
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FIG. 1 (color online).

Simplified circuit schematic for experiment. Each NEMS resonator (colored SEM micrograph) is embedded in

two feedback loops: one is used for creating oscillations in each resonator, and the other creates coupling between the oscillators. The
attenuators after each limiter (single heavy line boxes) sets the level of oscillation, and constitutes a means to control the frequency
pulling. In the coupling loop the signal is amplified so that an attenuator (double heavy line boxes) adjusts the signal level in the common
loop, thereby setting the coupling strength. The frequency difference is controlled by adjusting the stress induced in the left resonator by

the piezovoltage.
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our system offers the possibility of massive arrays with
individual control over constituent elements.

We begin by looking at the small coupling limit, with
f < 0.1, where experiment can be compared to analytical
predictions. In that case, the amplitudes of the two
oscillators stay near unity, so Egs. (1) and (2) become

ajp = 1Fp sin g, (3)
¢ = Aw + 4af sin ¢, “4)

where Eq. (4) is the Adler equation [33]. Note that even
though Eq. (4) is of the same form as the one Adler used to
study injection locking, it describes the mutual synchro-
nization of two oscillators [29]. When the oscillators are
unsynchronized, the solution to Eq. (4) can be expressed as

¢ = \/Aw® — (4ap)>. (5)

In the synchronization regime (¢’ = 0), as the amplitudes
stay near unity, a linear relationship between the oscillation
amplitudes and the frequency difference is found from
Egs. (3) and (4),

361] 2 1
g
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where 1,2 corresponds to +, —, respectively. Equation (6)
holds explicitly in the synchronization regime.

In Fig. 2, ¢’ is the oscillator frequency difference in units
of the resonance width. The plots show synchronization
between the two coupled oscillators, with remarkable
agreement between Eqs. (5,6) and the experiment. The
oscillator amplitudes change in order to adjust the oscillator
frequencies, demonstrating the importance of frequency
pulling in reactively coupled oscillators.

In addition to control of the detuning through a wide
range of values (shown in Fig. 2), we are able to modify
both the frequency pulling and coupling, to study the
parameter space for synchronization. Figure 3 shows the
synchronization parameter space for three levels of fixed
detuning (Aw = 0.6, 1, 2) as coupling and frequency
pulling a are varied. The red border is the data with
attractive (ATT) coupling [ < 0 in Egs. (1,2)] and green
with repulsive (REP) coupling [ > 0 in Egs. (1,2)]. These
lines represent the boundaries of the transition between
synchronized and unsynchronized states when sweeping
to higher values of coupling, i.e., from left to right in
Fig. 3. This transition is defined by a change to a measured
oscillator frequency difference ¢’ < 0.05.

In general, analytical solutions to Egs. (1) and (2) cannot be
found. Therefore, we perform two numerical studies and
compare them to the experiment. We perform a linear stability
analysis (LSA) [34] of Egs. (1) and (2) with the orange and
purple dashed lines in Fig. 3 showing the stability boundaries.
The LSA boundaries define only where the synchronized
states are stable, and so there may be unsynchronized stable
states coexisting within these boundaries.
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FIG. 2 (color online). Synchronization in the limit of small
coupling described by Egs. (5) and (6) with a frequency pulling
a = 1.25. (a) Experimental data (points) are compared against
theoretical predictions (lines) for the amplitudes of the two oscil-
lators as the system moves through synchronization; the dependence
upon detuning Aw for a coupling of f = 0.068 is shown. The
synchronization regime is shown by orange shading. (b) Data and
predictions for the frequency difference ¢’ for three different values
of coupling. The set of data with the largest value of coupling
f = 0.068 corresponds to the amplitude data from the upper plot.
Frequency locking (synchronization regime) is shown where values
@' = 0 occur. SR 0.012, SR 0.044, SR 0.068 denote the synchro-
nization regimes (shaded regions) for the three couplings.

We also perform a time domain simulation of Egs. (1)
and (2), (with # > 0) using initial conditions of amplitudes
fixed at 1 and random phases. At each point in paramater
space this time domain simulation gives a basin of
attraction for stabilizing in either an unsynchronized or a
synchronized state (from an initially unsynchronized state).
For each value of the parameters plotted in Fig. 3, we run
100 such simulations and assign a synchronization value of
0 for unsynchronized and 1 for synchronized. The average
value of these 100 simulations is represented by a linear
gradient between white and blue for 0 and 1, respectively.
Note that the parameters space which synchronizes (blue)
lies within the LSA-1 boundaries, and there is a slight
increase in probability for synchronizing inside the border
of the LSA-2 boundary. However, the initial amplitudes
of our time-domain simulation are not random. The
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FIG. 3 (color online).
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Experimentally measured synchronization space as a # and « for Aw = 0.6, 1, 2. The basins of attraction, found

from the time domain simulation of Egs. (1) and (2), are shown by the gradient between white and blue, and correspond to the average
number of times the simulation synchronized under 100 random initial phases. All lines show boundaries with respective regions to the
right of the line. The green solid line (REP) is the experimental boundary for the transition from unsynchronized to the synchronized state
for repulsive coupling. The red solid line (ATT) is the experimental boundary for the transition from the unsynchronized to the
synchronized state for attractive coupling. The experimental synchronized state is defined as ¢’ < 0.05 (in units of the resonator width).
The orange dashed line (LSA-1) depicts the predicted (linear stability analysis) boundary for which at least one synchronized state is stable.
Similarly, the purple dashed line (LSA-2) bounds the space for which both synchronized states are stable.

amplitudes are fixed to unity, in accord with the experi-
ment. This causes the area bordered by the LSA to be larger
than the synchronized regions shown by the time domain
simulation.

We can distinguish two different “borders” in the basins
of attraction. The first is moving from completely white
to lightly shaded blue. The second is moving from lightly
shaded blue to completely dark blue. Synchronization
between these borders is determined by the initial phase
of the simulation. The experimental boundaries (red and
green lines) seem to correspond to these borders from the
time-domain simulation. However, Eqs. (1) and (2) are
completely symmetric upon exchange of pr— — 3, since
synchronization will occur for ¢ — ¢ + z. Thus, given an
initial random phase difference between the oscillators,
these two boundaries for positive and negative f should
overlap. On the other hand, the two time-domain simulation
borders do correspond quite well to the experimental data.
This could be accounted for if the initial phase difference
of the oscillators is not completely random, but biased
towards a particular phase. This may be due to higher order
dynamics or experimental asymmetries.

We observe that at large detunings, asymmetries in
saturation level or discrepancies in quality factor between
the two oscillators tend to create larger disagreement between
theory and experiment. This is due to the large coupling
necessary in order to synchronize the oscillators, which
magnifies the nonlinear behavior (and thus asymmetry) of
the system. However, the close agreement of Figs. 2 and 3
show the generality and accuracy of our approach.

Finally, we explore the effect of synchronization on
the phase noise. In Fig. 4, the green and blue spheres are
the phase noise at 1 kHz offset from the -carrier
frequency (a key figure of merit for the frequency source

community [35]) plotted as a function of coupling for
oscillators 1 and 2, respectively [29]. The red diamonds
show the oscillator frequency difference ¢’ for comparison.
As coupling is increased the phase noise at this offset
initially increases (due to phase slipping between the
oscillators) and then suddenly drops to 3 dB below the
uncoupled noise level. The plot of the oscillator frequency
difference indicates that the phase noise reduction occurs at
the onset of synchronization. This corresponds to a phase
noise reduction by factor of two, as predicted by theoretical
estimates [3].
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FIG. 4 (color online). Oscillator phase noise at 1 kHz offset
from carrier frequency (blue and green spheres, left axis) and
oscillator frequency difference (red diamonds, right axis) as
coupling is increased. At the value of coupling f = 0.086 the
oscillator frequency difference goes to zero and the phase noise
for both oscillators decreases by 3 dB, i.e., corresponding to
reducing the phase noise by half.
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Our demonstration of the synchronization of two
reactively coupled anharmonic NEMS oscillators shows
excellent agreement with analytical and numerical model-
ing. We track not only the frequency difference, but also the
individual amplitudes, important for a full multivariable
description of the synchronization. These results highlight
the importance of the oscillator amplitudes in synchroni-
zation for reactive coupling. Our work shows the potential
of this system to examine nonlinear dynamics at the
intermediate scale of discretization: full control of individ-
ual elements and tracking of large arrays. All of the
components in these experiments can be realized using
CMOS technology, implying that very large scale networks
can be built using the precise technology of present-day
semiconductor nanoelectronics and electronically tested
with cointegrated state-of-the-art signal processing capa-
bilities. The flexibility of this system permits creation of
dissipative or reactive coupling in arbitrarily complex or
completely random networks. Our experimental demon-
stration of reduced phase noise in the synchronized state
marks an advance for detection of very weak phenomena
using synchronized nanoscale sensor arrays.
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In the process of going through review, synchronization
was explored in a similar system [36].
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