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INTRODUCTION: A paramount contempo-
rary scientific challenge is to understand and
control networks. General studies of networks
are essential to a variety of disciplines, includ-
ing materials science, neuroscience, electrical
engineering, and microbiology. To date, most
studies are observational or “top-down,” rely-
ing on phenomenological models of nodal be-
havior deduced from data extracted from
observations of the entire network. On the
other hand, oscillator synchronization provides
a popular “bottom-up” experimental paradigm
for studies of network behavior. Synchroni-
zation occurs when a large number of net-
worked oscillators tend to phase-lock and
reach global consensus, despite the presence

of internal disorder (such as differences in
oscillator frequencies). However, the state of
global consensus is not the only dynamical
state manifested within networks of coupled
oscillators. Recent work has discovered long-
lived states that spontaneously break the un-
derlying symmetries of the network, even
when its constituent nodes are identical. Un-
derstanding the mechanisms that underlie
these exotic symmetry-breaking dynamics will
be of general benefit to network science and
engineering. To enable experimental studies
with unprecedented control and resolution,
we developed an oscillator network based
on nonlinear nanoelectromechanical sys-
tems (NEMS).

RATIONALE: Complex oscillator dynamics
emerge in a variety of settings. Previous exper-
imental studies on symmetry breaking in os-
cillator networks havemanifested such complex
behavior only by implementing complicated
coupling mechanisms designed for that pur-
pose. By contrast, real-world networks are
often dominated by simple coupling, so these
previous experimental results cannot readily
be generalized. Here, exotic states are seen
to emerge within NEMS oscillator networks,
just beyond the weak coupling limit in simple
settings.

RESULTS: Using an ar-
ray of coupled nonlinear
NEMS oscillators, we ob-
served spontaneous sym-
metry breaking in a simple
and general network set-
ting. These NEMS oscil-

lator nodes were made to be nearly identical,
and their fastest dynamical time scales were
short enough to generate large datasets, per-
mitting observation and statistical analyses of
exotic, slowly emerging network phenomena.
In addition, NEMS are very stable, so that
transient effects within the network were able
to relax within experimental time scales. We
examined the network dynamics in detail
throughout parameter space and showed
experimentally that a simple network of os-
cillators can reproduce the predictions of
theoretical models with explicit complex inter-
actions. We fully explained these phenomena
by applying a higher-order phase approxima-
tion to the full oscillator model. As strong
evidence of the symmetry-breaking argument,
we delineated the symmetry subgroups asso-
ciated with each state.

CONCLUSION: Our results show that sim-
ple real-world oscillator networks display
complex and exotic system states without
the need for complex interactions. Our find-
ings can be applied to observational studies
of the behavior of natural or engineered os-
cillator networks. This work clearly elucidates
howa 16-dimensional system, comprising eight
magnitude-phase oscillators, collapses into
synchronized states that evolve within lower-
dimensional subspaces. Real-world networks
based on our nonlinear NEMS oscillator plat-
form will enable further insight into the
mechanisms by which such behavior emerges
in more complex topologies at even larger
network scales.▪
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States stabilized by emergent interactions. (A) Oscillator network showing the physical
connections and the emergent phase interactions. NN, nearest neighbor; NNN, next-nearest
neighbor. (B) Stable fixed points for states with no magnitude variations. Colors correspond to
colors of interactions from (A) required for stability. (C to E) Experimental heat maps of time-
domain data for different combinations of phase differences (using the same data). Exotic
states appear as bands in the plots (2-precess, WC-I, 2-TW-I, 2-TW-II).
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Synchronization of oscillators, a phenomenon found in a wide variety of natural and
engineered systems, is typically understood through a reduction to a first-order phase
model with simplified dynamics. Here, by exploiting the precision and flexibility of
nanoelectromechanical systems, we examined the dynamics of a ring of quasi-sinusoidal
oscillators at and beyond first order. Beyond first order, we found exotic states of
synchronization with highly complex dynamics, including weak chimeras, decoupled states,
traveling waves, and inhomogeneous synchronized states. Through theory and experiment,
we show that these exotic states rely on complex interactions emerging out of networks
with simple linear nearest-neighbor coupling. This work provides insight into the dynamical
richness of complex systems with weak nonlinearities and local interactions.

T
he mutual entrainment of interacting os-
cillators arises in both natural (1–3) and
engineered systems (4–10). The associated
phenomena range fromsimple locked states,
inwhich all oscillators have the samephase,

to the general dynamics of inhomogeneous phase
configurations associated with pattern forma-
tion (11). To explore these phenomena, we used
oscillators formed from nanoelectromechanical
systems (NEMS), a hybrid of electronic and me-
chanical degrees of freedom. We exploited the
capability of high-speed electronics, yielding indi-
vidual readout and control, to construct systems
with minimal parameter disorder. These innova-
tions allowus tomake detailed comparisonswith
theoretical models.
We examined the dynamics of a ring of eight

NEMS limit-cycle oscillators with linear nearest-
neighbor coupling. Relative to chemical oscilla-
tors (12, 13) or pendulums (7), the time scales over
which these dynamics evolve are shorter by at
least three orders of magnitude (14); this allows

for rapid collection of large datasets that re-
duce statistical errors and permit emergence of
phenomena evolving over very long time scales.
This system has allowed us to explore subtle
aspects of complex dynamics, given the ability
to control the nodes and edges over a large range
of parameters (15–17) while simultaneously cap-
turing all degrees of freedom in real time. For
example, we could quench the system to examine
attractors that are unlikely to be found from ran-
dom initial conditions.
The foundational model of synchronization is

the Kuramoto equation (18, 19), which describes
a network of N oscillators with phases fj and
frequencies wj and equations of motion f

�

j ¼ wj�
ðK=NÞPN

i¼1 sinðfi � fjÞ, where K is the strength
of the coupling. This model displays dissipative
phase dynamics and exhibits a transition to a
synchronized state in which a macroscopic frac-
tion of the oscillators evolves at the same frequen-
cy. The transition occurs when the inter-oscillator
coupling overcomes the disorder of the oscilla-
tor frequencies. Kuramoto and Sakaguchi later
extended this basic model to include a phase
lag q that induces dispersion, so the sum in the
coupling function is over sin(fi – fj + q) (20).
For weak coupling, as described below, we

experimentally found synchronized states with
equal oscillator phases or with patterns of fixed
phase differences. We present data that can be
quantitatively understood from analyticalmodel-
ing. For stronger coupling, a broad array of stable
states emerged showing richer structure and
dynamics. We developed experimental and ana-
lytical tools to classify and understand these ex-
otic states and demonstrate how they arise in a
group-theoretic analysis of the system symmetries
(21, 22). Unlike studies of chemical oscillators (23),

optoelectronic oscillators (24), or electronic oscil-
lators (25), specialized inter-oscillator or intra-
oscillator feedback was not needed to fine-tune
network parameters to create these exotic states.
By contrast, we show here that quasi-sinusoidal
oscillators with linear nearest-neighbor coupling,
just beyond theweak coupling limit, are sufficient
to manifest exotic states.
Previous studies of the symmetry breaking of

oscillator networks focused on explaining exotic
dynamics with the use of either phase models
with explicit biharmonic phase interactions or
complex amplitude models with nonlinear cou-
pling of nodal amplitudes (26–29). Using amodel
with linear nearest-neighbor coupling of complex
amplitudes, we show how an expansion in the
coupling parameter yields an approximation for
the dynamics of the oscillator phaseswith emer-
gent biharmonic, next-nearest-neighbor, and
triadic phase interactions. This expansion was
sufficient to yield almost all of the exotic stateswe
see. The emergent properties are in rough quan-
titative agreementwith experiments andwith the
full model (which describes complex amplitudes).
Our results suggest that exotic symmetry break-
ing and dynamics are muchmore prevalent than
earlier studies indicate, and should be of direct
relevance to biological or socio-technological net-
works with low connectivity formed from pair-
wise linear interactions.

Coupled nanoelectromechanical
oscillator model

Our system can be described by a coupled set of
N saturated oscillators (17, 30–32) with equations
of motion for the complex amplitudes Aj of
each oscillator j given by:

dAj

dT
¼ �Aj

2
þ Aj

2jAj j þ i½wjAj þ ajAj j2Aj �

�ibAj þ i
b
2
ðAj�1 þ Ajþ1Þ ð1Þ

Equation 1 describes the dynamics on time scales
longer than the relaxation time of the resonator,
tslow =Qm/fm, where fm is the resonant frequency
of the mechanical cavity and Qm is the quality
factor (see supplementary materials). The natu-
ral frequency of each oscillator wj allows for
dispersion within our oscillator equations, b is a
real number representing the strength of the
coupling between nearest neighbors, and a gives
the nodal nonlinearity that couples frequency to
amplitude. Except where explicitly stated, all
of the natural oscillator frequencies are set to be
equivalent, making a uniform ring with wj = 0 in
the rotating frame. The variablesAj,T and param-
eters a, b, wj of Eq. 1 are unitless. The scaled time
T is defined in terms of the physical time t via T =
2p × t/tslow. From this, the relation of a, b to the
physical oscillator parameters can be deduced.
The oscillator dynamics of Eq. 1 are similar to
the dynamics described by the Stuart-Landau
equation (33) but with the quadratic nonlinear
dissipation in that equation replaced by feedback
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saturation. Periodic boundary conditions ( j =
j + N) yield a ring topology.
Equation 1 can be divided by Aj and separated

into real and imaginary parts to give the dynamics
of the magnitude |Aj| = aj and phase ∠Aj = fj,

daj
dT

¼ 1� aj
2

� b
2

�
ajþ1 sinðfjþ1 � fjÞ

þ aj�1 sinðfj�1 � fjÞ
� (2a)

dfj
dT

¼ wj þ aa2j � bþ b
2aj

�
ajþ1 cosðfjþ1 � fjÞ

þ aj�1 cosðfj�1 � fjÞ
�

(2b)

Solutions of this set of equations with aj = 1 are
known to be stable (34). For solutions with aj ≠ 1,
less is known. For magnitude variations induced
by phase dynamics that is slow relative to the
magnitude relaxation rate (½ in Eq. 2a), the
deviations from aj = 1 can be written to order
OðbÞ in terms of the instantaneous phases daj ≈
–b[sin(fj+1 – fj) + sin(fj–1 – fj)]. Inserting this
into an expansion of Eq. 2b up to first order in the
magnitude perturbations daj, akin to (35), yields

dfj
dT

¼ wj þ a� b

� 2ab½sinðfjþ1 � fjÞ þ sinðfj�1 � fjÞ�(

Kuramoto

þ b
2
½cosðfjþ1 � fjÞ þ cosðfj�1 � fjÞ�(

Sakaguchi

þ b2

4
½sinðfjþ2 � fjÞ þ sinðfj�2 � fjÞ�(

next-nearest neighbor

� b2

2
fsin½2ðfjþ1 � fjÞ� þ sin½2ðfj�1 � fjÞ�g(

biharmonic

� b2

4
sinðfjþ2 � 2fjþ1 þ fjÞ(

triadicþ

� b2

4
sinðfj�2 � 2fj�1 þ fjÞ(

triadic�

þ b2

2
sinðfjþ1 � 2fj þ fj�1Þ(

triadic 0
ð3Þ

where we label individual coupling terms by their
underlying nature for later reference.
AtOðbÞ this reduces to theKuramoto-Sakaguchi

(K-S) equation. We can rewrite it in a more con-
venient form (36),

dfj
dT

¼ wj þ a

þK
X

i¼j�1; jþ1

fsinðfi � fjÞ þ g½1� cosðfi � fjÞ�g

ð4Þ

with K = –2ab and g = (4a)−1. Here, g is a
measure of the phase lag q.
For the small coupling regime where Eq. 4

applies, increasing the nonlinear parameter a
limits the system to Kuramoto-like dynamics.
The dissipative sine coupling in this limit arises
from indirect interactions in the phase equation
via the nonlinearity a, a parameter derived from
the nanoscale physics of the mechanical resona-
tor (30, 37). Our experimental system is unique in
that we can independently shift a and b over a
wide range spanning two orders of magnitude.
Equation 3 does not account for dynamics

with rapidly varying magnitudes. If the magni-
tude dynamics are dominated by a single fre-
quency, for weak coupling we can expand the
magnitude perturbations in harmonics. AtOðb2Þ
this introduces reactive, cosine-like next-nearest-
neighbor, biharmonic, and triadic terms into Eq. 3.
On one hand, this gives quantitative differences
atOðb2Þbetween the phasemodel, Eq. 3, and the
full magnitude-phase model, Eq. 2. On the other
hand, if the dissipative sine-like terms dominate
stability considerations, qualitative correspon-
dence between Eq. 2 and Eq. 3 for these dynamic
situations should be evident. States with static
magnitudes should quantitatively agreewithEq. 3.
As seen below, we make a comparison between
the phase model and experimental data with the
inhomogeneous synchronized states.
Note that in the full complex amplitude equa-

tions, the transformation b → –b, Aj → –Aj (for
all even values of j) gives the same set of equations
up to a uniform frequency shift. One consequence
is the equivalence between in-phase synchroni-
zation for attractive interactions (negative b) and
antiphase synchronization for repulsive inter-
actions (positive b). More generally, on the ring
topology, the same types of dynamical states exist
whether we choose to use an attractive or a re-
pulsive interaction. This symmetry is conserved
in the phase approximation, Eq. 3. We study the
case of positive b so that antiphase synchroniza-
tion is expected.
We begin by discussing the experimental setup

and the system’s symmetries. After this, we ex-
amine behavior as the coupling parameter b is
increased, starting from the K-S limit where
quantitative comparisons can bemade.We then
divide the discussion of exotic behavior into
decoupled states, weak chimeras, and the in-
homogeneous synchronized states. To provide
additional insight, all of the states presented in
this work are shown as animations (movies S1
to S32) using real-time data; see tables S1 to S3
for a guide to the movies.

Experimental setup

The experiment is configured to be a controllable
network of eight oscillators in which the dynam-
ics of each node are described by a limit cycle in
the phase space of mechanical displacement and
velocity. Each oscillatorwas coupled to twoneigh-
bors in a chain. We imposed periodic boundary
conditions to create the ring topology (Fig. 1A). In
an example of the time-domain data (Fig. 1B), we
extracted the magnitudes and phase differences

of the complex amplitudes Aj, with aj = |Aj| and
Dj = fj+1 – fj. We show the dynamics of the eight
oscillators before, during, and after synchroniza-
tion into the antiphase state. At fixed a = 0.2, we
abruptly changed b from 0.02 to 0.7 within 1 ms
to induce synchronization. An animation of the
data presented in Fig. 1 is shown in Movie 1.
If we assume that the magnitudes can be

ignored, then the state of the eight oscillators
evolves uponaneight-dimensional torus.We show
the data from Fig. 1A on four two-dimensional
(2D) tori in Fig. 1C. In the top panel, the oscil-
lators were uncoupled and the phase diffused
randomly across the tori. In the bottom panel,
after coupling was initialized, the system syn-
chronized and its dynamics collapsed to a 1D
state space.

Symmetries of the oscillator ring

Group theory allows classification of the states of
a complex network by considering its symmetry.
Ashwin and Swift (21) performed this analysis for
rings of weakly coupled oscillators, which applies
to our system in most settings, and we follow
their notation. Our eight-oscillator ring has the
rotational and reflection symmetries associated
with an octagon, described by the dihedral group
D8. Note that Eq. 1 is also invariant under the
action of an overall phase shift (represented by
the 1-torus T). Combining these symmetries gives
the overall symmetry group,D8 × T. The dynam-
ical states of the system may show reduced
symmetries given by the isotropy subgroups of
this group. Each isotropy subgroup has an asso-
ciated subspace that is invariant under its action.
The dimension of this invariant subspace gives
the number of phase variables required to pre-
dict the dynamics (29). Thus, a subgroup with a
1D subspace is described by a single phase, giving
a synchronized state with a pattern of locked
phases that breaks the symmetry of the ring. A
2D subspace requires two independent instan-
taneous phases. If these phases remain unlocked,
the state will show cluster synchronization, with
two clusters of phases locked into a pattern that
evolves with different frequencies on a toroidal
attractor. Higher-dimensional invariant sub-
spaces typically correspond to more complex
dynamics.
Table 1 provides the isotropy subgroups of

D8 × T, the dimensions of the invariant sub-
spaces, the group generators, and the associated
oscillator patterns. Here, k is a reflection (with
an axis through two nodes), s is a rotation by
one element, and wp is a phase shift by p × p/4.
A “–1”with the generator means that all phases
are increased by p in the transformation. The
pattern notation is written so that letters a,
b, … represent exp(if1), exp(if2),… . As an exam-
ple, we explain the symmetry represented by
the generator (s3k, –1) acting on the pattern {a,
b, –b, –a, a, b, –b, –a}. First, a reflection about
the 2-6 axis gives {–b, b, a, –a, –b, b, a, –a}. Then,
there is a rotation by three oscillators counter-
clockwise, taking the pattern to {–a, –b, b, a, –a,
–b, b, a}. By increasing the phase by p, the orig-
inal pattern is recovered.
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Splay states
The simplest states of identical oscillators coupled
on a ring are the states with equal phase differ-
ences Dj = (fj+1 – fj) mod(2p) along each edge.
These phase differences add up to an integral

number of phase rotations around the ring given
by the winding number

k ¼ 1

2p

XN
j¼1

Dj ; k ¼ 0:::N � 1 ð5Þ

Note that k = 0 gives the uniform synchronized
state and, for evenN, thewindingnumberk=N/2
corresponds to the antiphase state. The remaining
values of k give splay states (33, 34). Because all of
the phase differences are the same for one of
these states, we can define D(k) ≡ Dj

(k) = 2pk/N for
winding number k. From Eqs. 2a and 2b, these
states have unit magnitude and the oscillators
form a single frequency cluster.
For our eight-oscillator ring, the eight unity-

magnitude states k = 0, 1, …, 7 comprise the in-
phase state (k = 0), the antiphase state (k = 4),
and the splay states of rotating phase (k = 1, 2,
3, 5, 6, 7). The in-phase state has all of the spa-
tial symmetries of D8. The antiphase state has
the same structural symmetry but with twist,
D8(+, –). The splay states have the symmetry
of the twisted cyclic group Z8(p), where p ∈
{1,2,3,5,6,7} gives a state with winding number
k = {1,2,3,5,6,7}, respectively. Note that the sub-

groups with {7,6,5} are conjugate to the groups
with {1,2,3}. In Movie 2, we show how the twist
of the isotropy subgroup relates to a splay state
(k = 7).
For unity magnitudes, Eq. 2b gives a simple

prediction for the normalized frequency in the
rotating frame W(k) = a – b(1 – cos D(k)). Note
that Eq. 4 exactly captures this result because
it is approximated to OðbÞ. Figure 2A shows a
plot of the experimental result for the frequency
of each state with winding number k against its
phase difference (green spheres). We fit this with
the equation for W(k) and found a difference of
1% in b and an agreement in a better than 0.5%,
compared with the values from the initial cal-
ibration. The fit is shown as a purple line.
For small values of b, we observed the anti-

phase state k = 4 and the two splay states k =
{3,5}. With Dj = D(k), this result is consistent
with the linear stability analysis of Eq. 4, which
shows that the k = {3,4,5} states are stable for
any a, b combination. This analysis also shows
that the k = {2,6} states have neutral linear
stability (see below). For large b (1.0) and small
a (0.074), the in-phase state and k = {1,7} states
were also observed (Fig. 2A).
Splay states that are not stable within a re-

pulsive K-S model with K < 0—that is, k = {0,1,7}—
are stable within simulations of the extended
phase model (Eq. 3). From simulations of Eq. 3,
it turns out that only the K-S and biharmonic
terms were required to stabilize the in-phase
state. Likewise, only the K-S and triadic terms in
Eq. 3 were required to stabilize k = {1,7}. Thus,
different terms in the extended phase model
stabilize different states.
In the absence of noise, the probability to

settle into a particular synchronized state from
a random initial set of phases can be calculated
from the volumes of the basins of attraction of
the different solutions (38). In Fig. 2B, we show
the probability of synchronizing into the anti-
phase state as a function of phase-lag param-
eter g in our experiment. The probability of
finding this state in the ring with an even num-
ber of repulsively coupled oscillators is equiv-
alent to finding the in-phase state in the same
size ringwith attractively coupledoscillators. Thus,
our results can be directly compared to previous
results for the Kuramoto limit g = 0 (38).
We ran the experiments at a fixed value of

coupling K = −0.2 (Fig. 2B, green error bars) and
swept g from 0.04 to 0.75, starting with 300 dif-
ferent random initial conditions for each value.
At g ≈ 0.75, b was increased to a point where
magnitudes varied strongly and states other than
the splay states with winding number k = 3, 4, 5
started to stabilize. We plotted the ratio of the
number of trials ending in an antiphase state
(k = 4) to the total number of trials. The error
is given by the uncertainty generated by sampling
the probabilities with only a finite number of
trials. At smaller values of g, the probabilities
appear to approach a constant value before
sharply deviating from this trend for g < 0.07.
Fitting the data for g > 0.07 to a quadratic
function of g2 (Fig. 2B, red curve) yielded the
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Fig. 1. Experimental setup and representative data. (A) Each oscillator node rotates on a limit
cycle (orange on black circle), with coupling edge to nearest neighbors (springs). (B) An example of
a synchronization transition. The real-time network dynamics shows the emergence of synchroni-
zation as the coupling is initialized. It depicts the oscillator magnitudes aj and the phase differences
between nearest neighbors D j = (fj+1 – fj) mod(2p). (C) Phases of the eight oscillators on four 2D
tori before and after synchronization.

Movie 1. The transition from an unsyn-
chronized state to an antiphase synchro-
nized state after the inter-oscillator
coupling is induced (composed of
experimental data).
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g → 0 intercept of p(k=4)(g = 0) = 0.76 ± 0.02.
This result proved consistent with previous num-
erical simulations on larger rings in the Kuramoto
limit by Wiley et al. (38) when extrapolated to
our eight-oscillator ring.
We associate the behavior for g < 0.07 with

effects of noise. To confirm this, we performed
stochastic numerical simulations of Eq. 2 (with
the oscillators having identical natural frequen-
cies wj) by adding independent stochastic forces
x j(t) to both the magnitude and phase equa-
tions. We used a two-step stochastic Runge-Kutta
scheme for additive Gaussian white noise (39),
with hx i(t)x j(t′)i = Dd(t – t′)dij, and determined
the network’s state at the end of these simu-
lations, carrying out more than 1000 trials. The
results (Fig. 2B) show that the large-g behavior
was effectively noise-independent, whereas the
small-g behavior was strongly noise-dependent.
The simulations without noise for g = 0 agree
with the result extrapolated fromWiley et al. (38).
Although we do not expect the noise in our ex-
perimental system to be completely white (16),
the experimental data for g < 0.07 were roughly
consistent with the results of numerical simu-
lations with a noise strength D ~ 4 × 10–4. Mag-
nitude noise fed into the phase equation via the
nonlinear frequency tuning for small values of g.
Nonlinear frequency tuning is characterized by
the parameter a = 1/(4g); it enhances the effective
phase noise strength at low frequencies by a fac-
tor of (1 + g–2). Thus, at low g, phase noise became
much stronger, and noise-induced switching be-
tween attracting states was much more likely.
We studied the robustness of the synchro-

nized state to dispersion in the natural oscillator
frequencies by suddenly perturbing the system
after it had settled into the antiphase state. To
accomplish this, we shifted the natural frequen-
cy of the first oscillator by an amount dw1 and
increased the size of the perturbation until the

oscillator broke loose and synchronization was
destroyed. For a weak perturbation, linear re-
sponse gave a frequency shift of the array equal
to the perturbation of the single oscillator di-
vided by the number of oscillators in the array,
dW(4) = dw1/8. In general, this result broke down
for large perturbations approaching the limit of
synchronization. It remains true, however, in the
Kuramoto limit even for large perturbations.
Figure 2C shows the frequency shift of the

array after subtracting off the small-perturbation
prediction of dw1/8 for three different values of
K-S parameter g. A constant residual frequency
shift of dW = 0.005 common to all three datasets
was also subtracted. This could be accounted for
by drift in fast oscillator frequency dfm /fm ~ 10−6

over the experimental time scale of ~100ms,which
was chosen to acquire data with error ~0.001.
In addition to the mean frequency, we report

the magnitude variable of the perturbed oscil-
lator. Numerical solutions of Eqs. 2 and 4 are
plotted as solid and dashed lines, respectively.
We compare the experiment to the fixed-point
solutions found in a numerical solver for both
the full set of magnitude-phase equations (Eq. 2)
and the K-S equation. The experimental uncer-
tainty in the x axis originated from the uncer-
tainty in the frequency shift caused by the
discreteness of the digital-to-analog converter
used to implement control over nodal frequen-
cies. When oscillator 1 desynchronized, the sys-
tem did not settle into a fixed point, and the
solver failed to find a valid solution, so we in-
cluded no numerical data after desynchronization.
In this case, we have manually modified the
parameters a and b (reported as K and g, re-
spectively, for the K-S solution) in the solver to
obtain a match to the data of Fig. 2C. Although
good agreement between experiment and theory
was attained, more disagreement was found in
this case than for the frequency data from the

uniform ring (Fig. 2C versus Fig. 2A). This dif-
ference may be due to stray nonlinear coupling
arising from parametric actuation of the me-
chanical resonators (see supplementary text).
Note that even at b = 0.1, the solution to the K-S
model shows some deviations from the solution
of the full complex amplitude equations.
It is noteworthy that we found quantitative

agreement with theory in a high-dimensional
nonlinear system, even for subtle phenomena
such as response near the desynchronization
threshold, where linear response breaks down.
Also, through careful control of frequencies, we
were able to attain a nearly uniform network.
This enabled us to test analytically intractable
problems, such as quantifying the state prob-
abilities arising from random initial conditions
in the presence of noise. Estimating these re-
quires the calculation of the volume of the basins
of attraction. These results demonstrate that
NEMS oscillators enable general and detailed
studies of synchronization.

Inhomogeneous synchronization

In addition to the aforementioned frequency-
synchronized splay states exhibiting identical
phase differences between nearest-neighbor os-
cillators, we discovered frequency-synchronized
states with a spread of phase differences. We
accessed these states by taking advantage of
our experimental capabilities that permit non-
adiabatic movement through the parameter space
by quickly changing the values of a, b, and wj

while carrying out the simultaneous readout of
the states of all eight oscillators.
The inhomogeneous synchronized states we

explored in this case arose from the pattern-
forming instability of the spatially uniform in-
phase state. This instability is a Fourier mode
of phase perturbations, which grows and ulti-
mately saturates to form a stationary state with
periodic spatial modulation of nearest-neighbor
phase differences. We expect that the period of
the spatial pattern that develops from the uni-
form state is associated with the wave vector
maximizing the growth rate from linear stability
(eq. S5). For the eight-oscillator ring and values
of a, b we used, this yielded the inhomogeneous
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Table 1. Isotropy subgroups of D8 × T.

Subgroup Subspace dimension Generators Phase pattern

D8 1 s, k {a, a, a, a, a, a, a, a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D8(+, –) 1 (k, 1), (ks, –1) {a, –a, a, –a, a, –a, a, –a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Z8(p), p ∈ 1, 2, 3 1 swp {a, wpa, w2pa, w3pa, w4pa,

w5pa, w6pa, w7pa}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D4(+, –) 1 (sk, 1), (ks, –1) {a, a, –a, –a, a, a, –a, –a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D4(k) 2 s2k, k {a, b, a, b, a, b, a, b}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Z4(p), p ∈ 1, 2 2 s2w2p {a, b, ipa, ipb, i2pa, i2pb, i3pa, i3pb}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D2(k) 3 s4k, k {a, b, c, b, a, b, c, b}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D1(k) 5 k {a, b, c, d, e, d, c, b}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D2(ks) 2 s3k, ks {a, b, b, a, a, b, b, a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D1(ks) 4 s7k, ks {a, b, c, d, d, c, b, a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D2(–, –) 2 (s3k, –1), (ks, –1) {a, b, –b, –a, a, b, –b, –a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D1(–, –) 4 (s7k, –1), (ks, –1) {a, b, c, d, –d, –c, –b, –a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

D2(+, –) 2 (s3k, 1), (ks, –1) {a, b, b, a, –a, –b, –b, –a}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Z2 4 s4 {a, b, c, d, a, b, c, d}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Z2(p = 1) 4 s4w4 {a, b, c, d, –a, –b, –c, –d}
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Movie 2. Highlighting the spatiotemporal
symmetry of a synchronized splay state,
k = 7 (composed of experimental data).
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synchronized pattern of phases with a single
spatial period.
Figure 3A shows an example of the patterns

that emerged from the uniform state, where
the phase differences are depicted as a func-
tion of time. We prepared the system without
natural frequency disorder wj ≈ 0, and then
switched on the coupling to b = 1 at t ≈ 0.3 s.
At t ≈ 0.53 s, we then suddenly shifted the
coupling to b = 0.28. At these parameter values
(a = 0.09, b = 0.28), the in-phase state was cal-
culated to be unstable, and the phases subse-
quently exploded into a patterned, inhomogeneous
state. This state was frequency-synchronized
because the phase differences were constant
in time. However, a large spread in the phase
differences between nearest neighbors appeared,

larger than could be accounted for by residual
natural frequency dispersion in wj. In Fig. 3B, we
show the growth of the spatial pattern as a
function of time; the color of the slice corresponds
to the time axis. After the quench (green dotted
line), the spatial pattern grew into a rough sinus-
oidal shape. As shown, the patterns exhibited a
single spatial period, fulfilling the linear stability
prediction. In Movie 3, we show the pattern for-
mation through the quench shown in Fig. 3B.
We compared the experimental data to the

results of numerical simulations, both for the
full magnitude-phase model (Eq. 2) and for
the second-order phase model (Eq. 3). Figure 3C
displays the results of a deterministic simulation
(a simulation without noise) of Eq. 1, starting
the system at the fixed point aj = 1 and Dj = x j,

where x j is a pseudorandom number sampled
from a uniform distribution over the interval
(–p/20, p/20). We plotted the resulting absolute
valueM of the order parameter Zip =M exp(iF) =
ð1=NÞPN

j¼1 expðifjÞ over the parameter space
defined by a ∈ [0.04, 0.18] and b ∈ [0.1, 1]. We
observed three regions: a region of high syn-
chrony (“uniform in-phase”), a region of reduced
order parameter (“inhomogeneous synchro-
nized”), and a region where neither the uniform
nor inhomogeneous synchronized states is stable
(“other synchronized states”). The black region
represents values of M < 0.5. In addition, this
region did not have a near-zero phase differ-
ence (calculated on the interval –p, p). The bound-
ary between the uniform and inhomogeneous
regions was consistent with the threshold of
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D
D
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Fig. 2. Experimental data on splay states. (A) Frequencies W(k) of the
unity-magnitude synchronized states k ∈ {0, 1, … 7}, for which the
neighboring phase differences are D(k) = 2pk/8. At a = 0.074 and b = 1,
the data (green spheres) agree well with the fit from the theoretical
predictions (purple line). (B) Probabilities of finding the antiphase
state from 300 experimental trials for each point with random initial
phases, as a function of the phase-lag parameter g from Eq. 4 (green
error bars). We simulated the full set of equations (Eq. 2) with a
stochastic white noise term of strength D added to both magnitude
and phase. (C) Experimental data on a perturbation of the antiphase

state. We perturbed the natural frequency of a single oscillator
(oscillator 1) by an amount dw1 and examined its magnitude a1 and
the deviation of the mean frequency of the ring dw1/8, hence
dW(k=4) – dw1/8 is shown. We numerically determined the effect of
the perturbation; the plot shows the result from the full model (solid
lines) and the Kuramoto-Sakaguchi model (dashed lines). Horizontal
error bars are given by digital step resolution of the circuit used
for frequency control. Vertical error for the oscillator frequencies is
given by the average resolvable frequency over eight oscillators
within a ~100-ms time window.
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linear stability a = b sin2(p/8) (34) of the in-
phase state. That is, at values to the lower right
of this line, the in-phase state was stable and
M = 1 (shown in white).
To obtain quantitative comparison with theory,

we performed the following experiment. First,
we set the system to (a, b) = (0.09, 1) to ini-
tialize it near the fixed point (aj, Dj) = (1, x j)
with x j < 0.05, and then reinitialized it until
the in-phase state was detected. Second, we
rapidly quenched the system down to a lower
value of b, along the dashed line in Fig. 3C. We
applied this procedure, stepping b between 0.3
and 0.9 with an increment of 0.03, and repeat-
ing it 20 times for each step. Occasionally, the
system was observed to randomly switch into
neither the uniform nor the inhomogeneous

state. Accordingly, we preselected states with a
mean phase difference �Dj < 0.002 when av-
eraged over both space and time. Each trial was
binned into one of two groups by thresholding
at M = 0.94, which represents the greatest value
for the states found in simulation along the
dashed line in Fig. 3C. From each of these two
bins, we plotted the average of M over the trials
against b in Fig. 3D. We also show the results from
numerical simulations of the full magnitude-
phase model (Fig. 3C) and the approximate phase
model (Eq. 3) as black and green dots, respec-
tively. We found that the phase model agreed
with the magnitude-phase model for values of
b < 0.3. The in-phase state for both models was
found to destabilize at the same value of cou-
pling. The experimental data show qualitative
agreement with the numerical results (black
dots) of the full model—for example, manifest-
ing a discontinuous transition at b ~ 0.6. In this
plot, we could not readily explain the systematic
quantitative disagreement between simula-
tions of the full model (Eq. 2) and our experi-
mental data.
Synchronized states with a spread of phase

differences have been discussed by Pikovsky and
Rosenblum (27) in networks of Stuart-Landau
oscillators with global nonlinear coupling. By
contrast, for our system, such spread occurred
without need for explicit nonlinear coupling.
Also, no spatial pattern of the phases was ob-
served in their previous work because simu-
lations were performed in a globally connected
topology.

Decoupled states

The following sections describe states that can
form multiple frequency-synchronized clusters.

To find the symmetries that are preserved, we
had to introduce several measures that identify
frequency clustering. This is illustrated in Fig. 4,
A and B, which depicts (from top to bottom)
several neighboring phase differences; space-
time plots of oscillator frequencies that identify
the frequency clusters; pairwise mutual infor-
mation of the phases within the state I(fi; fj)
(40); and experimental snapshots of the oscil-
lator phases. In these lowermost panels, each
oscillator node is colored to identify members
of a specific synchronized node cluster, arrow
orientation depicts each node’s relative instan-
taneous phase, symmetry operations correspond-
ing to the group generators are shown as dashed
arrows, and the corresponding isotropy sub-
group is shown at the lower right.
Decoupling occurs for the special case of a

ring containing 4m oscillators (where m is a
positive integer) with nearest-neighbor linear
interactions (21): In states with Aj+1 = –Aj–1, the
oscillator Aj becomes decoupled from its neigh-
bors (see Eq. 1). In our system, for the k = 2
splay state, Dj+1 + Dj = p, which gives Aj+1 = –Aj–1.
A consequence of the decoupling is that the
k = 2 and k = 6 splay states became two points
on a continuous line within state space, cor-
responding to an arbitrary phase difference
between the even- and odd-numbered clusters.
For a nonideal system with a nonzero differ-
ence in the average natural frequency within a
cluster, ¼

P4
j¼1 w2j≠¼

P4
j¼1 w2j�1 , we expect to

observe two clusters precessing at different fre-
quencies. This is depicted as what we term the
2-precess state in Fig. 4A, first row, where two
neighboring phase differences drift. Note that
the decoupling condition, Dj+1 + Dj = p, is satis-
fied at all times.
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Fig. 3. Inhomogeneous synchronization. (A) Oscillator nearest-
neighbor phase differences showing pattern formation. At t ≈ 0.53 s,
we suddenly shifted the coupling from a value of b = 1 to b = 0.28.
(B) Phase differences of the inhomogeneous state as the system is
quenched from the data in (A). The color corresponds to the time axis, with
more blue representing later times. (C) Numerical data on the state space
of the inhomogeneous synchronization. The plot shows the magnitude of
the Kuramoto order parameter Zip characterizing the steady state found in

these simulations. (D) Data showing the overlap of the uniform and
inhomogeneous synchronized states as a function of coupling parameter
b at a = 0.09. The plot shows the mean (in trial number) of the
absolute value of the order parameter with a threshold for each trial
given by �Dj < 0.02 and Mn < 0.94 (blue stars) or Mn > 0.94 (maroon
triangles). A clear separation of the states appeared when this threshold
was applied. The experimental results are compared with the numerical
simulations of Eq. 2 (black dots) and Eq. 3 (green circles).

Movie 3. Formation of the spatial pattern
of phases in the inhomogeneous
synchronized state through a quench
of the coupling parameter b (composed
of experimental data).
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The second row of Fig. 4A depicts the fre-
quencies as a function of time. The frequency
clusters show a difference of ~20 Hz (0.04 in
normalized units). The third row demonstrates
that the mutual information is appreciable be-
tween next-nearest neighbors but is negligible
between nearest neighbors. Two phase variables
were required to describe this state. Here, evi-
dently, symmetry was not completely broken
and four-fold rotational symmetry persisted. The
symmetry subgroup associated with this state is
the twisted cyclic group Z4(p = 2). In Movie 4, we
directly show the precession of the two groups
of oscillators within this decoupled state.
The magnitudes within the observed 2-precess

state manifested small, slow variations. Thus,
the phase model (Eq. 3) should provide a good
approximation to the state’s dynamics. Indeed,
we found that this 2-precess state was repro-
duced in our simulation of the phase model. In
these simulations, we varied the coefficients of
the higher-order phase interactions and thereby
could identify the nearest-neighbor coupling
term as most important for this state’s stability.
The biharmonic and triadic terms appeared to
have little effect on this state, although they
smoothed the trajectories of the phase differ-
ences. We show these simulations in fig. S6A.
Figure 4C demonstrates that the two clusters

of the decoupled state have identical frequencies
in the ideal ring. We extracted data from the

time-domain records of the natural frequencies
wj and the oscillator frequencies within the
state Wj (as in the lower panel of Fig. 1C before
and after t = 0.25 s, respectively). We plotted the
difference between the frequencies of the oscil-
lator clusters,¼

P4
j¼1 W2j �¼

P4
j¼1 W2j�1, against

the difference of the means of their natural fre-
quencies, ¼

P4
j¼1 w2j �¼

P4
j¼1 w2j�1 . At two

values of b, the intercept nearly vanished. Thus,
when the difference of the mean of the natural
frequencies was near zero, the frequency of two
clusters became nearly indistinguishable. We
note that the type of decoupling we observed
experimentally—a network of D4m symmetry
with linear, pairwise coupling—was previously
discovered theoretically by Alexander and
Auchmuty (41).
The 2-precess state was not the only state

that was found near the k = 2 and k = 6 fixed
points. We also observed two traveling-wave
states that oscillate around each of the k = 2
and k = 6 fixed points (Fig. 4B). These states
were not observed in simulations of the orig-
inal set of equations (Eq. 2). However, we were
able to reproduce these states in subsequent
simulations of the complex amplitude equation
(Eq. 1) in which we included additional non-
linear nearest-neighbor coupling proportional
to A2

jþ1 andA2
j�1 (specifically using eq. S9). These

additional terms likely arose from harmonics at
2fm ~ 4.4 MHz, which could serve to paramet-

rically excite nearest neighbors. The traveling
waves can manifest a spatial wave vector of p/2
(the 2-TW-I or first traveling-wave state around
the k = 2 state shown in Fig. 4B) or p/4 (see
fig. S2A). For the 2-TW-I state, the symmetry
subgroup is Z2.
Finally, in Fig. 4D we display the decoupled

and traveling-wave states of Fig. 4, A and B,
together with the in-phase k = 0 state in a 3D
plot. These demonstrate how a single oscillator
magnitude varies according to its two neighbor-
ing phase differences. The in-phase state is
ideally a point within this phase space and hence
can be described by a single phase variable.
However, the other two states are lines in this
cross section of phase space and need at least
two phase variables to be described. Note that
in the absence of noise, the 2-precess and the
2-TW-I states would not intersect each other.
In other words, the volumes in phase space where
these states can reside will not overlap. However,
with experimental noise, we observed some de-
gree of overlap of the respective regions of phase
space; in this situation, the system could indeed
transition between these two states.

Weak chimeras

Recently, large lattices of identical oscillators
have been shown to host dynamical states with
both a coherent synchronized region and an in-
coherent region (7, 13, 42). Such states have been
called chimeras (43). For small networks, there is
no general agreement on the definition of a chi-
mera (43–46). However, Ashwin and Burylko
(29) coined the term “weak chimeras” for states
in which a frequency-synchronized cluster coexists
along with oscillators that are not frequency-
synchronized to the cluster. These authors sug-
gest that the study of weak chimeras may provide
insight into the organization of chimeras within
large lattices. Here, we show two examples of
weak chimeras in our system with magnitude-
phase oscillators and nearest-neighbor coupling.
At values of coupling b > 0.6, we experimentally

found a weak chimera with frequency clustering.
We show this WC-I state in Fig. 5A. In the first
row of Fig. 5A, we show two of the phase dif-
ferences, displaying both an antiphase pair and
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Fig. 4. Decoupled states. (A) Phase differences, frequencies, mutual information matrix, and a
snapshot of the 2-precess state (see text). Note that the next-nearest neighbors (e.g., oscillators
1 and 3) are in the same group and are antiphase-locked. (B) Phase differences, frequencies,
mutual information matrix, and a snapshot of the 2-TW-I state. (C) Mean frequency difference of
the clusters (within the decoupled state) as a function of the difference of the mean natural
frequencies of the clusters. The data show that for two different values of coupling, the intercept is
near zero. Thus, in a ring without disorder, no frequency difference between clusters exists in the
decoupled state. (D) The in-phase synchronized state, the 2-precess state, and the 2-TW-I state are
plotted in a reduced phase space of D8, D1, a1.

Movie 4. The 2-precess state with two sets
of decoupled oscillators (composed of
experimental data).
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an in-phase pair. The oscillators that cluster are
readily apparent from the space-time plots of
frequency (Fig. 5A, second row). This is con-
firmed by the mutual information (Fig. 5A,
third row). We found a pattern of phases {a, b,
b, a, –a, –b, –b, –a} that was invariant under
transformations by the symmetry subgroup
D2(+, –). This state comprises two sets of four
oscillators. Each set of four could be further
subdivided into two pairs facing across the
ring. Each pair is in either an in-phase or an
antiphase configuration: In one cluster (blue), the
nearest-neighbor pairs are in-phase, whereas in
the other cluster (red), the nearest-neighbor pairs
are antiphase. Movie 5 provides an intuitive
understanding of the dynamics of this state. Be-
cause nearest-neighbor interactions are strongest,
we expected the cluster frequencies to be dif-
ferent, with the difference depending on b. Note
that this differs markedly from the 2-precess
state—here, a state with frequency differences
between clusters derived from b and not from
differences in the natural frequencies wj.
At a ~ 0.1, for coupling values between the

onset of the 2-precess state (roughly b ~ 0.2)
and the onset of the first weak chimera WC-I
(b ~ 0.6), we found a second weak chimera,
WC-II (Fig. 5B). The two phase differences high-
lighted in Fig. 5B show, respectively, an oscillat-
ing and a fixed phase difference. The frequencies
of the individual oscillators varied in time, as
seen in the second row of Fig. 5B. The mutual

information matrix enabled us to readily deduce
that there are only four pairs of highly cor-
related oscillators, which manifest the pattern
{a, b, c, d, –d, –c, –b, –a}. There is one twisted
dihedral symmetry within this pattern, so the
subgroup associated with this state is D1(–, –).
For WC-II, there is another symmetry asso-

ciated with a shift of the oscillators i ∈ {1,2,3,4}
by half a period; this can be seen from the fre-
quency space-time plots. Although the dimension
of the invariant subspace of the instantaneous
phases is 4, this is a 2D state. Note that on av-
erage, oscillators within the block i ∈ {2,3,6,7}
had the same frequency. The same is also true
for the block i ∈ {1,4,5,8}. This additional sym-
metry is obvious in the animation of the state
dynamics depicted in Movie 6.
In Fig. 5C, we show deterministic simu-

lations of the full magnitude-phase model (Eq.
2) (left) and a phase-only model (Eq. 3) (right)
where, as before, biharmonic, next-nearest-
neighbor, and triadic terms are included. The
frequency dispersion was set to zero (wj = 0)
in these simulations, with a = 0.075 and b =
0.5. We observed close agreement in the spa-
tial patterns exhibited by the full model and
the experiment. The phase model of Eq. 3
shows qualitative agreement with the state
dynamics, but disagreement when comparing
the frequencies of the oscillators within the
phase model to the simulation of the magni-
tude-phase equations (Eq. 2).

To quantitatively compare the numerical and
experimental data, we examined the frequency
difference of the blocks described above for a
fixed value of a = 0.075 (Fig. 5D, experimental
data shown in blue). The numerical data from
the magnitude-phase model (shown in red) were
taken from a simulation of Eq. 2 with wj = 0.
The numerical data from the phase model Eq. 3
are plotted in green. The individual data points
agreed at low values of b for all three sets of data.
The experimental data and the numerical data
from the magnitude-phase model roughly agreed
at all values; however, data from simulations of
the phase-onlymodel deviated as bwas increased.
The quantitative failure of the phase model

(Eq. 3) arises from variations in magnitude,
which increase in both speed and size with b.
We show the variations of magnitude at two
values of b in Fig. 5E. Black dots represent ex-
perimental data; red lines are data simulated
from Eq. 2 in the WC-II state. To obtain quan-
titative agreement between the phase model
(Eq. 3) and the experiment, additional terms
in the harmonics of the magnitudes would
need to be included in the phase model.
Both types of weak chimeras were found in

simulations of the phase model (Eq. 3). This
enabled us to deduce that the biharmonic terms
generate WC-I. When we turned off the next-
nearest-neighbor and triadic interactions in the
simulations, the weak chimeras remained stable
(26, 29). This can be understood from the fact
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Fig. 5.Weak chimeras. (A) Phase differences, frequencies, mutual
information matrix, and a snapshot of the WC-I state. (B) Phase
differences, frequencies, mutual information matrix, and a snapshot
of the WC-II state. (C) Simulations of the full magnitude-phase
model (Eq. 2) and the approximate phase mode (Eq. 3) for a = 0.075
and b = 0.5. (D) Data for the frequency difference of the oscillator

clusters (grouped as {2,3,6,7} and {1,4,5,8}) as a function of the coupling
b. Blue, experimental data; red, data from numerical simulations
of the magnitude-phase model (Eq. 2); green, data from numerical
simulations of the phase-only model (Eq. 3). (E) Data for the
magnitudes from simulation and experiment for b = 0.2 and b = 0.55.
The magnitude deviation changes from ~0.4 to ~0.8.
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that a biharmonic term will simultaneously sta-
bilize both the in-phase and antiphase config-
urations. Note that because the magnitudes of
these states vary strongly away from unity, the
phase model did not produce quantitatively ac-
curate results.

Discussion

We demonstrated that a simple ring of eight
self-sustained nanoelectromechanical oscillators
with linear, nearest-neighbor coupling exhibits
exotic states of synchronization with complex
dynamics and broken symmetries. These states
include weak chimeras, decoupled states, travel-
ing waves, and inhomogeneous synchronized
states. We developed a theoretical formulation
starting from the equations of motion for the
oscillators that yielded an approximation for the
dynamics of the oscillator phases with emergent
higher-order interactions including biharmonic,
next-nearest neighbor, and triadic interactions.
More generally, we showed that emergent higher-
order interactions arise in simple networks of
weakly nonlinear elements with linear, nearest-
neighbor coupling.
We found excellent agreement between our

model describing the coupled NEMS oscillators
(Eq. 1) and the experimental data for splay states,
including the frequencies of the various states.
More subtle issues were also elucidated, such as
the response to perturbing the natural frequency
of a single oscillator until desynchronization
occurs and the probability of falling into a par-
ticular state from random-phase initial condi-
tions. At high values of coupling, we also found
approximate quantitative agreement for one of
the weak chimera states. Qualitatively, all states
(except the decoupled traveling wave) of the sys-
tem are reproduced in our simulations based on
both the full model (Eq. 2) and a reduced phase
model (Eq. 3). These results demonstrate the
promise of performing detailed quantitative tests
of synchronization in large arrays of NEMS, even
far from the weak-coupling limit.
We categorized the observed states of the

system in terms of their symmetries. Of the
18 isotropy subgroups within the oscillator ring’s
D8 × T symmetry group, we found distinct states

associated with 11 of them. These include the
in-phase, antiphase, and splay states associated
with a K-S ring. Also included are complex states
that require more than one phase variable for
their description. Although higher-dimensional
states have been analyzed previously with phase
oscillators that interact through exotic couplings,
we found similar behaviors in magnitude-phase
oscillators with simple linear nearest-neighbor
interactions. We found that the emergent second-
order phase interactions stabilizing the higher-
dimensional states provide intuition about the
correspondence between our work and pre-
vious work that has modeled phase oscillators
using far more complicated coupling schemes.
Our discussion on the robustness of the anti-

phase state (Fig. 2C) demonstrated control over
individual nodes. Our calibration procedure for
ensuring identical nodes [see supplementary
materials and (30)] and edges can be modified
to induce explicit symmetry breaking. This itself
constitutes a viable strategy for network control
(47, 48). Our results illustrate the promise of
nanomechanical oscillator arrays for exploring
control of complex and large-scale networks.
Combined with the full access to detailed real-
time dynamics of the state variables we have
achieved, feedback control is an exciting pos-
sibility with this singular experimental system.
Larger arrays of NEMS oscillators (~100) are
possible with minimal changes to the system
architecture discussed herein.
These results reveal the diversity of exotic,

self-organized patterns of synchronization that
can occur in simple oscillator networks. Prac-
tically, they also provide insights for real-world
systems where such dynamically self-organized
patterns of oscillation can be either disruptive or
beneficial. For instance, circulating power flows
have been observed in the North American high-
voltage electric grid. Driven by oscillating gen-
erators, power flows have been observed to
unintentionally self-organize into closed loops
around geographically constrained regions, sub-
suming transmission line capacity without de-
livering useful power to consumers (49, 50).
Coherent patterns of local and cluster synchro-
nization can also lead to instabilities in models
of the electric grid (22, 51). Likewise, even in 1D
models of automobile traffic flow, small distur-
bances often lead to dynamically self-organized
soliton pulses of congestion (52–54). Indeed,
spontaneous symmetry breaking in the form
of chimeras (43) is under intense investigation
in neuronal dynamics (55, 56) and has been im-
plicated as a mechanism for Parkinson’s tremor,
epilepsy, and unihemispheric slow-wave sleep
(57). Further, new patterns of synchronization
from self-organized dynamics exploiting dif-
ferences between the attributes of agents (58)
will unravel the consensus processes across en-
gineering applications, including sensor net-
works and robot swarms (59). More broadly,
our system will help with the design of in-
trinsically resilient technological networks at
multiple scales, including rapidly evolving en-
ergy systems (60).

Methods summary
The assembled network comprised individual
oscillators constructed from high-quality piezo-
electric nanoelectromechanical membrane res-
onators, which were clamped on all sides and
driven via electronic feedback. Nodal parameters
were controlled via electronic circuitry assembled
on printed circuit boards (PCBs) onto which the
NEMS resonators themselves were bonded. De-
tails of the individual nonlinear NEMS oscillator
nodes were presented by Fon et al. (30).
These individual oscillator PCB nodes were

inserted into a larger motherboard that formed
the coupling edges (connections) betweennetwork
nodes. Control signals from a Raspberry Pi were
routed to the motherboard and multiplexed to
individual oscillators by means of digital ad-
dressing. Oscillator signals were read out by co-
axial connections on the motherboard to achieve
radio-frequency bandwidths. Power was fed into
the oscillators via the motherboard.
All experiments, numerical simulations, and

data processing were performed with custom
Python and C scripts. Signals were acquired
through use of a simultaneous-sampling 8-channel
oscilloscope. Oscillator phase was extracted
via a Hilbert transform of raw time records
from the oscilloscope. Oscilloscope sampling
was set to 200 kHz, which is faster than the
slow-time oscillator dynamics by about three
orders of magnitude.
See supplementary materials for further

details.
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despite the network having weak nearest-neighbor coupling.
that emergent higher-order interactions (such as biharmonic and next-nearest neighbor) stabilized complex dynamics,
revealed exotic synchronization states with complex dynamics and broken symmetries. Theoretical modeling showed 

4000 that could be rapidly controlled and read out. Analysis of these large datasets∼megahertz with quality factors of 
2.2∼ fabricated a ring of eight nanoelectromechanical oscillators resonating at et al.after many cycles. Matheny 

emergemacroscopic platforms such as pendula evolve on slow time scales, which can limit the observation of states that 
Synchronizing oscillators have been useful models for exploring coupling in dynamic systems. However, many

Quickly exploring weakly coupled oscillators
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