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ABSTRACT: Control of the global parameters of complex networks has been
explored experimentally in a variety of contexts. Yet, the more difficult prospect of
realizing arbitrary network architectures, especially analog physical networks that
provide dynamical control of individual nodes and edges, has remained elusive.
Given the vast hierarchy of time scales involved, it also proves challenging to
measure a complex network’s full internal dynamics. These span from the fastest
nodal dynamics to very slow epochs over which emergent global phenomena,
including network synchronization and the manifestation of exotic steady states,
eventually emerge. Here, we demonstrate an experimental system that satisfies
these requirements. It is based upon modular, fully controllable, nonlinear radio
frequency nanomechanical oscillators, designed to form the nodes of complex
dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog
and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane
resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits
network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast
region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator
node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the
operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the
uncoupled state to full synchronization.
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A variety of natural systems serve as resources for empirical
studies in network science; these include neural net-

works,1 gene regulatory networks,2 infrastructure networks,3−5

and social networks.6−8 In most cases, experimentalists have
limited ability to configure and manipulate the individual nodes
and edges of such systems. Experimental studies of macroscopic
network behavior, in which local manipulations can be
performed at the level of individual nodes and edges, are of
significant and general interest. Many physical systems
including arrays of Josephson junctions,9 nanoscale spin-torque
oscillators (STOs),10,11 mechanical clocks,12 optical parametric
oscillators,13 optomechanical resonators (OMRs),14,15 opto-
electronic resonators,16,17 and digital-delay oscillators based on
finite-state feedback shift registers built using field-program-
mable-gate-arrays (FPGAs)18have been interconnected to
form networks. While these systems are based on intriguing
physical phenomena, an optimal physical platform for network
exploration must not only permit realization of arbitrarily
configurable network graphs,19 they must also facilitate the
complete control and readout of these individual nodes and
edges with high fidelity at full bandwidth. However, upscaling

such platforms to realize complex networks comprising 10−100
nodes and beyond with arbitrary connection topologies can be
both technologically challenging and expensive. An important
additional consideration is the fundamental time scale for the
fastest dynamics set by the nodal oscillation frequency. This
should be neither too slow nor too fast, as it controls the
interval over which very slowly emerging collective network
phenomenaassociated with the evolution with exotic or
weakly stable statesbecome fully manifested.
For the aforementioned reasons, recent experimental

realizations of synchronized networks of coupled oscillators
are typically nonideal. We consider two cases. First, nanoscale
STOs and Josephson junctions typically operate at tens to
hundreds of GHz; this makes direct observation of real-time
dynamics, such as phase slipping, challenging.20 Additionally,
the coupling between STOs in experiments to date is

Received: May 14, 2017
Revised: August 15, 2017
Published: September 8, 2017

Letter

pubs.acs.org/NanoLett

© 2017 American Chemical Society 5977 DOI: 10.1021/acs.nanolett.7b02026
Nano Lett. 2017, 17, 5977−5983

pubs.acs.org/NanoLett
http://dx.doi.org/10.1021/acs.nanolett.7b02026


determined by their spatial proximity. Hence, network edge
topology is primarily determined by geometry and is thus
subject to limitations imposed by fabrication technology.
Second, realizing synchronization within networks of OMRs
poses special challenges. Here it is critical to draw the
distinction between synchronization and mode hybridization.
Synchronization occurs solely in a system of weakly coupled,
independent oscillatorseach of which has, in the limit of
vanishing interoscillator coupling, complete phase f reedom.20

Implementing a multiplicity of independent optomechanical
oscillators with the requisite phase freedom thus necessitates
the use of a dedicated optical pump for each node. The
interoscillator coupling must then be implemented independ-
ently from these internal, “nodal” components. To our
knowledge, the independence between optomechanical nodes
and interoscillator coupling has only been achieved with
internodal coupling mediated in the electrical, rather than the
optical, domain.21 In other recent optomechanical experiments
that have purported to manifest synchronization,22,23 the
optical source used to drive the parametric nodal oscillations
also provides common feedback to all resonators in the array.
With this implementation, one source is employed to induce
both the internode coupling and the excitation of the
resonators. Here, the strong coupling between the nodal
resonators, and the lack of phase independence between them,
yields the hybridization of resonator modes rather than
effecting synchronization among independent oscillators. In
this work, we employ separate feedback loops for each
oscillator and then couple them by independent means within
the electrical domain. Synchronization between independent,
weakly coupled oscillators is the basis of the Kuramoto model24

and is essential, for example, for proposals to use oscillator
networks as elements of associative memory in the application
of for pattern recognition.25

For the reasons outlined, upscaling to large networks is
infeasible with the embodiments described above. By contrast,
recently developed FPGA-based digital logic oscillators are
indeed cost-effective to scale up, as a single FPGA chip can
instantiate hundreds of oscillators.18 The limitation in this case
is that FPGA network realizations are digital and binary; hence,
they are restricted to the domain of phase oscillators, that is
rotators. These do not exhibit the full range of oscillator
behavior that includes both phase and amplitude dynamics.18

For this reason, FPGA-based networks facilitate only specific
explorations of the subset of synchronization dynamics
involving Kuramoto-like behavior.26 Accordingly, our work
here complements FPGA-type oscillators in the sense that,
although initial scaling with NEMS oscillators is costlier, a
much wider range of network topologies and dynamics
becomes accessible.
In this Letter, we describe a new model network system

implemented with modular, radio frequency, electromechanical
oscillator “nodes” that are based upon piezoelectric nano-
electromechanical systems (NEMS). To form fully controllable,
synchronized oscillator networks with arbitrary topology, we
designed this system employing our previously developed
circuit topology that enables electrical coupling of two NEMS
nodes.27 Here, we realize a modular, self-contained oscillator
node that can be used to significantly extend the previous work.
In our ongoing work, these oscillator nodes will be assembled
to form large networks, from 10 to 100 nodes, with arbitrarily
configured edges.

We model our oscillator network, which comprises an
ensemble of high quality factor, weakly coupled, nonlinear
mechanical resonators as a set of saturated, nonlinear (Duffing)
oscillators.28 Using scaled amplitude, time, and frequency
variables, we obtain an equation of motion for the normalized
complex nodal amplitudes, Aj:
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Here, j is the oscillator node index spanning from 1 to N, and N
is the total number of nodes. We normalize time, t, by the
energy decay rate, T = 2πfat/Q; it is over this (slow) time scale
that the coupled dynamics of the network evolve. fa is the
average linear (small amplitude) frequency of all oscillator
nodes, Q is the quality factor of the resonators (identical in all
nodes). The set of normalized oscillator frequencies, which
manifests frequency dispersion over the slow time scale, are
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normalized offset between the j-th oscillator’s frequency, f j,
and the frequency average, fa, such that ∑iδi = 0. The use of
normalized time and frequency also effectively normalized the
damping of the resonator as represented by the last term of the
LHS of eq 1. The right-hand side of the equation represents the
drives to the system. The feedback function to locally sustain
the oscillation can be arbitrarily complex, but for our current
system we use a saturated nonlinear function = ϕf A e( )j j
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where ϕj = Arg(Aj) is the oscillation phase. The saturation
amplitude is identical to all oscillator nodes. In eq 1, it appears
to have constant amplitude solely due to the scaling of the
equation. In the experimental calibration of the oscillator nodes,
each node is decoupled from the network and then first driven
at low (linear) amplitude to yield linear frequency δj. Then, the
feedback drive is then increased until the Duffing nonlinearity
induces frequency shifts that are commensurate with the
desired value, αj. The experimentally observed amplitude will
also rise, but it simply scales the model amplitude to unity; that
is, |Aj| = 1 corresponds to observed amplitude when the
oscillator is decoupled from the network. Note that the
relevance of the oscillation amplitude to the dynamics lies with
its detuning to the frequency. Finally, fc,j(A1, ..., AN) is the
coupling between oscillators defined by network topology such
as the ring network as discussed below. The coupling discussed
in this work is linear in amplitude. Thus, the functional form of
the coupling is applied both to the scaled and experimentally
measured amplitude. However, the phase of the feedback can
be modified to produce either reactive or dissipative coupling.
In a companion theoretical analysis, we describe the rich
attractor switching dynamics exhibited by oscillator networks
comprising from 3 to over 100 nodes.29 Here, we demonstrate
the detailed construction of NEMS oscillator nodes to illustrate
the flexibility of our system.
In network analysis, it is common to study the effect of

network topology upon the distribution of the oscillator’s linear
frequencies (δj). In most experimental systems, the initial, linear
oscillator (nodal) frequencies are predetermined and are either
not tunable or are adjustable only over a limited range. Here,
our platform allows precise and arbitrary specification of δj for
each node. In our instantiation, nodal oscillation frequencies
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range from 1 to 20 MHz; the associated “slow time” scale, T,
which dictates the interval over which network steady states
evolve, is of order milliseconds. Accordingly, the complete state
of the network, which is characterized by the complex- and
continuous-time-valued oscillation Aj (including the amplitude
and phase and of each node), can easily be captured with high
fidelity. Further, networks built from these oscillator nodes can
be configured with arbitrary network topologies (for example,
with variations in the strength of coupling between neighbors)
and then set into motion with arbitrarily complex initial
conditions (for example, by locking the nodes with external
references). Subsequently, network state reconfigurations can
be achieved within submillisecond time scales, enabling
acquisition of thousands of traces displaying slow network
evolution in under 1 h. These featuresespecially the ability to
capture the detailed evolution of all nodes with high fidelity and
rapid topological reconfigurationare unprecedented features
of our system.
Studies of abrupt modifications are key to modeling and

understanding prototype networks designed to mimic real-
world systems. Realizing abrupt changes to network topology
requires imposing perturbations faster than the slow-time scale
of the oscillator node. For example, we can abruptly isolate a
single or multiple oscillators nodes (setting fc,j(A1, ..., AN) = 0
for a subset of nodes) to observe the effect upon network
dynamics. Other abrupt modifications achievable in real time
include tuning of individual or multiple nodal parameters (for
example, αj, δj, the phase of feedback function f f,j(Aj), etc.) and
also permit local injection of noise into the network.
Over the past three decades, micro- and nano- electro-

mechanical systems (MEMS/NEMS) have engendered an
evolution of clock architectures from their previous, macroscale,
hand assembled realizations to their contemporary embodi-
ments as micro- and nanoscale electromechanical devices
produced en masse by foundry-scale methods. The dynamics of
individual MEMS and NEMS oscillators28 are now well-
understood both theoretically and experimentally. To date,
however, only a few investigations of coupled networks of NEMS
or MEMS oscillators have been reported.29 Purely mechanical
coupling between mechanical resonators, such as Huygen’s
historic clock synchronization,12 is typically weak and difficult
to tune. However, for MEMS and NEMS resonators, it is
precisely this weak mechanical coupling to their surroundings
that yields the benefit of their remarkably low dissipation rates.
In this work, we desire to preserve the low dissipation of NEMS
elements while realizing arbitrarily large and precisely control-

lable coupling between oscillator nodes within network
topologies. To this end, we first engineer efficient conversion
of nanomechanical motion into electrical signals via the
piezoelectric effect. Subsequently, large electromechanical
node-to-node coupling is easily attained within the electrical
domain.
An important attribute of NEMS, as compared with other

resonatorsincluding those patterned from quartz crystals, or
those based on lasers, biological, or chemical systems, or
MEMSis their ability to be easily driven well past their linear
dynamic range to controlled and strongly nonlinear response.
With NEMS, a Duffing nonlinearity arises purely within the
mechanical domain due to the onset of amplitude-dependent
tension; this causes a deviation from the harmonic elastic
potential existing for small displacements. In the nonlinear
regime, the amplitude and phase of the oscillations become
dynamically coupled.
The NEMS we employ in this work resonate at radio

frequencies (1−20 MHz) with high quality factors (Q = 1000−
10000 in vacuum). The coupling between two oscillators is
considered strong when the coupling function is at the order of
the oscillation amplitude, which leads to resonator mode
hybridization. For example, strong coupling between two

oscillators occurs when = − = −f f A A( )c,1 c,2
1
2 1 2 . In our

experiment of network synchronization, nevertheless, only
weak coupling is warranted. Likewise, we normalize the time
and nonlinearity-induced frequency shift to the natural line
width of the resonators at low oscillator amplitudes (where the
nonlinear stiffness of the resonator is not observed). Thus, for
example, if the resonator has frequency f = 2 MHz, Q = 2000,
and a frequency detuning Δf = 1 kHz, then a unit of slow time
corresponds to 1 ms in real time (T = 1 → t = 1 ms), and the

normalized frequency shift is =δΔ 1
2

.

The piezoelectric resonator provides efficient mechanical-to-
electrical transduction with a direct forward transmission
coefficient, S21 ∼ −47 dB, and a signal-to-background ratio
>30 dB. These permit stable locking of the oscillation in
feedback loops constructed with off-the-shelf integrated circuits
(ICs). Displacement transducers and actuators that couple
mechanical motion into electrical signals and, vice versa,
facilitate straightforward coupling between nodes with network
edges implemented solely within the electrical domain. An
outstanding feature of our piezoelectric NEMS resonators is the
ability to directly tune their vibrational frequencies, δj, by
application of a DC voltage.30 Piezoelectric NEMS provide a

Figure 1.Modular nonlinear NEMS oscillator. Left panels: Device layer stack and a colorized scanning electron micrograph showing a top view of an
aluminum nitride (AlN) NEMS resonator. The input and output thin-film molybdenum (Mo (1)) electrodes (dark purple) are electrically separated
by an etched trench that exposes the underlying AlN (1) (turquoise). Thin-film gold electrodes (yellow) provide contacts to Mo electrodes; the
bottom Mo (2) layer forms the counter-electrode. The dotted violet line approximately delineates the extent of the membrane resonator. Right
panels: The oscillator PCB and its functional block diagram. The NEMS resonator is housed in a small vacuum chamber (colorized pink). Voltage
biases, oscillator waveforms, and digital signals are accessible from either the edge connector and PCB test points or via SMA connectors.
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very wide tuning range, Δδj ∼ ±5; such a large frequency span
is rarely achieved with other physical systems.
Our NEMS resonators are fabricated from ultrathin piezo-

electric multilayer “stacks”, as depicted in Figure 1. Elsewhere,
we describe the piezoelectric NEMS device fabrication
process.31,32 Feedback oscillators constructed from these
NEMS resonators prove ideal for the study of synchronization
in nonlinear oscillator networks for several reasons. The
thinness (50−150 nm) of our piezoelectric stacks permits large
area- (or length/width) to-thickness ratios, even for the
smallest devices. Large aspect ratios are key to achieving an
early onset of nonlinearity, that is, one manifested at small
displacement amplitudes. Additionally, as represented in eq 1,
with the inclusion of the nonlinear Duffing term and feedback
with a controlled saturation level, the oscillator dynamics of
nonlinear NEMS can be accurately modeled as a generic, self-
sustained oscillator.33 Further, even with their high Q’s, high
frequency NEMS resonators have relatively short damping
times on the order of the slow, normalized time T, and this
leads to evolution of their coherent, “slow-time” network-
coupled dynamics over reasonable, millisecond-scale intervals.
These frequencies and time scales permit high-resolution
sampling of the full, real-time dynamics that can be affected
by stochastic processes near the resonator frequency.
Direct linear conversion between stress/strain and charge/

field provided by the piezoelectric “stack” allows for reduced
circuit complexity, as compared with other transduction
schemes.34,35 The membrane area of ∼500 μm2 of our
resonators provides large and robust output signals. In addition
to its use for quasi-static frequency tuning, piezoelectric voltage
control of resonant frequency can be employed dynamically
(with AC signals) to facilitate parametric actuation.36 Electrical
frequency tuning can also be used to momentarily decouple
specific nodes from the network, thus providing a useful means
for network manipulation and control.
In our previous demonstration of synchronized NEMS

oscillators, we employed connectorized and rack-mounted
electronic instrumentation to implement oscillator feedback
and network coupling.37 To permit the construction of more
complex networks, a versatile, compact, and more upscalable
implementation is essential. In this work, we implement NEMS
oscillators with small printed circuit board (PCB) circuitry
(Figure 1). These PCB circuits are a versatile and cost-effective
platform for interconnection, especially for analog signals.
Nonlinear NEMS oscillator networks comprising from tens to
hundreds of nodes are readily achievable. The PCBs are
designed with commercial software, fabricated by commercial
manufacturers, and populated with ICs (providing the requisite
amplification, multiplexing, saturation, attenuation, and phase-
shifting functions, etc.)with total expenditure of less than
$1,000 for each board. While our entire NEMS network
including all nodes and edgescan be implemented on a single
PCB, here we construct individual, modular, “plug-and-play”
oscillator nodes that are connected via a “network board”
comprising the network’s edges that complete and define the
network topology. This architecture greatly reduces the cost
and design complexity and permits the very flexible realization
of network topologies.
The modular oscillator nodes are constructed on credit-card-

sized PCBs on which the NEMS resonator dies are mounted.
Wirebonds connect the NEMS die to the module’s electronic
feedback circuitry. Operation in vacuum at or below 100 μbar is
essential to ensure flexural mode resonances with high quality

factors, as well as to ensure optimal frequency stability. We
achieve this by housing the NEMS device within a miniaturized,
on-board plastic vacuum enclosure, fabricated by 3D printing
and attached to the PCB with small screws (Figure 1).
To understand the oscillator node in more detail, we explain

the function of the physical components depicted in Figure 1
with the mathematical model. Noting that the amplitude A1 is
scaled in eq 1, we devote the experimental amplitude as Ã1. The
scale factor is that A1 = 1, while Ã1 is determined when the
oscillator is decoupled from the network. Thus, the scale factor
does change upon change amplitude of the feedback drive. The
complex oscillator signal Ã1 (with amplitude and phase) is
available at the output of the power splitter/combiner, labeled
PS/C1. This component (PS/C1) splits the oscillation into two
equal portions: one for the connection into the network and
the other to sustain the feedback for oscillation. The saturated
feedback drive is generated by the combined action of the
phase shifter (Δϕ), automatic gain control amplifier (AGC),
and tunable attenuator (AT1). Since the phase of oscillation is
delayed by the components in the loop (and this phase shift is
generally frequency-dependent), we adjust the phase shift
through the loop at the point of maximum amplitude where the
feedback does not affect oscillator frequency. The tunable phase
shifter, realized as an active all-pass filter with one terminal
impedance tunable via a digital potentiometer,38 provides a
phase tuning range of ∼150° below 10 MHz. The automatic
gain control (AGC) amplifier is used to clamp the output
amplitude at a fixed “saturated” value, regardless of input signal
level. This approach is commonly employed to suppress the
contribution of the feedback amplifier’s amplitude noise on
oscillator phase noise. In the present setup, we employ a linear-
in-decibel variable-gain amplifier (Analog Devices AD8368) for
this role; it permits setting the output amplitude through bias
resistors. To achieve log scaling of the saturated output, we use
a digitally controlled variable attenuator (AT1) at the output.
Like the digital potentiometer embedded in the phase shifter,
AT1 is also alterable in real-time; we control it remotely
through the digital port on the network board using serial
peripheral interface (SPI) protocols.
After AT1, the local feedback drive is combined with

coupling arriving from network edges via the power combiner
PS/C2. Together, this combined drive signal, represented by
the right-hand side of eq 1, actuates the resonator. In Figure 1,
the vacuum-based NEMS resonator is evident at the left top
corner of the board. Two attenuators, AT2 and AT3, at the
input and output of the device, respectively, are used to
condition the signals to and from the NEMS. Through the Bias-
T, a DC voltage VDC = −10 to 10 V can be applied to the
NEMS to change the membrane stress and thereby tune the
resonator’s frequency. This VDC bias is provided by an
ultrastable 16-bit digital-to-analog converter (DAC), ensuring
that frequency tuning, Δδ, is steady and adjustable with
resolution below 100 ppm. To achieve optimal signal-to-noise
ratio, the NEMS output signal is amplified and filtered by an
amplifier chain (AMP) comprising, at its front end, an
operational amplifier (op amp) based transimpedance amplifier
(TIA)38 delivering a gain of 40 000 V/A. The TIA was adopted
for readout since it yields optimal performance with our
piezoelectric transducer, which behaves as a current source.
After the TIA stage, we measure the forward transmission
coefficient to be S21∼ 27 dB. The second gain stage is a two-
stage noninverting op amp. The total gain of the cascaded
readout amplifier chain without the TIA is 50 dB. The effective
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forward scattering parameter achieved at resonance, S21, is ∼25
dB; depending upon operating conditions, this yields output
voltages ranging from ∼1 to 1000 mV. Low pass, high pass, and
bandpass filters are incorporated within the amplifier chain to
provide out-of-band signal suppression. As shown in Figure 2,
the oscillation at ∼6.878 MHz is observed from a PCB NEMS
oscillator node with measured phase noise of approximately
−80 dBc/Hz at 1 kHz offset. This level of stability is
comparable to the performance of monolithic nanomechanical
oscillators of similar size and mass.39 The roll-off in the phase
noise spectrum, roughly proportional to ∼1/f4, suggests that
this noise originates from environmental temperature or
vibrational fluctuations.40 Although commercial oscillator
modules exist with lower phase noise and increased stability,
they lack controllable nonlinearity that is absolutely essential
for studying synchronization beyond Kuramoto dynamics.19

The key motivations guiding our oscillator-node architecture
are (i) implementation of real-time controllability and
programmability, (ii) ease of connectivity, to permit the
formation of complex network topologies, and (iii) adaptability
to use with different classes of NEMS resonators. Many of the
parameters and components of the oscillator, including the
attenuators, in-loop phase-shifters, oscillator saturation level,
and piezoelectric stress of the NEMS, are controllable in real-
time with on-board components controlled via the digital link.
To form oscillator networks with a centralized control system,
all voltagesincluding the oscillator signal injection input and
signal output, as well as its digital control lines, power supplies,
ground connectionsare accessible through the PCB edge
connector, which plugs into the network board. In network
operations, such as for the three-node ring board discussed
below, this permits centralized control of all network nodes and
edges through the network board. Additional control
connections to the individual oscillator boards are not required.
The right panel of Figure 2 shows the flexibility and control

of the oscillator node; the frequency−amplitude responses of
one oscillator node are displayed for different control
parameters. The backbone curveswith display increasing
frequency with large amplitude vibrationare the hallmark of
the Duffing nonlinearity. By tuning the available parameters,
the oscillator nodes can be morphed to different amplitudes,
frequencies, and degree of nonlinearity−as required for
different investigations. Of interest is the transition “C” in
Figure 2, where the apparent Duffing nonlinearity of the
oscillator increases without a concomitant change in amplitude.
This is not trivial, since the Duffing nonlinearity of a NEMS
resonator is fixed through device geometry. In our physical
implementation, this phenomenon arises because the oscillation
Ã1 is referenced at the output of PS/C1, while the Duffing

frequency shift is referenced to the oscillation in the NEMS as
Ã1′ = ϵÃ1, where ϵ is a constant depending on the gain of AMP
and attenuation at AT3. Therefore, by increasing AT2 and
decreasing AT3 by equal amount, |Ã1′| and thereby the oscillator
frequency are increased, while |Ã1| remains constant.
To appreciate what is involved in upscaling this architecture

to complex network topologies, note that each oscillator node
requires 15 connections. These include the oscillation signal
lines, the digital control and digital address buses, and the DC
bias lines. All such connections are accessible from the PCB’s
edge connector and many, including the DC bias levels, can be
easily shared across nodes. With deployment of multiple line
decoders, all controls of the network board can be multiplexed
to a Raspberry-Pi class single-board computer with a single 40-
pin ribbon cable. Using software developed for this project, we
can perturb the network configuration at submillisecond time
scales. Given the high fidelity of the extracted signals, the state
of the nodal oscillations (their phase and amplitude) can be
obtained within a few oscillation cycles, corresponding to a
measurement window of a few microseconds. As state evolution
follows the slow time scale, of order one millisecond, the
requisite bandwidth to follow up to one hundred 2 MHz
oscillators, assuming 10× oversampling, is 10 × 2 × (2 MHz) ×
100 ∼ 4 GSa/s. This data rate is readily accessible with modern
analog-to-digital (ADC) data loggers. To summarize, our
present implementation of PCB-based nonlinear NEMS
networks can easily be scaled to over 100 nodes while retaining
full capabilities for network control and state capture.
We demonstrate the operation of our nonlinear NEMS

network system by implementing a ring network with three
oscillator nodes. In a ring-network topology, the nodes are
configured in a circle, with each connected to its two nearest
neighbors. Mathematically, the coupling is defined as

̃ ̃ ̃ = ̃ − ̃ + ̃β
+ −f A A A A A A( , , ) ( 2 )j

i
j j jc, 1 2 3 2 1 1 , where the interno-

dal coupling coefficient, β, is real. Our three-node ring network
is constructed by plugging three NEMS oscillator modules into
a ring-network board. As shown in Figure 3, after configuring
the control and topology parameters (the Duffing nonlinearity,
frequencies, etc.) of the individual oscillator modules, the nodes
are run uncoupled for a short interval after which internodal
coupling (β) is turned on. In this manner, we can capture in
real-time the continuous state of the network as it evolves from
decoupled oscillators to the fully synchronized state. The
phases of the individual oscillators are extracted from the time
records via the Hilbert transformation. To our knowledge, such
detailed, real-time observations of the phase of individual
oscillators as they transition from the uncoupled to
synchronized state have never been presented before in
experimental studies. We believe these data, in concert with

Figure 2. Signal analysis of modular NEMS PCB oscillator. Power spectrum (left) and the phase noise (middle). The power spectrum shows a
dominant peak near the NEMS resonant frequency. On the right is the amplitude frequency of an oscillator node under different configuration
parameters. In A, the feedback drive is increased by reducing attenuator AT1 to form the “backbone” curve characteristic to the Duffing nonlinearity.
In B, VDC = 1 V is applied to tune δ1 by ∼ −5. In C, AT2 and AT3 are changed by equal and opposite amounts, which increases the apparent
nonlinearity while keeping amplitude constant.
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our theoretical studies, will facilitate discovery of novel network
phenomena.
In conclusion, we demonstrate a novel instantiation of

nonlinear oscillator networks based on compact, modular, and
low-power piezoelectric NEMS oscillators. This architecture
readily permits the scaling of synchronized, small-scale
oscillator networks up to ∼100 nodes. Examples of intriguing
experimental avenues opened by this technology are found in
our companion study involving analytical and numerical
simulations.29 It is noteworthy that the electronic components
we employ to construct our modular nodes are fully
integratable on-chip via application specific integrated circuit
(ASIC) technology. Accordingly, the platform we describe here,
constructed from discrete components, serves as a prototype
for a next generation of massively upscaled analog synchronized
networks, which can be patterned by cointegration of NEMS
and CMOS VLSI.41 Such cointegrated architecture will make it
possible to realize fully controllable experimental networks with
many thousands of nodes and edges.
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