
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 165206 (11pp) doi:10.1088/0953-8984/19/16/165206

Magnetotransport and magnetocrystalline anisotropy
in Ga1−xMnxAs epilayers

H X Tang1 and M L Roukes

Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, CA 91125, USA

E-mail: hong.tang@yale.edu and roukes@caltech.edu

Received 22 September 2006, in final form 11 December 2006
Published 6 April 2007
Online at stacks.iop.org/JPhysCM/19/165206

Abstract
We present an analysis of the magnetic anisotropy in epitaxial Ga1−xMnx As thin
films through electrical transport measurements on multiterminal microdevices.
The film magnetization is manipulated in 3D space by a three-axis vector
magnet. Anomalous switching patterns are observed in both longitudinal and
transverse resistance data. In transverse geometry in particular we observe
strong interplay between the anomalous Hall effect and the giant planar Hall
effect. This allows direct electrical characterization of magnetic transitions in
the 3D space. These transitions reflect a competition between cubic magnetic
anisotropy and an effective out-of-plane uniaxial anisotropy, with a reversal
mechanism that is distinct from the in-plane magnetization. The uniaxial
anisotropy field is directly calculated with high precision and compared with
theoretical predictions.

(Some figures in this article are in colour only in the electronic version)

Ferromagnetic semiconductors have demonstrated a variety of interesting properties arising
from strong coupling between local spins and hole carriers [1]. There has been intense interest
in the magnetic anisotropy in the Ga1−x Mnx As magnetic semiconductors [2–8]. A theory
based on the mean-field Zener model predicts magnetic anisotropy induced by the lattice
strain present in epitaxial ferromagnetic semiconductor layers [9, 10], with compressive and
tensile strain inducing in-plane and out-of-plane magnetization. However, experiments to date
can only provide crude estimates of the strength of the strain induced magnetic anisotropy
fields and do not have sufficient resolution to validate the theoretical predictions. Furthermore,
fundamental understanding of magnetic domain structures requires a more accurate knowledge
of magnetic anisotropies. In this paper, we report on magnetic anisotropy studies based
upon anomalous perpendicular Hall and magnetoresistance transitions in microfabricated
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Ga1−xMnx As multiterminal microdevices. The manifested magnetic transitions are interpreted
based on competition between strain induced out-of-plane uniaxial anisotropy and crystalline
cubic anisotropy. All relevant magnetic anisotropy fields are obtained with high precision.

Ga1−x Mnx As epilayers grown on GaAs substrate are under compressive lattice-
mismatching strain, and as a result they have strong in-plane magnetic anisotropy [1].
In a previous paper [11] we reported the enormous spontaneous Hall resistance jumps in
Ga1−xMnx As microjunctions subjected to a sweeping in-plane magnetic field. This giant planar
Hall effect (GPHE) was qualitatively explained by macroscopic-scale domain reversal governed
by the combined effect of a dominant cubic anisotropy and a weak uniaxial in-plane anisotropy
field of unknown origin. Both the cubic anisotropy field and this weak in-plane anisotropy field
were derived from magnetotransport measurement data.

The intriguing giant planar Hall effect in Ga1−x Mnx As encouraged us to explore the
magneto-electric effect with magnetization oriented other than in-plane, such as a conventional
Hall measurement where the field is applied perpendicular to the films. Sample preparation and
our experimental setup were described in an earlier publication [11].

For a single-domain magnetic conductive material with the application of magnetic field
H and current density j, the electrical field in the sample is given by [12, 13]

E = ρ⊥j + (ρ‖ − ρ⊥)(j · m̂)m̂ + (R0H + RS4πM) × j, (1)

where m̂ is a unit vector directed along the magnetization M, R0 is the normal Hall resistivity
and RS is an anomalous Hall effect coefficient. In this equation, the first two terms contribute
to the longitudinal magnetoresistance and the planar Hall effect observed in this material [11].
The third and the fourth term represent the normal Hall effect and anomalous Hall effect
(AHE), respectively. For ferromagnets with free carriers, the anomalous coefficient RS is in
many cases much greater than the ordinary coefficient R0, which is 1/pe in a hole doped
magnetic semiconductor. For example, in the Ga1−x MnxAs epilayers studied in this work,
the hole density is pretty high (∼1020 cm−3) and the ordinary Hall resistance is estimated to be
0.2 m� Oe−1. This makes the direct influence of the external field on Hall resistance negligible
in the experimental low field region; thus, for the sake of simplicity in the remainder of the
paper we shall only consider the contribution of the anomalous Hall effect when sample is
subject to a perpendicular field. From equation (1) the transverse and longitudinal components
of the vector E are

Ex = jρ⊥ + j (ρ‖ − ρ⊥) sin2 θ cos2 ϕ, (2)

Ey = j (ρ‖ − ρ⊥) sin2 θ sin ϕ cos ϕ + j (R0 H⊥ + RS4π MS cos θ). (3)

These expressions are made using the coordinate system shown in figure 1 where the
external electric field is applied along the x direction and the polar angle θ and azimuthal angle
ϕ specify the orientation of the magnetic moment. If the planar Hall effect is the only term to
be investigated then the magnetic field is applied in the plane of the film to ensure that M⊥ is
zero. The intention in this section, however, is to measure the magnetoresistance when the field
is applied at some angle to the film plane. In this case M⊥ is not zero and the anomalous Hall
effect has to be taken into account.

1. Out-of-plane transport measurement results

Figure 2 shows the longitudinal magnetoresistance Rsheet measured at 4.2 K for a magnetic
field oriented along the z direction and along two orthogonal in-plane angles (20◦ off x and y,
respectively). The field sweep range is ±1 T. At higher fields there is a large overall negative
magnetoresistive for all three field orientations, consistent with the suppression of localization
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Figure 1. Coordinate system in 3D space for out-of-plane experiments.
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Figure 2. Longitudinal resistance Rsheet for external fields applied in three orthogonal orientations:
out-of-plane (H ‖ z), in-plane 20◦ off x axis, in plane 20◦ off y axis. The result for a planar Hall
resistance RPHE is also presented. Inset: enlarged view of low field magnetoresistance in the low
field region.

in the studied sample [14]. The normal sheet resistance exhibits a pan-shape in the low field
region, with jumps at about ±1300 Oe and a flat magnetoresistance region between them.
These jumps are associated with the reorientation of the sample magnetization between the
perpendicular direction and the in-plane direction. An enlarged view of sheet resistance in the
field range ±1500 Oe is reproduced in the inset of figure 2. The resistance change is ∼35 �,
about half the size of the planar Hall resistance jumps (72 �) at this temperature.

Figure 3 shows the Hall resistance RH measured as a function of perpendicular field.
For comparison, the planar Hall resistance loop at 20◦ off the [110] axis is also presented.
At large negative field, the anomalous Hall resistance saturates, corresponding to a saturated
magnetization along the −z direction. This justifies our assumption that the ordinary Hall
contribution is negligible in this field range. On sweeping the field up, a broad AHE resistance
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Figure 3. Longitudinal resistance Rsheet and Hall resistance RH for a 100 μm wide Hall bar
subject to a perpendicular field. For comparison, the result for a planar Hall resistance RPHE is
also presented.

jump starts at around −1500 Oe and ends at −1000 Oe. Then the normal Hall resistance varies
linearly before a second jump arises at 1000 Oe. The magnetization is fully reversed at 1500 Oe
and saturates again beyond this field intensity. It is apparent that the transition processes in both
transverse measurement and longitudinal measurement are simultaneous and related. The total
AHE resistance change is 306 �, i.e.

4π M RS = 153 �. (4)

From which, using 4π M = 493 Oe measured by a SQUID magnetometer, an anomalous
resistance coefficient RS = 0.3 � Oe−1 can be deduced. When ramping down the field, a large
hysteresis occurs in the field range of ±1000 Oe. It is worth mentioning that this hysteresis
around zero field does not appear in each sample we studied. If present, the difference in
normal Hall resistance between the two hysteresis curves matches the magnitude of the planar
Hall resistance jumps. This matching is repeatable in all the samples we have measured. Hence
we believe that this hysteresis originates from different in-plane magnetization orientations
when the magnetic field is swept across zero magnetic field.

2. Modelling of the perpendicular magnetization reversal process

In planar geometry, a model based upon a mixture of cubic anisotropy and a weak in-
plane anisotropy can be used to explain the unusual switching behaviour in the planar Hall
resistance measurements [11]. Anisotropy constants—the ratio between anisotropy energy
and magnetization—are deduced from transport measurement data. As one can imagine, in a
perpendicular magnetic field, in addition to the conventional in-plane and out-of-plane uniaxial
anisotropy fields, the magnetic moment should also be under the influence of the two out-
of-plane cubic easy axes. Unfortunately, unlike the purely uniaxial anisotropy, the case of
cubic magnetocrystalline anisotropy was not fully explored before, even though it represents
a lot of important materials. A full description of the magnetization reversal process needs to
contain precisely all types of magnetic energy contribution. The following expression describes
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a complete free energy for magnetization in 3D space:

E = Kui

(
M · ui

Ms

)2

+ Kuo
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)2

+ K1(α
2
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2
2 + α2

2α
2
3 + α2

3α
2
1) + 2π(M · n)2 − M · H

(5)

where the direction cosines (α1, α2, α3) = (Mx/M, My/M, Mz/M) ·n is the out-of-plane unit
vector, and ui is a unit vector defining the in-plane anisotropy orientation. Kui and Kuo are in-
plane and out-of-plane uniaxial anisotropy constants, respectively. For Ga1−x MnxAs thin film
grown on a low temperature GaAs substrate, Kui has a negative value and Kuo is positive. K1 is
the cubic anisotropy constant, and the higher order magnetocrystalline energy contributions are
ignored. The fourth term is the magnetostatic energy, i.e. demagnetization field induced shape
anisotropy. The last term represents the Zeeman energy. As we have shown in [11], the in-plane
uniaxial anisotropy is very weak; hence in the analysis of out-of-plane magnetization reversal,
for simplicity we will abandon this term. The out-of-plane uniaxial anisotropy, originating from
the compressive strain that exists at the Ga1−x MnxAs/GaAs interface, favours the alignment of
magnetization in the plane and accordingly has a positive value. One theoretical calculation
predicted a value of the uniaxial anisotropy field of about 3000 Oe [9]. Combining it with the
shape anisotropy, an effective out-of-plane uniaxial anisotropy energy can be defined as

Eu = 2π

(
1 + 2Kuo

4π M2
s

)
(M · n)2 = 2πη(M · n)2 (6)

where η = 1 + Huo
4π Ms

would be a number of the order of 10 (in our sample 4π Ms = 500 Oe).

Here Huo is the out-of-plane uniaxial field, defined by Huo = 2Kuo
Ms

. By using the coordinate
system depicted in figure 1, for a field H applied perpendicular to the film, the magnetic free
energy density is written as

E(θ, ϕ) = 1
4 K1(sin4 θ cos2 2ϕ + sin2 2θ) + 2πηM2 cos2 θ − M H cos θ. (7)

Since the field is applied along the z direction, no additional variable is needed to describe its
orientation. The stable equilibrium conditions can be expressed in polar coordinates as

∂ E

∂θ
= 0, (8)

∂ E

∂ϕ
= 0, (9)

∂2 E

∂θ2

∂2 E

∂ϕ2
−

(
∂2 E

∂ϕ2

)2

> 0, (10)

∂2 E

∂ϕ2
> 0. (11)

These equations put a restriction on the angle ϕ of the equilibrium position

cos 2ϕ = 0, (12)

which is the same as the in-plane situation. Depending on the magnetization history, the
magnetization remains in the directions of minimum energy with ϕ = 45◦, 135◦, 215◦ or
305◦. The weak in-plane uniaxial anisotropy may cause the actual ϕ orientations to deviate
by a very small angle from those angles. An effective one-dimensional energy density can be
found by substituting the value determined by equation (12) into equation (7):

Eeff(θ) = 1
4 K1 sin2 2θ + 2πηM2 cos2 θ − M H cos θ. (13)

This free energy density expression is analogous to the in-plane energy density (equation (1)
in [11]), but with opposite signs for both the cubic term and the uniaxial term. Here
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Figure 4. An illustration of three energy minima for out-of-plane free energy. The horizontal axis
is the polar angle. In this particular diagram a large positive field is applied.

the out-of-plane uniaxial anisotropy is much stronger than the in-plane uniaxial anisotropy.
The competition between this uniaxial anisotropy and cubic anisotropy provides a unique
magnetization reversal process and is able to account for all the anomalous normal
magnetoresistance behaviour. At zero external field, the stable solutions for θ are multiples
of 90◦. Since θ is in the range of [0◦, 180◦], instead of four equilibrium orientations, now only
three exist at zero field: 0◦, 90◦ and 180◦. For nonzero external field, they may move away from
these angular values and can be solved directly from equations (8)–(11) or from the analysis of
the effective energy density described by equation (13):

M sin θ{H − [(HcA + 4πηM) cos θ − 2HcA cos3 θ ]} = 0 (14)

HcA cos 4θ − 4πηM cos 2θ + H cos θ > 0. (15)

Here HcA = 2|K1|/M is the cubic anisotropy field whose value has been obtained through
planar Hall resistance measurements. Equation (14) gives

sin θ = 0 ⇒ θ1 = 0◦, θ3 = 180◦ (16)

θ2 = 90◦ − δ0, with (HcA + 4πηM) sin δ0 = H + 2HcA sin3 δ0. (17)

The first two solutions are north/south poles in polar coordinates, representing a saturated
out-of-plane magnetization. The third solution is a close to plane solution (θ ∼ 90◦). The
direction to which the magnetization is directed is determined by the criteria equation (15) and
the magnetic history. Figure 4 exemplifies the situation when a large positive magnetic field is
applied. In such a case, magnetization is saturated in the positive z direction and θ coordinate
stays at zero (θ1).

We use the analysis of the magnetic anisotropy energy in equation (13) as a basis for
understanding the abnormal magnetization reversal shown in figure 3. In a high positive field,
the magnetization saturates at θ = θ1, which is the only stable solution. On reducing the
magnetic field, a new stable magnetization orientation θ = θ2 starts to develop. In the presence
of thermal excitation and interaction of local defects, magnetic domains can be launched in this
new polarization. This nucleation field is hereafter referred to as HN and is defined by

∂2 E(θ, HN)

∂θ2
= 0 and

∂ E(θ, HN)

∂θ
= 0. (18)

Simple calculus yields

HC1 = HN =
√

6HcA

9

(
1 + 4πηM

HcA

)3/2

. (19)
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This critical field has its direct origin from the cubic anisotropy energy surface of Ga1−x MnxAs.
There is no correspondence in a conventional magnetic material with uniaxial anisotropy,
evident from the fact that HC1 approaches infinity when HcA goes to zero.

The domains of the second phase grow continuously on further reducing the field. Note
that for perpendicularly magnetized films, the energetics is different from the in-plane situation,
where single domain behaviour appears on a macroscopic scale and magnetization switching
is achieved through domain wall nucleation, depinning and subsequent sweeping through the
sample. A distinct domain wall pinning energy density has to be overcome in the switching
process. For perpendicular magnetization the final magnetization states are continuously
distributed and the domain wall pinning energy cannot be described by a definite value.
The difference in magnetic domain structure for perpendicular magnetized films and in-plane
magnetized films has been observed by scanning Hall microscopy and scanning SQUID
microscopy at low temperature [15]. The film with perpendicular magnetization has a maze
domain structure more similar to those of conventional ferromagnetic materials, whereas the
film with in-plane magnetization has unconventional domain structures that show no evidence
of a domain wall in a fairly large area (about 300 μm by 300 μm). Therefore upon decreasing
the external field, once the free energy at θ2 matches that of θ1, i.e. E = 0 in equation (13),
domain wall nucleation processes terminate and all domains fall into this new, more favourable
stable configuration and eliminate domain structure on a fairly large scale. Coherent domain
wall rotation starts to dominate magnetization reorientation. This critical field HC2, can be
obtained by solving the equation

E(θ = 0, H = HC2) = E(θ = θ2, H = HC2). (20)

For HcA = 0, i.e. only uniaxial anisotropy terms are present, this equation gives HC2 =
4πηM , in agreement with the coercivity predicted by the Stoner–Wohlfarth model for uniaxial
crystalline anisotropic materials. For nonzero HcA values, the root is not straightforward. An
analytical solution does exist but it is very complicated. For large HcA, by expanding cos(θ) to
the second order of θ , a nice approximation can be derived:

HC2 = 2πηM

[
1 + 1

2(1 + HcA/4πηM)

]
. (21)

This is the initial field of the linear normal Hall resistance in figure 3. Hereafter the
magnetization starts to evolve coherently with external field according to equation (17). In
this region, it is more convenient to express M in terms of its out-of-plane component

H = (HcA/M + 4πη)M⊥ + 2HcAM3
⊥/M3. (22)

Since M⊥ ∼ 0, the third-order term can be ignored. Consequently the perpendicular component
of magnetization is a linear function of external field

M⊥ = H/(HcA/M + 4πη). (23)

Again, in the limit of HcA = 0, the conventional uniaxial magnetic behaviour is restored.
For magnetic moments close to in-plane orientations, the cubic anisotropy field effectively
combines with uniaxial anisotropy fields and behaves like an ordinary uniaxial magnet with
regards to the z-component of the magnetization. This linear dependence of the perpendicular
component of M around zero external field has been observed by SQUID measurements. The
spin polarization of Ga1−x Mnx As determined by the spin-LED method has also demonstrated
a similar behaviour [16].

This linear evolution of magnetization comes to an end at an external field HC3 = −HC2

where its energy matches the magnetic energy at θ = θ3. Following that, a nucleation process
to create domains θ3 dominates. This nucleation process persists until the intermediate state
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Figure 5. Characteristic fields for films with perpendicular field: nucleation fields, ±HN, and
domain annihilation fields, HC2,3. Magnetization precesses coherently in the linear Hall resistance
region close to zero field.

θ = θ2 vanishes at a large negative threshold field HC4 = −HC1. Domain walls disappear
beyond this field and the magnetization reversal is accomplished.

Both longitudinal magnetoresistance and normal Hall resistance shown in figures 2 and 3
can be explained by the preceding analysis of the magnetization process. In a down-swept
field, the overall transition sequence of θ coordinate is summarized as θ = 0◦ → nucleation,
→ θ = θ2 ∼ 90◦, coherent rotation, → nucleation → θ = 180◦. For longitudinal resistance,
sin2 θ in equation (2) changes from 0 to a value close to 1 then back to 0. From equation (2),
the size of the two jumps is |ρ‖ − ρ⊥|/2 ∼ 36 �, consistent with the observed value. In the
θ ∼ θ2 region, θ deviates from 90◦ by a small number, therefore according to equation (2)
the sheet resistance exhibits an almost constant value that matches the sheet resistance with in-
plane magnetization (figure 2 inset). The two jumps in the normal Hall resistance and normal
sheet resistance reflect the magnetization transitions from 0◦ to ∼90◦ and from ∼90◦ to 180◦.
The nucleation starts at around 1460 Oe (HN) and ends at about 990 Oe (HC2). Employing
simulated HcA = 2400 Oe in [11], we estimate 4πηM = 1635 ± 65 Oe.

A more accurate value can be deduced by fitting to the linear part of the Hall resistance.
To first order in M⊥, the Hall resistance in equation (3) gives

RH = RS4π M⊥. (24)

By applying equation (4) and equation (24) we have

RH = RS4π M

HcA + 4πηM
H = 303 �/2

HcA + 4πηM
H. (25)

A typical fitting is presented in figure 5, indicating Hca + 4πηM = 3972 Oe. And the effective
uniaxial anisotropy field is

4πηM = 1572 Oe. (26)

The value of η is found to be 3.1, giving a perpendicular uniaxial anisotropy field of 1072 Oe.
Our next task is to understand the hysteresis behaviour in the low field region of the normal

Hall resistance data. The fact that the resistance difference matches the value of the planar
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(a) (b)

up sweep field

down sweep field

Figure 6. Illustration of the origin of hysteresis in out-of-plane Hall measurement. (a) When the
perpendicular magnetic field sweeps up and down across the zero, the in-plane magnetizations are
orthogonal, giving a resistance difference the same as the spontaneous planar Hall resistance jumps.
(b) Plot of magnetic anisotropy surface in 3D space.

Hall resistance jumps convinces us that the magnetization must follow a trajectory depicted in
figure 6(a). As illustrated, the magnetization curve falls into different stable trajectories with
orthogonal ϕ values. When the perpendicular field is swept across zero, the in-plane angles are
normal to each other for the up-sweep cycle and the down-sweep cycle, producing a resistance
difference the same as that for the spontaneous planar Hall resistance jumps. We attribute the
hysteresis to uncontrolled misalignment of the vertical magnetic field with the film normal or
the remnant fields of in-plane split magnet pairs. If the external field is applied exactly along the
film normal, the magnetization trajectory will be random. But in all our experiments, once set
up, reproducible hysteresis patterns are observed on all samples. Suppose the external field is
slightly tilted away from the firm normal by coordinates (θ0, ϕ0), then equation (5) is rewritten
as

E(θ, ϕ) = 1
4 K1 sin4 θ cos2 2ϕ − M H sin θ sin θ0 cos(ϕ − ϕ0)

+ 1
4 K1 sin2 2θ + 2πηM2 cos2 θ − M H cos θ cos θ0. (27)

The terms containing angle ϕ is similar to the in-plane magnetic anisotropy energy with cubic
energy replaced by K1 sin4 θ and the effective magnetic field replaced by H sin θ sin θ0. The
ϕ coordinate evolution depends on the ratio between these coefficients, whose values vary
significantly on approaching the poles. It is not surprising that, for an external field not perfectly
aligned along the field normal, the magnetization ϕ coordinate will switch alternatively along
possible configurations in successive field cycles.

3. Magnetic sweep in an arbitrary direction in 3D space: a mixture of the anomalous
Hall effect and the planar Hall effect

The model we present above can be verified by sweeping a magnetic field in 3D space. By
programming the vector magnet, we tilt the magnetic field off from the orientation direction
with azimuthal angle ϕ fixed at 15◦ off the [110] direction. In figure 7, the measured
Hall resistance is shown as a function of the magnetic field component along the x axis.
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Figure 7. When magnetic field is swept across zero along an arbitrary direction in 3D space, the Hall
resistance shows evolution from out-of-plane behaviour to an in-plane planar Hall effect behaviour.

At angles larger than 80◦, the Hall resistance shows similar behaviour to that of out-of-
plane measurement. When the magnetic field tilt angle becomes smaller than 80◦, in-plane
energy minima become accessible in the field span. Therefore, complex transition patterns
involving both out-of-plane and in-plane easy axes start to develop. As expected, in figure 7,
at intermediate tilt angle, a mixture of anomalous Hall resistance and planar Hall resistance
appears. When the magnetic field lies completely in the plane, the out-of-plane easy axis
becomes inaccessible and only planar Hall transitions remains.

In conclusion, through planar Hall resistance and normal Hall resistance measured at liquid
helium temperature, we have deduced all the magnetic anisotropy fields: the cubic anisotropy
field, 2400 Oe, the in-plane uniaxial anisotropy field, 133 Oe (along [110]), the out-of-plane
uniaxial anisotropy field, 1072 Oe. To our knowledge, this kind of technique has not been
established before. The deduced out-of-plane uniaxial anisotropy field is significantly less than
the theoretical prediction made by Dietl et al [9]. Systematic study of magnetic anisotropy
on Ga1−x Mnx As epilayers with varying thickness and Mn concentration will enable further
examination of existing theories regarding the origin of the mechanism of magnetic anisotropy
and ferromagnetism. Meanwhile, we have measured the spontaneous magnetoresistance
anisotropy constant ρ⊥ − ρ‖ ∼ −72 �, and the anomalous Hall resistance coefficient
4π M RS = 153 �. Both of them have their origins in the spin–orbit interaction; it is not
clear how these numbers are related.
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