Online Appendix to “A Hybrid Incentive Scheme: Promotion beyond Pay for Performance”

Myungkoo Song

November 3, 2016

This online appendix contains all proof of the paper, “A Hybrid Incentive Scheme: Promotion beyond Pay for Performance” and details of the firm’s problem in Section 7.1, 7.2 and 9.

Appendix A Proofs

A.1 Derivation of $P(e_{Mi})$

Note that

$$P(e_{Mi}) = \sum_{j=0}^{N-1} \frac{1}{j+1} \binom{N-1}{j} s(e_{Mi})^j (1 - s(e_{Mi}))^{N-1-j}$$

$$= \frac{1}{Ns(e_{Mi})} \sum_{j=0}^{N-1} \binom{N}{j+1} s(e_{Mi})^{j+1} (1 - s(e_{Mi}))^{N-1-j}$$

$$= \frac{1}{Ns(e_{Mi})} \left(\sum_{s=0}^{N} \binom{N}{s} s(e_{Mi})^s (1 - s(e_{Mi}))^{N-s} - (1 - s(e_{Mi}))^N \right)$$

$$= \frac{1 - (1 - s(e_{Mi}))^N}{Ns(e_{Mi})}.$$

A.2 Proof of Lemma 1

Denote the firm’s profit when the CEO’s IR condition binds as Π Then, the firm’s optimal profit must be greater than or equal to Π.

First, for an action $(e_C^*, e_M^*) \in [0, 1] \times [0, 1]$, I show that there exists a solution $(W_G^C, W_B^C, W_G^M, W_B^M)$ to the firm’s problem. Note that when the CEO’s IR condition binds the firm’s problem is reduced to the case of Grossman and Hart (1983). Hence, a solution exists to this restricted problem. Now, I show that I can artificially bound the constraint set of $(W_G^C, W_B^C, W_G^M, W_B^M)$. They are bounded below by two IR
conditions. Moreover, they are also bounded above since the firm’s optimal profit is lower than Π and the firm’s profit is a strictly decreasing function in all four components in (W^G, W^B, W_g, W_b) without a lower bound. Also, the constraint set is closed according to two IC and two IR conditions. Hence, there exists a solution by the Extreme value theorem. The remaining proof exactly follows the proof in Grossman and Hart (1983).

A.3 Proof of Lemma 2

Suppose this is not true. That is,

$$s(e_M)u(W^G_M) + (1 - s(e_M))u(W^B_M) - g(e_M) + s(e_M)P(e-M)VC > \underline{U}_M.$$

Then, choosing new wage scheme $(\tilde{W}^G_M, \tilde{W}^B_M) = (W^G_M - \epsilon_1, W^B_M - \epsilon_2)$, where $\epsilon_1 > 0$ and $\epsilon_2 > 0$, satisfying

$$u(W^G_M) - u(W^B_M) = u(\tilde{W}^G_M) - u(\tilde{W}^B_M)$$ and

$$s(e_M)u(\tilde{W}^G_M) + (1 - s(e_M))u(\tilde{W}^B_M) - g(e_M) + P(e-M)VC \geq \underline{U}_M$$

gives a higher profit to the firm without affecting other constraints. Hence, the wage scheme (W^G_M, W^B_M) is not optimal.

A.4 Proof of Lemma 3

Note that

$$\frac{\partial F(V)}{\partial V} = -\frac{1}{u'(W_C)} + \frac{1}{u'(W_M)}$$

using the envelope theorem.
Differentiating this with respect to \mathcal{V} gives

$$\frac{\partial^2 F(\mathcal{V})}{\partial \mathcal{V}^2} = \frac{u''(W_C)}{u'(W_C)^3} + \frac{1}{N} \frac{u''(W_M)}{u'(W_M)^3} + \frac{u''(W_C)}{u'(W_C)^3} g'(e_C^*) \frac{\partial e_C^*}{\partial \mathcal{V}} - \frac{u''(W_M)}{u'(W_M)^3} g'(e_M^*) \frac{\partial e_M^*}{\partial \mathcal{V}}$$

$$= \frac{u''(W_C)}{u'(W_C)^3} - \frac{u''(W_C)}{u'(W_C)^3} g'(e_C^*) \frac{u''(W_C)}{u'(W_C)^2} g'(e_C^*)^2 - g''(e_C^*)$$

$$+ \frac{1}{N} \frac{u''(W_M)}{u'(W_M)^3} \frac{1}{u'(W_M)^2} g'(e_M^*) \frac{1}{u'(W_M)^2} g'(e_M^*)^2 - g''(e_M^*)$$

$$= \frac{u''(W_C)}{u'(W_C)^3} \left(1 - \frac{u''(W_C)}{u'(W_C)^2} g'(e_C^*)^2 - g''(e_C^*) \right)$$

$$+ \frac{1}{N} \frac{u''(W_M)}{u'(W_M)^3} \left(1 - \frac{u''(W_M)}{u'(W_M)^2} g'(e_M^*)^2 - g''(e_M^*) \right)$$

$$< 0.$$

That is, $F(\mathcal{V})$ is a strictly concave function.

A.5 Proof of Proposition 1

It is enough to show that

$$\frac{\partial^2 F(\mathcal{V})}{\partial N \partial \mathcal{V}} > 0.$$

Notice that

$$\frac{\partial^2 F(\mathcal{V})}{\partial N \partial \mathcal{V}} = -\frac{1}{N^2 u'(W_M)^3} \frac{u''(W_M)}{u'(W_M)^3} g'(e_M^*) \left(-\frac{\beta(G_M - B_M)}{\beta^2(G_M - B_M)^2 u''(W_M)} \right) \mathcal{V}$$

$$= -\frac{1}{N^2 u'(W_M)^3} \left(1 - \frac{\beta(G_M - B_M)}{\beta^2(G_M - B_M)^2 u''(W_M)} g'(e_M^*) \right) \mathcal{V}$$

$$= -\frac{1}{N^2 u'(W_M)^3} \left(1 - \frac{\beta^2(G_M - B_M)^2 u''(W_M)}{\beta^2(G_M - B_M)^2 u''(W_M)} g'(e_M^*) \right) \mathcal{V}$$

$$> 0.$$
A.6 Proof of Corollary 2

Suppose this is not the case. From the first order condition

\[\beta (G_C - B_C) = \frac{g'(e_C)}{u'(W_C)}, \]

it can be shown that \(e_C^* \) and \(W_C^* \) move in the opposite direction since the left hand side is a constant. Therefore, \(e_C^* \) should increase if \(W_C^* \) decreases. Since \(\psi^* \) increases as \(N \) increases, \(W_C^* \) must increase according to

\[u(W_C^*) = \psi^* + g(e_C^*). \]

This contradicts the premise that \(W_C^* \) decreases. Hence,

\[\frac{\partial W_C^*}{\partial N} > 0. \]

A.7 Proof of Proposition 2

Recall that the first order condition is

\[-\frac{1}{u'(W_C^*)} + \frac{1}{u'(W_M^*)} = 0. \]

Hence, \(W_C^* \) should be the same as \(W_M^* \).

If \(G_C - B_C = G_M - B_M \), using the previous result and two first order conditions, it can be shown that

\[g'(e_C^*) = g'(e_M^*). \]

That is, \(e_C^* = e_M^* \).

Also, this result and the two individual rationality conditions imply that

\[u(W_M) - g(e_M) + \frac{1}{N} \psi^* = \psi^* + \frac{1}{N} \psi^* = U_M. \]

Hence,

\[\psi^* = \frac{N}{N+1} U_M. \]
A.8 Proof of Proposition 3

Note that when agents are risk-neutral
\[
\frac{\partial F(V)}{\partial V} = -s(e_C) - (1 - s(e_C)) + N \cdot s(e_M)P(e_{-M})
\]
\[
= -1 + (1 - (1 - s(e_M))^N)
\]
\[
< 0
\]
using the envelope theorem.54 Hence, the firm’s profit decreases as the level of \(V\) increases.

A.9 Proof of Lemma 4

Using the envelope theorem,
\[
\frac{\partial F(V)}{\partial V} = \frac{s(e_C)}{u'(W_G^C)} - \frac{1 - s(e_C)}{u'(W_B^C)} + Ns(e_M)P(e_{-M})\frac{1}{u'(W_M^G)}.
\]

Differentiating this with respect to \(V\) gives
\[
\frac{\partial^2 F(V)}{\partial V^2} = s(e_C)\frac{u''(W_G^C)}{u'(W_G^C)^2} + (1 - s(e_C))\frac{u''(W_B^C)}{u'(W_B^C)^3} + Ns(e_M)P(e_{-M})\frac{2}{u'(W_M^G)}\frac{u''(W_M^G)}{u'(W_M^G)^3} < 0.
\]

A.10 Proof of Proposition 4

It is enough to show that
\[
\frac{\partial^2 F(V)}{\partial N \partial V} > 0.
\]

Note that
\[
\frac{\partial^2 F(V)}{\partial N \partial V} = -(1 - s(e_M))^N \log(1 - s(e_M)) \frac{1}{u'(W_M^G)}
\]
\[
+ [1 - (1 - s(e_M))^N] \frac{\partial P(e_{-M})}{\partial N}\frac{u''(W_M^G)}{u'(W_M^G)^3} > 0,
\]

where
\[
\frac{\partial P(e_{-M})}{\partial N} = \frac{1}{s(e_M)^N} \left[- \log(1 - s(e_M))(1 - s(e_M))^N - 1 + (1 - s(e_M))^N\right]
\]
\[
< 0
\]
since \(k(s) \equiv - \log(1 - s)(1 - s)^N - 1 + (1 - s)^N\) is equal to zero when \(s = 0\) and \(k'(s) < 0\). Here, I use the condition that \(V \geq 0\).

54In equilibrium, \(s(e_M)\) is equal to \(s(e_{-M})\) since I am considering a symmetric equilibrium.
A.11 Proof of Corollary 4

Denote the expected compensation to CEO by $E[W_C]$,

$$E[W_C] = s(e_C)W_C^G + (1 - s(e_C))W_C^B.$$

Since $\frac{\partial V^*}{\partial N} > 0$, it is enough to show that

$$\frac{\partial E[W_C]}{\partial V} = \frac{s(e_C)}{u'(W_C^G)} + \frac{1 - s(e_C)}{u'(W_C^B)} > 0.$$

A.12 Proof of Corollary 5

I need to show that the wage gap

$$[s(e_C)(W_C^G)^* + (1 - s(e_C))(W_C^B)^*] - [s(e_M)(W_M^G)^* + (1 - s(e_M))(W_M^B)^*]$$

widens as N increases. Since $(1 - s(e_M))(W_M^B)^*$ has a fixed value regardless of the number of managers, it is enough to show that

$$[s(e_C)(W_C^G)^* + (1 - s(e_C))(W_C^B)^*] - s(e_M)(W_M^G)^*$$

is an increasing function in N. When agents have the log utility function, the first order condition with respect to V is

$$s(e_C)(W_C^G)^* + (1 - s(e_C))(W_C^B)^* = (1 - (1 - s(e_M))^N)(W_M^G)^*.$$

Since the left hand side of the equation is a strictly increasing function in V and $\frac{\partial V^*}{\partial N} > 0$, this side strictly increases as N increases. Hence,

$$\frac{\partial}{\partial N}(1 - (1 - s(e_M))^N)(W_M^G)^* = -\log(1 - s(e_M))(1 - s(e_M))^N(W_M^G)^*$$

$$+ (1 - (1 - s(e_M))^N)\frac{\partial (W_M^G)^*}{\partial N} > 0.$$

Since

$$[s(e_C)(W_C^G)^* + (1 - s(e_C))(W_C^B)^*] - s(e_M)(W_M^G)^* = (1 - s(e_M) - (1 - s(e_M))^N)(W_M^G)^* \quad (10)$$
\[
\frac{\partial}{\partial N} \left\{ \left[s(e_C)(W^G_C)^* + (1 - s(e_C))(W^B_C)^* \right] - s(e_M)(W^G_M)^* \right\} = \\
- \log(1 - s(e_M))(1 - s(e_M))^N(W^G_M)^* + (1 - s(e_M) - (1 - s(e_M))^N) \frac{\partial (W^G_M)^*}{\partial N} \\
> - \log(1 - s(e_M))(1 - s(e_M))^N(W^G_M)^* + (1 - s(e_M) - (1 - s(e_M))^N). \\
\log(1 - s(e_M))(1 - s(e_M))^N(W^G_M)^* \\
= - \frac{s(e_M)}{1 - (1 - s(e_M))^N} \log(1 - s(e_M))(1 - s(e_M))^N(W^G_M)^* \\
> 0
\]
when \(N > 1\). Also, when \(N = 1\), the wage gap is equal to zero according to 10. On the other hand, the gap has a positive value when \(N = 2\) since \((W^G_M)^* > 0\). Therefore, the expected compensation gap is a strictly increasing function in \(N\).

A.13 Proof of Proposition 5

First, I consider a case when \(e_C = e_M\).

Note that

\[F(U_M|N) = \frac{s(e_C)}{u'(W^G_C)} - \frac{1 - s(e_C)}{u'(W^B_C)} + \frac{1 - (1 - s(e_M))^N}{u'(W^G_M)}, \]

where

\[u(W^G_C) = U_M + g(e_C) + (1 - s(e_C)) \frac{g'(e_C)}{h'(e_C)}, \]

\[u(W^B_C) = U_M + g(e_C) - s(e_C) \frac{g'(e_C)}{h'(e_C)}, \]

and

\[u(W^G_M) = U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{h'(e_M)} - P(e_M)U_M. \]

Denote the difference between \(1/u'(W^G_C)\) and \(1/u'(W^B_C)\) by \(D\).

For given \((1 - s(e_C))D > \epsilon > 0\), there is \(\tilde{N}\) such that

\[\frac{1}{u'(W^G_C)} - \frac{1 - (1 - s(e_M))^N}{u'(W^G_M)} < \epsilon \]
when $N \geq \tilde{N}$ since $P(e_{-M}) \to 0$ and $(1 - s(e_M))^N \to 0$ as $N \to \infty$. Therefore, when $N \geq \tilde{N}$,

$$F(U_M|N) = \frac{s(e_C)}{u'(W_C^G)} - \frac{1 - s(e_C)}{u'(W_M^B)} + \frac{1 - (1 - s(e_M))^N}{u'(W_g)}$$

$$> \frac{s(e_C)}{u'(W_C^G)} - \frac{1 - s(e_C)}{u'(W_M^B)} + \frac{1}{u'(W_C^B)} - \epsilon$$

$$= (1 - s(e_C)) \left(\frac{1}{u'(W_C^G)} - \frac{1}{u'(W_M^B)} \right) - \epsilon$$

$$> 0.$$

Since $F(\mathcal{V}|N)$ is a strictly concave in \mathcal{V}, $\mathcal{V}^* > U_M$ when $N \geq \tilde{N}$.

Second, I show that there is N^* such that $\mathcal{V}^* > U_M$ if $N > N^*$ when $0 < e_C < e_M < 1$.

There are two possibilities:

$$\frac{s(e_M)}{u'(W_M^G)} \geq \frac{1}{u'(W_C^G)} \quad \text{or} \quad \frac{s(e_M)}{u'(W_M^G)} < \frac{1}{u'(W_C^G)}$$

when $\mathcal{V} = U_M$ and $N = 1$.

1. \(\left(\frac{s(e_M)}{u'(W_M^G)} \geq \frac{1}{u'(W_C^G)} \right) \)

 This condition implies that

 $$F(U_M|1) = \frac{s(e_C)}{u'(W_C^G)} - \frac{1 - s(e_C)}{u'(W_M^B)} + \frac{s(e_M)}{u'(W_M^G)}$$

 $$\geq (1 - s(e_C)) \left(\frac{1}{u'(W_C^G)} - \frac{1}{u'(W_M^G)} \right)$$

 $$> 0.$$

Since \(\frac{\partial \mathcal{V}^*}{\partial N} > 0 \), $\mathcal{V}^* > U_M$ for every N.

2. \(\left(\frac{s(e_M)}{u'(W_M^G)} < \frac{1}{u'(W_C^G)} \right) \)

 Again, denote the difference between $1/u'(W_C^G)$ and $1/u'(W_M^B)$ by \mathcal{D}. Then, for given $(1 - s(e_C))\mathcal{D} > \epsilon$, there exists \tilde{N} such that

 $$0 \leq \frac{1}{u'(W_C^G)} - \frac{1 - (1 - s(e_M))^N}{u'(W_M^G)} < \epsilon.$$

8
Therefore, when \(N \geq \bar{N} \),

\[
F(\underline{U}_M|N) = -\frac{s(e_C)}{u'(W^G_C)} - \frac{1 - s(e_C)}{u'(W^B_C)} + \frac{1 - (1 - s(e_M))^N}{u'(W^G_M)} \\
> -\frac{s(e_C)}{u'(W^G_C)} - \frac{1 - s(e_C)}{u'(W^B_C)} + \frac{1}{u'(W^G_C)} - \epsilon \\
= (1 - s(e_C)) \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right) - \epsilon \\
> 0.
\]

Since \(F(\mathcal{V}|N) \) is a strictly concave in \(\mathcal{V} \), \(\mathcal{V}^* > \underline{U}_M \) when \(N \geq \bar{N} \).

A.14 Proof of Proposition 6

Under the given assumption, it can be shown that

\[
\frac{\partial^2 F(\mathcal{V})}{\partial \mathcal{V} \partial e_C} = -\beta \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right) + s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{u''(W^G_C)}{u'(W^G_C)^3} - \frac{u''(W^B_C)}{u'(W^B_C)^3} \right) < 0,
\]

\[
\frac{\partial^2 F(\mathcal{V})}{\partial \mathcal{V} \partial e_M} = \bar{N} \beta \frac{(1 - s(e_M))^{N-1}}{u'(e_M)} \\
- [1 - (1 - s(e_M))^N] \frac{u''(W^G_M)}{u'(W^G_M)^3} \left(1 - s(e_M) \right) \frac{g''(e_M)}{\beta} - \left(\frac{\partial P(e^{-M})}{\partial e_M} \right) \mathcal{V} > 0.
\]

A.15 Proof of Proposition 7

First, I show that \(\mathcal{V}^* \) increases as \(\underline{U}_M \) increases. From the first order condition with respect to \(\mathcal{V}^* \):

\[
-\frac{s(e_C)}{u'(W^G_C)} - \frac{1 - s(e_C)}{u'(W^B_C)} + \frac{1 - (1 - s(e_M))^N}{u'(W^G_M)} = 0,
\]

\[
\frac{\partial \mathcal{V}^*}{\partial \underline{U}_M} = \frac{[1 - (1 - s(e_M))^N] \frac{u''(W^G_M)}{u'(W^G_M)^3}}{s(e_C) \frac{u''(W^G_C)}{u'(W^G_C)^3} + (1 - s(e_C)) \frac{u''(W^B_C)}{u'(W^B_C)^3} + \bar{N} s(e_M) P(e_M)^2 \frac{u''(W^G_M)}{u'(W^G_M)^3}} > 0.
\]

Note that for a given \((N, e_M), (W^G_M)^* = (W^B_M)^* \) if

\[
\mathcal{V}^* = \frac{g'(e_M)}{\beta P(e_M)}
\]
since \(u(W^G_M) - u(W^B_M) = \frac{g'(e_M)}{\beta} - P(e_-)V \). For given \((N, e_C, e_M)\), denote \(V \) satisfying \((W^G_M)^* = (W^B_M)^*\) by \(\hat{V} \). That is,
\[
\hat{V} = \frac{g'(e_M)}{\beta P(e_-)} > 0.
\]
Then,
\[
\frac{\partial F(V|U_M)}{\partial V} \bigg|_{V=\hat{V}} = -\frac{s(e_C) - (1 - s(e_M))^N}{u'(W^G_M)} + \frac{1}{u'(W^B_C)}.
\]
There are two possible cases, \(\frac{\partial F(V|U_M)}{\partial V} \bigg|_{V=\hat{V}} \geq 0 \) and \(\frac{\partial F(V|U_M)}{\partial V} \bigg|_{V=\hat{V}} < 0 \). If \(\frac{\partial F(V|U_M)}{\partial V} \bigg|_{V=\hat{V}} \geq 0 \), then \(V^* > \hat{V} \). This implies that \((W^G_M)^* \leq (W^B_M)^*\). Suppose that \(\frac{\partial F(V|U_M)}{\partial V} \bigg|_{V=\hat{V}} < 0 \). Since \(V \) is fixed at \(\hat{V} \),
\[
\lim_{U_M \to \infty} \frac{1 - (1 - s(e_M))^N}{u'(W^G_M)} = \infty.
\]
Hence, there is \(0 < U^*_M < \infty \) such that
\[
\frac{\partial F(V|U_M)}{\partial V} \bigg|_{V=\hat{V}} = 0.
\]
Since \(\frac{\partial V^*}{\partial U_M} > 0 \), \((W^G_M)^* \leq (W^B_M)^*\) if \(U_M \geq U^*_M \).

A.16 Proof of Corollary 6

It is enough to show that there is \(U_M \) such that \(W^B_C \geq W^G_M \) when \(V = 0 \) since this implies that
\[
\frac{\partial F(V)}{\partial V} \bigg|_{V=0} < 0.
\]
Note that
\[
u(W^B_C) - u(W^G_M) = g(e_C) - s(e_C) \frac{g'(e_C)}{\beta} - U_M - g(e_M) - (1 - s(e_M)) \frac{g'(e_M)}{\beta}
\]
when \(V = 0 \). Hence, if
\[
U_M \leq g(e_C) - s(e_C) \frac{g'(e_C)}{\beta} - g(e_M) - (1 - s(e_M)) \frac{g'(e_M)}{\beta},
\]
\(W^B_C \geq W^G_M \).

Since \(\frac{\partial V^*}{\partial U_M} > 0 \) and there is \(U_M \) such that \(V^* > 0 \) according to **Proposition 7**, there exists \(U_M \) such that \(V^* = 0 \) with \(\frac{\partial F(V)}{\partial V} \bigg|_{V=V^*} = 0 \). Also, if \(U_M \) is less than \(U_M^* \), the solution is \(V^* = 0 \) with \(\frac{\partial F(V)}{\partial V} \bigg|_{V=V^*} < 0 \).
A.17 Proof of Proposition 8

Before I prove the proposition, I show that \mathcal{V}^* is bounded for every N. The first order condition with respect to \mathcal{V} implies that $(W_M^G)^* > (W_C^B)^*$ for every N. Therefore,

$$U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} - P(e_{-M}) \mathcal{V}^* \geq \mathcal{V}^* + g(e_C) - s(e_C) \frac{g'(e_C)}{\beta}.$$

Since $0 \leq P(e_{-M}) \leq 1$,

$$U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} - g(e_C) + s(e_C) \frac{g'(e_C)}{\beta} > \mathcal{V}^*,$$

where the left hand side does not depend on N.

First, I denote the optimal compensations by $(W_G^C(N), W_B^C(N), W_G^M(N), W_B^M)$ for a given N.\(^{55}\)

Then, the difference between the two average profit is

$$2(N + 1)((N + 1)(\Pi(\mathcal{V}^*|N) - \Pi(\mathcal{V}^*|1)) = (N - 1)(s(e_M) - s(e_C))(G - B)
- 2W_G(N) + (N + 1)W_C(1) - 2NW_M(N) + (N + 1)W_M(1),$$

where

$$W_G(N) = s(e_C)W_G^C(N) + (1 - s(e_C))W_C^B(N)$$
$$W_M(N) = s(e_M)W_M^G(N) + (1 - s(e_M))W_M^B(N).$$

Since \mathcal{V}^* is bounded, optimal compensations $(W_G(N), W_M(N), W_C(1), W_M(1))$ are also bounded.

Also, they are not depend on G and B. Hence, there is $G^* - B^*$ such that the difference has a positive value for a given N since $s(e_M) > s(e_C)$.

For the second part, I impose a restriction on e_M. Namely, for a given e_C, e_M satisfies the condition that

$$\mathcal{V}^*(e_C, e_M|N = 1) + \frac{g'(e_C)}{\beta} - \frac{g'(e_M)}{\beta} \geq 0,$$

where $\mathcal{V}^*(e_C, e_M|N = 1)$ is the optimal \mathcal{V} when $N = 1$ for a given (e_C, e_M). Since $\mathcal{V}^*(e_C, e_M|N = 1) + \frac{g'(e_C)}{\beta} - \frac{g'(e_M)}{\beta} > 0$ if $e_M = e_C$, there is \bar{e}_M such that $\mathcal{V}^*(e_C, e_M|N = 1) + \frac{g'(e_C)}{\beta} - \frac{g'(e_M)}{\beta} \geq 0$ if $e_M \in (e_C, \bar{e}_M]$.\(^{55}\)

\(^{55}\)Note that W_M^B does not depend on the number of candidates.
Note that
\[
\Pi(\mathcal{Y}^*|N) - \Pi(\mathcal{Y}^*|1) = \frac{N - 1}{2(N + 1)} (s(e_M) - s(e_C))(\mathcal{G} - B)
- \frac{1}{2} s(e_M)(W^G_M(N) - W^G_M(1))
+ \frac{1}{2(N + 1)} [-(N - 1)W_M(N) - 2W_C(N) + (N + 1)W_C(1)]
< \frac{N - 1}{2(N + 1)} (s(e_M) - s(e_C))(\mathcal{G} - B)
- \frac{1}{2} s(e_M)(W^G_M(N) - W^G_M(1))
+ \frac{1}{2(N + 1)} [-(N - 1)W_M(N) - 2W_C(N) + (N - 1)W_M(1) + 2W_C(N)]
= \frac{N - 1}{2(N + 1)} (s(e_M) - s(e_C))(\mathcal{G} - B)
- \frac{N}{N + 1} s(e_M)(W^G_M(N) - W^G_M(1)).
\]

The inequality holds since \(W_C(N) > W_C(1)\) and \(W_M(1) > W_C(1)\). Note that \(W_C(N) > W_C(1)\) is true because \(\frac{\partial V^*}{\partial N} > 0\). On the other hand, the condition imposed on \(e_M\) guarantees that \(W_M(1) > W_C(1)\). Here, I show that \(W_M(1) > W_C(1)\) if \(e_M \in (e_C, \bar{e}_M]\). The first order condition with respect to \(\mathcal{V}\) when \(N = 1\) is
\[
\frac{s(e_C)}{u'(W^G_M(1))} + \frac{1 - s(e_C)}{u'(W^G_M(1))} = \frac{s(e_M)}{u'(W^G_M(1))},
\]
which implies that \(u(W^G_M(1)) > u(W^G_C(1))\). Therefore,
\[
\mathcal{U}_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} > 2\mathcal{V}^* + g(e_C) + (1 - s(e_C)) \frac{g'(e_C)}{\beta}.
\]
This inequality and the condition on \(e_M\) imply that
\[
u(W^B_M) = \mathcal{U}_M + g(e_M) - s(e_M) \frac{g'(e_M)}{\beta}
> \mathcal{V}^* + g(e_C) - s(e_C) \frac{g'(e_C)}{\beta} + \mathcal{V}^* + \frac{g'(e_C)}{\beta} - \frac{g'(e_M)}{\beta}
\geq \mathcal{V}^* + g(e_C) - s(e_C) \frac{g'(e_C)}{\beta}
= u(W^B_C(1)).
\]

Therefore, \(W_M(1) > W_C(1)\).

Hence, if
\[
\mathcal{G} - B < \frac{2N}{N - 1} s(e_M) - s(e_C) \left[W^G_M(N) - W^G_M(1) \right],
\]
\({}^{56}\) if agents have the log utility function, the condition is not needed.
\[\Pi(V^*|N) < \Pi(V^*|1). \]

Notice that there is \(\tilde{N} \) such that \(W_M^G(N) > W_M^G(1) \) if \(N > \tilde{N} \) since \(P(\text{e}_M) \) converges to zero as \(N \) approaches infinity and \(V^* \) is bounded. Let \(\bar{\mathcal{O}} \) denote

\[
\inf_{N \in [\mathbb{N},\infty)} \frac{2N}{N-1} \frac{s(e_M)}{s(e_M) - s(e_C)} [W_M^G(N) - W_M^G(1)].
\]

Then, \(\Pi(V^*|N) < \Pi(V^*|1) \) if \(N > \tilde{N} \) and \(G - B \leq \bar{\mathcal{O}}. \)

A.18 Proof of Proposition 9

Proof. First, note that

\[
\Pi(V^*|N) - \Pi(V^*|1) = \frac{(N+1)W_C(1) - 2W_C(N) + (N+1)W_M(1) - 2NW_M(N)}{2(N+1)},
\]

where \(W_C(k) \) and \(W_M(k) \) represent CEO’s and managers’ expected compensation when the firm hires \(k \) managers\(^{57} \), respectively. When agents have the log utility function, the first order condition with respect to \(V \) is

\[
s(e)W_C^G(N) + (1-s(e))W_C^B(N) = (1-(1-s(e))^N)W_M^G(N).
\]

Using this condition, it can be shown that

\[
\Pi(V^*|N) - \Pi(V^*|1) = s(e)[W_M^G(1) - W_M^G(N)]
\]

\[
\quad - \frac{(1-s(e))(1-(1-s(e))^{N-1})W_M^G(N)}{N+1} - \frac{N-1}{2(N+1)}(1-s(e))W_M^B.
\]

This indicates that \(\Pi(V^*|N) - \Pi(V^*|1) < 0 \) if \(W_M^G(N) > W_M^G(1). \)

\(^{57}\)These are defined in A.17.
Also, when \(u(x) = \log(x) \) and \(e_C = e_M = e \), \(\mathcal{V}(N) \) is\(^{58}\)

\[
\mathcal{V}^*(N) = -\frac{1}{1 + P(e_M)} \log \left[\frac{s(e) \exp \left[g(e) + (1 - s(e)) \frac{g'(e)}{\beta} \right] + (1 - s(e)) \exp \left[g(e) - s(e) \frac{g'(e)}{\beta} \right]}{(1 - (1 - s(e))^N) \exp \left[U_M + g(eM) + (1 - s(e)) \frac{g'(e)}{\beta} \right]} \right] = -\frac{1}{1 + P(e_M)} \log \left[\frac{s(e) + (1 - s(e)) \exp \left[-\frac{g'(e)}{\beta} \right]}{(1 - (1 - s(e))^N) \exp [U_M]} \right] = \frac{1}{1 + P(e_M)} U_M + \frac{1}{1 + P(e_M)} \log \left[\frac{(1 - (1 - s(e))^N)}{s(e) + (1 - s(e)) \exp \left[-\frac{g'(e)}{\beta} \right]} \right].
\]

Note that when \(U_M = -\log \left[\frac{s(e)}{s(e) + (1 - s(e)) \exp \left[-\frac{g'(e)}{\beta} \right]} \right] \), \(\mathcal{V}^*(1) = 0 \), and

\[
\mathcal{V}^*(N) = \frac{1}{1 + P(e_M)} \log \left[\frac{(1 - (1 - s(a))^N)}{s(a)} \right].
\]

Therefore, \(\Pi(\mathcal{V}^*|N) - \Pi(\mathcal{V}^*|1) \) is greater than 0 if

\[
s(e) - \left[\frac{Ns(e) + 1 - (1 - s(a))^N}{N + 1} \right] \exp [-P(e_M|N)\mathcal{V}^*(N)] - \frac{N - 1}{2(N + 1)} (1 - s(e)) \exp \left(-\frac{g'(e)}{\beta} \right) > 0.
\]

This is equivalent to

\[
1 > \frac{N}{N + 1} \frac{1 + P(e_M|N)}{[NP(e_M|N)]^{1+P(e_M|N)}} + \frac{N - 1}{2(N + 1)} \frac{1 - s(e)}{s(e)} \exp \left(-\frac{g'(a)}{\beta} \right).
\]

For a fixed \(N \), the first term on the right hand side is increasing in the agents’ effort level \(e \) since

\[
\frac{d}{de} \left(\frac{1 + P(e_M|N)}{[NP(e_M|N)]^{1+P(e_M|N)}} \right) = -\frac{\log [NP(e_M|N)]}{(1 + P(e_M|N))[NP(e_M|N)]^{1+P(e_M|N)}} \frac{dP(e_M|N)}{de} > 0.
\]

Also, the first term on the right hand side is bounded above by 1. On the other hand, the second term on the right hand side is decreasing in \(a \) and converges to zero as \(a \) goes to 1.\(^{59}\) Therefore, there is

\(^{58}\)In this proof, I explicitly indicate the dependency of the variable on \(N \).

\(^{59}\)This result relies on the condition that \(\lim_{e \to 1} g'(e) = \infty \).
Suppose that $V > N$ such that V is greater than zero. That is, $\Pi(\nu^*|N) - \Pi(\nu^*|1) > 0$ if $U_N > U_M^\nu$. Since $P(e_{-M}|N)$ is strictly less than 1 when $N \geq 2$, there is $U_M^\nu(N)$ such that $W_M^G(1) < W_M^G(N)$ if $U_M > U_M^\nu(N)$. This implies that $\Pi(\nu^*|N) - \Pi(\nu^*|1) < 0$ when $U_M > U_M^\nu(N)$.

Now, I show that $\frac{\partial^2}{\partial U_M^2} [\Pi(\nu^*|N) - \Pi(\nu^*|1)] < 0$ if $\frac{\partial}{\partial U_M} [\Pi(\nu^*|N) - \Pi(\nu^*|1)] \leq 0$.

Suppose that

$$
\frac{\partial}{\partial U_M} [\Pi(\nu^*|N) - \Pi(\nu^*|1)] = \frac{s(e)}{2} W_M^G(1) - \frac{N}{N + 1} s(e) W_M^G(N) - \frac{N - 1}{2(N + 1)} (1 - s(e)) W_M^B
$$

has a negative value. Then,

$$
\frac{\partial^2}{\partial U_M^2} [\Pi(\nu^*|N) - \Pi(\nu^*|1)] = \frac{s(e)}{4} W_M^G(1) - \frac{N}{N + 1} \frac{s(e)}{1 + P(e_{-M}|N)} W_M^G(N)
$$

$$
- \frac{N - 1}{2(N + 1)} (1 - s) W_M^B
$$

$$
< \frac{s(e)}{4} W_M^G(1) - \frac{N}{N + 1} \frac{s(e)}{2} W_M^G(N)
$$

$$
- \frac{N - 1}{4(N + 1)} (1 - s) W_M^B
$$

$$
= \frac{1}{2} \left[\frac{s(e)}{2} W_M^G(1) - \frac{N}{N + 1} s(e) W_M^G(N) - \frac{N - 1}{2(N + 1)} (1 - s(e)) W_M^B \right]
$$

$$
= \frac{1}{2} \frac{\partial}{\partial U_M} [\Pi(\nu^*|N) - \Pi(\nu^*|1)] \leq 0.
$$

When $\Pi(\nu^*|N) - \Pi(\nu^*|1) > 0$ as $U_M = -\log \left[\frac{s(a)}{s(a) + (1-s(a)) \exp \left[-\frac{2(a)}{\beta} \right]} \right] = U_M^0$, there are two possible cases.
1. \(\left(\frac{\partial}{\partial U_M} [\Pi(Y^*|N) - \Pi(Y^*|1)] \leq 0 \right) \)

Since there is \(U^*_M(N) \) such that \(\Pi(Y^*|N) - \Pi(Y^*|1) < 0 \) when \(U_M > U^*_M(N) \), there is a unique \(\tilde{U}_M(N) \) such that \(\Pi(Y^*|N) - \Pi(Y^*|1) > 0 \) if \(U_M \in [U^*_M, \tilde{U}_M(N)] \).

2. \(\left(\frac{\partial}{\partial U_M} [\Pi(Y^*|N) - \Pi(Y^*|1)] > 0 \right) \).

The condition that \(\frac{\partial^2}{\partial(U_M)^2} [\Pi(Y^*|N) - \Pi(Y^*|1)] < 0 \) if \(\frac{\partial}{\partial U_M} [\Pi(Y^*|N) - \Pi(Y^*|1)] = 0 \) implies that there is a unique \(\tilde{U}_M \) such that \(\frac{\partial}{\partial U_M} [\Pi(Y^*|N) - \Pi(Y^*|1)] = 0 \). Hence, there is a unique \(\tilde{U}_M(N) \) such that \(\Pi(Y^*|N) - \Pi(Y^*|1) > 0 \) if \(U_M \in [U^*_M, \tilde{U}_M(N)] \).

Lastly, I show that there is \(N^* \) such that \(W^G_M(1) < W^G_M(N) \) if \(N \geq N^* \) for a given \((U_M, e) \). This implies that \(\Pi(Y^*|N) < \Pi(Y^*|1) > 0 \). In the equation (11), \(R(N, e) \) is equal to

\[
R(N, e) = \frac{1}{2} \log \left(\frac{s(e)}{s(e) + (1-s(e)) \exp \left[-\frac{g'(a)}{\beta} \right]} \right) - \frac{P(e-M|N)}{1 + P(e-M|N)} \log \left(\frac{1 - (1-s(e))^N}{s(e) + (1-s(e)) \exp \left[-\frac{g'(e)}{\beta} \right]} \right).
\]

Since \(\left(\frac{1}{2} - \frac{1}{1 + P(e-M|N)} \right) U_M > 0 \), it is enough to show that \(R(N, e) > 0 \) if \(N \geq N^* \). The first term of \(R(N, e) \) does not depend on \(N \) and has a strictly positive number. Denote this number by \(C \). On the other hand, the second term is always less than

\[
\frac{P(e-M|N)}{1 + P(e-M|N)} \log \left(\frac{1}{s(e) + (1-s(e)) \exp \left[-\frac{g'(e)}{\beta} \right]} \right), \tag{12}
\]

which is strictly decreasing function in \(N \) and converges to zero. Hence, there is \(N^* \) such that (12) is less than \(C \) if \(N \geq N^* \). This implies that \(R(N, e) > 0 \).
A.19 Proof of Proposition 10

Note that
\[
\frac{\partial^2 F}{\partial V \partial N} = -(1 - s(e_M))^N \log(1 - s(e_M)) \frac{1}{u'(W_g)} > 0,
\]
\[
\frac{\partial^2 F}{\partial (-e_C) \partial N} = 0, \text{ and}
\]
\[
\frac{\partial^2 F}{\partial V \partial (-e_C)} = s(e_C) \frac{\partial^2 W^e_C}{\partial V \partial e_C} + (1 - s(e_C)) \frac{\partial^2 W^B_C}{\partial V \partial e_C} + \beta \left(\frac{\partial W^G_C}{\partial V} - \frac{\partial W^B_C}{\partial V} \right)
\]
\[
= -s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{u''(W^G_C)}{u'(W^G_C)^3} - \frac{u''(W^B_C)}{u'(W^B_C)^3} \right) + \beta \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right).
\]

This result shows that \(\frac{\partial y^*}{\partial N} \geq 0 \) and \(\frac{\partial e^*_C}{\partial N} \leq 0 \) according to Milgrom and Shannon (1994). First, consider \(e^*_C \) as a function of \(V \). Then, under the condition that \(u''(x)/u'(x)^3 \) is a decreasing function in \(x \),
\[
\frac{\partial^2 F}{\partial V \partial N} = \left[-\beta \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right) + s(e^*_C) \frac{u''(W^G_C)}{u'(W^G_C)^2} \frac{\partial W^G_C}{\partial e_C} + (1 - s(e^*_C)) \frac{u''(W^B_C)}{u'(W^B_C)^2} \frac{\partial W^B_C}{\partial e_C} \right] \frac{\partial e^*_C}{\partial N}
\]
\[
- (1 - s(e_M))^N \log(1 - s(e_M)) \frac{1}{u'(W_g)} > 0
\]
since \(\frac{\partial e^*_C}{\partial N} \leq 0 \). This implies that \(\frac{\partial y^*}{\partial N} > 0 \). Now, consider the first order condition with respect to \(e_C \):
\[
\beta(G - B) = \beta(W^G_C - W^B_C) + s(e^*_C) \frac{\partial W^G_C}{\partial e_C} + (1 - s(e_C)) \frac{\partial W^B_C}{\partial e_C}
\]
\[
= \beta(W^G_C - W^B_C) + s(e^*_C)(1 - s(e^*_C)) \frac{g''(e_C)}{\beta} \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right).
\]
The right hand side of the equation is a strictly increasing function in \(e^*_C \) if \(g''(e_C) \geq 0 \) and a strictly decreasing function in \(V \). Hence, \(\frac{\partial y^*}{\partial N} > 0 \) indicates that \(\frac{\partial e^*_C}{\partial N} < 0 \).

A.20 Proof of Corollary 7

Note that
\[
\frac{\partial}{\partial N} [(W^e_C)^* - (W^B_C)^*] = \frac{\partial V}{\partial N} \left[\frac{1}{u'(W^G_C)^*} - \frac{1}{u'(W^B_C)^*} + \left(\frac{1 - s(e^*_C)}{u''((W^G_C)^*)} + \frac{s(e^*_C)}{u''((W^B_C)^*)} \right) \frac{g''(e^*_C)}{\beta} \frac{\partial e^*_C}{\partial V} \right]
\]
\[
= \frac{\partial V}{\partial N} \left[(W^e_C)^* - (W^B_C)^* + (1 - s(e^*_C))(W^G_C)^* + s(e^*_C)(W^B_C)^* \right] \frac{g''(e^*_C)}{\beta} \frac{\partial e^*_C}{\partial V}.
\]
when agents have the log utility function. Also, it can be shown that

\[
\frac{\partial e^*_C}{\partial \nu} = -\left(\beta + s(e^*_C)(1 - s(e^*_C))\frac{g''(e^*_C)}{\beta}\right) \frac{(W^G_C)^* - (W^B_C)^*}{D_1 + D_2},
\]

where

\[
D_1 = \left(\beta(1 - 2s(e^*_C))\frac{g''(e^*_C)}{\beta} + s(e^*_C)(1 - s(e^*_C))\frac{g'''(e^*_C)}{\beta}\right)((W^G_C)^* - (W^B_C)^*)
\]

\[
D_2 = \left(\beta + s(e^*_C)(1 - s(e^*_C))\frac{g''(e^*_C)}{\beta}\right)\frac{g''(e^*_C)}{\beta}((1 - s(e^*_C))(W^G_C)^* + s(e^*_C)(W^B_C)^*)
\]

Hence,

\[
\frac{\partial}{\partial N} [(W^G_C)^* - (W^B_C)^*] = \frac{(W^G_C)^* - (W^B_C)^*}{D_1 + D_2} D_1 > 0.
\]

A.21 Proof of Proposition 11

Note that when \(\nu = 0\), \(e^*_C = e^*_M\) by two first order conditions. Also, this implies that \(W^G_C = W^G_M\).

Therefore,

\[
\frac{\partial F(\nu)}{\partial \nu} \bigg|_{\nu=0} = -\frac{s(e^*_C)}{u'(W^G_C)} - \frac{1 - s(e^*_C)}{u'(W^B_C)} + \frac{1 - (1 - s(e^*_M))^N}{u'(W^G_M)} - \frac{1}{u'(W^B_M)}.
\]

Since \(W^G_C > W^B_C\) and \((1 - s(e^*_C))^N \rightarrow 0\) as \(N \rightarrow \infty\), there is \(\tilde{N}\) such that \(\frac{\partial F(\nu)}{\partial \nu} \bigg|_{\nu=0} > 0\) if \(N > \tilde{N}\). This implies that \(\nu^* > U_M = 0\) when \(N > \tilde{N}\). As a next step, I show that the promotion incentive is bounded regardless of the firm size.

Claim 1. The optimal promotion incentive \(\nu^*\) is bounded for any \(N\).

Proof. First, fix \((e_M) \in (0, 1)\) for a given \(N\). Denote the optimal \(\nu\) by \(\nu^*(e_C)\) for a given \(e_C\). Recall that \(\frac{\partial \nu^*(e_C)}{\partial e_C} < 0\). Therefore,

\[
\nu^*(e_C) \leq \nu^*(0).
\]

When \(e_C = 0\), the first order condition with respect to \(\nu\) is

\[
-\frac{1}{u'(W^G_C)} + \frac{1 - (1 - s(e))^N}{u'(W^G_M)} = 0.
\]
where \(u(W_C^F) = \mathcal{V}^*(0) \). It can be easily shown that
\[
\mathcal{V}^*(0) = u(W_C^F) < u(W_M^G) = U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} - P(e_{-M})\mathcal{V}^*(0)
\]
implies that
\[
\mathcal{V}^*(0) < \frac{1}{1 + P(e_{-M})} \left[U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} \right].
\]
Notice that this bound does not depend on \(e_C \). Now, suppose that
\[
\mathcal{V} = \frac{1}{1 + P(e_{-M})} \left[U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} \right].
\]
Then, the manager’s wage for good performance satisfies
\[
u(W_G^M) = \frac{1}{1 + P(e_{-M})} \left[U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} \right] \geq \frac{1}{2} \left[U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta} \right].
\]
The bound for \(u(W_G^M) \) does not depend on \(N \). This result means that the firm has to pay the wage satisfying the lower bound if it requires an effort level \(e_M \) from its managers. Since the wage approaches infinity as \(e_M \) converges to one, there is \(\bar{e}_M < 1 \) such that \(e_C^* \leq \bar{e}_M \) regardless of \(N \) and \(e_C \). Hence, \(\mathcal{V}^* \) is bounded by \(\frac{1}{1 + P(e_{-M})} \left[U_M + g(\bar{e}_M) + (1 - s(\bar{e}_M)) \frac{g'(\bar{e}_M)}{\beta} \right] \), which is less than \(\left[U_M + g(\bar{e}_M) + (1 - s(\bar{e}_M)) \frac{g'(\bar{e}_M)}{\beta} \right] \). I denote this bound by \(\bar{\mathcal{V}} \). This upper bound does not depend on \(N \).

Based on this result, I show the following result.

Claim 2. There is \(\bar{N} \) such that \((W_M^G)^* > (W_M^B)^* \) if \(N > \bar{N} \).

Proof. Recall that
\[
(W_M^G)^* \leq (W_M^B)^*
\]
if and only if
\[
\frac{g'(e_M^*)}{\beta} \leq P(e_{-M})\mathcal{V}^*.
\]
Since \(e_M^* \geq e_M \), where \(e_M \) is the firm’s optimal effort choice when \(\mathcal{V} = 0 \), and \(P(e_{-M}) \to 0 \) as \(N \to \infty \), there exists \(\bar{N} \) such that
\[
\frac{g'(e_M^*)}{\beta} \geq \frac{g'(e_M)}{\beta} > P(e_{-M})\bar{\mathcal{V}} \geq P(e_{-M})\bar{\mathcal{V}}
\]
if \(N > \bar{N} \). Therefore, \((W_M^G)^* > (W_M^B)^* \) if \(N > \bar{N} \).

\(\square\)
Now, I show that $e^*_M > e^*_C$ if $N > N^* \equiv \max\{\bar{N}, N\}$.

Note that two optimal effort levels e^*_C and e^*_M are decided by two first order conditions for a given \mathcal{V}:

$$
\beta(\mathcal{G} - \mathcal{B}) = \beta(W^G_C - W^B_C) + s(e^*_C) \frac{\partial W^G_C}{\partial e_C} + (1 - s(e^*_C)) \frac{\partial W^B_C}{\partial e_C}
$$

$$
= \beta(W^G_C - W^B_C) + s(e^*_C)(1 - s(e^*_C)) \frac{g''(e^*_C)}{\beta} \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right), \quad \text{and} \quad (13)
$$

$$
\beta(\mathcal{G} - \mathcal{B}) = \beta(W^G_M - W^B_M) + s(e^*_M) \frac{\partial W^G_M}{\partial e_M} + (1 - s(e^*_M)) \frac{\partial W^B_M}{\partial e_M}
$$

$$
= \beta(W^G_M - W^B_M) + s(e^*_M)(1 - s(e^*_M)) \frac{g''(e^*_M)}{\beta} \left(\frac{1}{u'(W^G_M)} - \frac{1}{u'(W^B_M)} \right)
$$

$$
- s(e^*_M) \frac{\partial P(e^*_M)}{\partial e_M} \frac{1}{u'(W^G_M)} \mathcal{V}, \quad \text{(14)}
$$

If \mathcal{V} is equal to $U_M = 0$, two conditions yield $e^*_C = e^*_M$. The right hand side of (13) is a strictly increasing function in \mathcal{V} while that of (14) is a strictly decreasing function in \mathcal{V} since

$$
\frac{\partial J_C(\mathcal{V}, e_C)}{\partial \mathcal{V}} = \beta \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right) - s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{u''(W^G_C)}{u'(W^G_C)^3} - \frac{u''(W^B_C)}{u'(W^B_C)^3} \right) > 0,
$$

$$
\frac{\partial J_M(\mathcal{V}, e_M)}{\partial \mathcal{V}} = - \beta P(e^-_M) \frac{1}{u'(W^G_M)} + s(e_M)(1 - s(e_M)) \frac{g''(e_M)}{\beta} \frac{u''(W^G_M)}{u'(W^G_M)^3} P(e^-_M) - s(e_M) \frac{\partial P(e^-_M)}{\partial e_M} \frac{1}{u'(W^G_M)} \mathcal{V}
$$

$$
= s(e_M)(1 - s(e_M)) \frac{g''(e_M)}{\beta} P(e^-_M) \frac{u''(W^G_M)}{u'(W^G_M)^3} - (1 - s(e_M))^{N-1} \frac{1}{u'(W^G_M)} \mathcal{V} < 0,
$$

where

$$
J_C(\mathcal{V}, e_C) = \beta(W^G_C - W^B_C) + s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{1}{u'(W^G_C)} - \frac{1}{u'(W^B_C)} \right), \quad \text{and}
$$

$$
J_M(\mathcal{V}, e_M) = \beta(W^G_M - W^B_M) + s(e_M)(1 - s(e_M)) \frac{g''(e_M)}{\beta} \left(\frac{1}{u'(W^G_M)} - \frac{1}{u'(W^B_M)} \right)
$$

$$
- s(e_M) \frac{\partial P(e^-_M)}{\partial e_M} \frac{1}{u'(W^G_M)} \mathcal{V}, \quad \text{and}
$$

$$
\frac{\partial P(e^-_M)}{\partial e_M} = \frac{\beta}{s(e_M)} [(1 - s(e_M))^{N-1} - P(e^-_M)] < 0.
$$
In addition, the following results

\[\frac{\partial J_C(V, e_C)}{\partial e_C} = 2g''(e_C) \left(\frac{1 - s(e_C)}{u'(W_G^C)} + \frac{s(e_C)}{w'(W_B^C)} \right) - g''(e_C) \left(\frac{s(e_C)}{u'(W_G^C)} + \frac{1 - s(e_C)}{u'(W_B^C)} \right) \]

\[- s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta^2} \left[(1 - s(e_C)) \frac{u''(W_G^C)}{u'(W_B^C)} + s(e_C) \frac{u''(W_B^C)}{u'(W_B^C)^3} \right] \]

\[+ s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{1}{u'(W_G^C)} - \frac{1}{u'(W_B^C)} \right) > 0, \]

\[\frac{\partial J_M(V, e_M)}{\partial e_M} = \frac{\partial J_C(V, e_C)}{\partial e_C} \bigg|_{e_C = e_M} - 2\beta \frac{\partial P(e^{-}_M)}{e_M} \frac{1}{u'(W_M^G)} \] \[+ \left[2s(e_M)(1 - s(e_M)) \frac{g''(e_M)}{\beta} \frac{\partial P(e^{-}_M)}{e_M} \right] - s(e_M) \left(\frac{\partial P(e^{-}_M)}{e_M} \right)^2 \frac{u''(W_M^G)}{u'(W_M^G)^3} \]

\[> 0, \]

where

\[\frac{\partial^2 P(e^{-}_M)}{\partial(e_M)^2} = \frac{\beta^2}{Ns(e_M)^3} \left[-N(N - 1)s(e_M)^2(1 - s(e_M))^{N-2} \right. \]

\[+ 2 - 2(1 - s(e_M))^{N-1} - 2(N - 1)s(e_M)(1 - s(e_M))^{N-1} \]

\[- \frac{\beta^2}{s(e_M)} (N - 1)(1 - s(e_M))^{N-2} - 2\frac{\beta}{s(e_M)} \frac{\partial P(e^{-}_M)}{e_M} \geq 0, \]

validate the first order approach.

Hence, \(e^*_C < e^*_M \) since \(V^* > U^*_M = 0 \) when \(N > \tilde{N} \).

A.22 Proof of Proposition 12

For a given \((V, N)\), \(U^*_{M2} \) is determined by the equation (9). I denote this by \(U^*_{M2}(V, N) \) to explicitly express the dependency. The first order condition with respect to \(V \) and (9) imply that \(V^* \) and \(U^*_{M2}(V^*, N) \) satisfy

\[\frac{s(e_C)}{u'((W_G^C)^*)} + \frac{1 - s(e_C)}{u'((W_B^C)^*)} + (1 - s(e_M^1))^N = \delta \left(\frac{s(e_M^2)}{u'((W_M^G)^*)} + \frac{1 - s(e_M^2)}{u'((W_M^B)^*)} \right) \],

...
where the first order condition with respect to \(V \) is
\[
\frac{\partial F(V)}{\partial V} = -\frac{s(e_C)}{u'(W^G_C)} - \frac{1 - s(e_C)}{u'(W^B_C)} + Ns(e_{M1}) \left[\frac{1}{u'(W^G_M)} \left(P(e_{-M}) + (1 - P(e_{-M})) \frac{\partial U_{M2}(V)}{\partial V} \right) \right] - \delta \left(Ns(e_{M1}) - 1 + (1 - s(e_{M1}))^N \right) \left(\frac{s(e_{M2})}{u'(W^{GG}_M)} + \frac{1 - s(e_{M2})}{u'(W^{GB}_M)} \right) \frac{\partial U_{M2}(V)}{\partial V} \]

by (9).

Note that \(\frac{(1-s(e_{M1}))^N}{u'(W^M)} \) approaches zero as \(N \) goes to infinity. Also, when \(e_C = e_{M2}, V = U_{M2}, \) and \(\delta = 1, \) the condition is equal to
\[
\frac{s(e_C)}{u'(W^G_C)} + \frac{1 - s(e_C)}{u'(W^B_C)} = \frac{s(e_{M2})}{u'(W^{GG}_M)} + \frac{1 - s(e_{M2})}{u'(W^{GB}_M)}.
\]

Since the left hand side of this equation is a strictly increasing function in \(e_C \) and \(V, \) there is \(\hat{N}, \)
\(\hat{e}_C < e_{M2} \) such that
\[
\frac{s(\hat{e}_C)}{u'(W^G_C)} + \frac{1 - s(\hat{e}_C)}{u'(W^B_C)} + (1 - s(e_{M1}))^{\hat{N}} \leq \delta \left[\frac{s(e_{M2})}{u'(W^{GG}_M)} + \frac{1 - s(e_{M2})}{u'(W^{GB}_M)} \right]
\]
when \(V = U_M \) for a sufficiently large \(\delta. \) This implies that for given (\(\delta, e_C, e_{M1}, e_{M2}, N, \)) where \(e_C \leq \hat{e}_C < e_{M2} \) and \(N \geq \hat{N}, \) \(V^* > U_{M2}(V^*, N). \)

Now, I show that \(V^* \) is an increasing function in \(N > \hat{N} \) when \(V^* \geq U_{M2}(V^*, \hat{N}). \)

First, note that for a given \(V \) and \(N, \)
\[
\frac{\partial U_{M2}(V, N)}{\partial N} = -\frac{u''(W^G_M)}{u'(W^G_M)^3} \frac{\partial P(e_{-M1})}{\partial N} (V - U_{M2}^*(V, N)) - \frac{u''(W^{GG}_M)}{u'(W^{GG}_M)^3} (1 - P(e_{-M1}))^2 - \frac{u''(W^{GB}_M)}{u'(W^{GB}_M)^3} (1 - s(e_{M2})) \frac{\partial U_{M2}(V, N)}{\partial N}.
\]

Therefore,
\[
\frac{\partial^2 F(V)}{\partial N^2} = -(1 - s(e_{M1}))^N \log(1 - s(e_{M1})) - \frac{1}{u'(W^G_M)} \left[1 - s(e_{M1})^N \right] \frac{u''(W^G_M)}{u'(W^G_M)^3}.
\]

\[
\left[\frac{\partial P(e_{-M1})}{\partial N} (V^* - U_{M2}^*) + (1 - P(e_{-M1})) \frac{\partial U_{M2}(V, N)}{\partial N} \right] \]

\[
= -(1 - s(e_{M1}))^N \log(1 - s(e_{M1})) - \frac{1}{u'(W^G_M)} \left[1 - s(e_{M1})^N \right] \frac{u''(W^{GG}_M)}{u'(W^{GG}_M)^3} + (1 - s(e_{M2})) \frac{u''(W^{GB}_M)}{u'(W^{GB}_M)^3} \geq 0.
\]
Moreover,
\[
\frac{\partial^2 F(V)}{\partial V^2} = s(e_C) \frac{u''(W_{E}^G)}{u'(W_{E}^G)^3} + (1 - s(e_C)) \frac{u''(W_E)}{u'(W_E)^3} \\
+ (1 - (1 - s(e_{M1}))^N) \frac{u''(W_{E}^G)}{u'(W_{E}^G)^3} \left[P(e_{-M1}) + (1 - P(e_{-M1})) \frac{\partial U_{M2}^*(V, N)}{\partial V} \right]
\]
\[
= s(e_C) \frac{u''(W_{E}^G)}{u'(W_{E}^G)^3} + (1 - s(e_C)) \frac{u''(W_E)}{u'(W_E)^3} \\
+ (1 - (1 - s(e_{M1}))^N) \frac{u''(W_{E}^G)}{u'(W_{E}^G)^3} \\
\cdot \left[P(e_{-M1}) \frac{s(e_{M2})}{(1 - P(e_{-M1}))} \frac{u''(W_{M}^G)}{u'(W_{M}^G)^3} + (1 - s(e_{M2})) \frac{u''(W_{M}^G)}{u'(W_{M}^G)^3} \right]
\]
< 0,

where I exploit
\[
\frac{\partial U_{M2}^*(V, N)}{\partial V} = -\frac{P(e_{-M1}) \frac{u''(W_{M}^G)}{u'(W_{M}^G)^3}}{(1 - P(e_{-M1})) \frac{u''(W_{M}^G)}{u'(W_{M}^G)^3} + \delta \left[s(e_{M2}) \frac{u''(W_{M}^G)}{u'(W_{M}^G)^3} + (1 - s(e_{M2})) \frac{u''(W_{M}^G)}{u'(W_{M}^G)^3} \right]}
\]
using the implicit function theorem.

A.23 Derivation of the Firm’s Problem in Section 7.2

The firm’s problem can be written as
\[
\max_{C, M_1, M_2} E_0 \left[\sum_{t=1}^{\infty} \delta^{t-1} P_t(C, M_1, M_2 | H_{t-1}) \right]
\]
subject to (IRc), (ICc), (IRM1), (ICM1), (IRM2), (ICM2),

where
\[
P_t(C, M_1, M_2 | H_{t-1}) = \begin{cases}
 P_C(C) + NP_M(M_1) & \text{if } H_{t-1} \in S_1 \\
 NP_M(M_2) & \text{if } H_{t-1} \in S_2
\end{cases}
\]
with
\[P_C(C) = s(e_{C1})(G_C - W_C^G) + (1 - s(e_{C1}))(B_C - W_C^B) \]
\[+ \delta s(e_{C1})[s(e_{C2})(G_C - W_C^{GG}) + (1 - s(e_{C2}))(B_C - W_C^{GB})] \]
\[P_M(M_i) = s(e_{Mi})(G_M - W_M^G) + (1 - s(e_{Mi}))(B_M - W_M^B) \]
\[C = (W_C^G, W_C^B, W_C^{GG}, W_C^{GB}) \]
\[M_i = (W_{Mi}^G, W_{Mi}^B). \]

Also, \(H_t \) denotes the CEO’s seniority and outcome at time \(t \). Hence,
\[H_t \in \{(C_1, G_C), (C_1, B_C), (C_2, G_C), (C_2, B_C)\}, \]
where \(C_i \) is equal to \(C_1 \) \((C_2)\) if the CEO is her first period \((\text{second period})\) in the position. For brevity, I use two terms, \(S_1 \) and \(S_2 \), in order to represent
\[S_1 = \{(C_1, B_C), (C_2, G_C), (C_2, B_C)\} \]
\[S_2 = \{(C_1, G_C)\}, \]
respectively.

Then,
\[E_0 \left[\sum_{t=1}^{\infty} \delta^{t-1} P_t(C, M_1, M_2|H_{t-1}) \right] = P_C(C) + NP_M(M_1) \]
\[+ \delta s(e_{C1}) \left\{ NP_M(M_2) + \delta E_0 \left[\sum_{t=1}^{\infty} \delta^{t-1} P_t(C, M_1, M_2|H_{t-1}) \right] \right\} \]
\[+ \delta(1 - s(e_{C1}))E_0 \left[\sum_{t=1}^{\infty} \delta^{t-1} P_t(C, M_1, M_2|H_{t-1}) \right], \]
where I exploit
\[E_0 \left[\sum_{t=1}^{\infty} \delta^{t-1} P_t(C, M_1, M_2|H_{t-1}) \right] = E_s \left[\sum_{t=s+1}^{\infty} \delta^{t-(s+1)} P_t(C, M_1, M_2|H_{t-1}) \right] \]
if \(H_s \in S_1 \). Therefore,
\[E_0 \left[\sum_{t=1}^{\infty} \delta^{t-1} P_t(C, M_1, M_2|H_{t-1}) \right] = \frac{1}{1 - \delta(1 + \delta s(e_{C1}))} [P_C(C) + NP_M(M_1) + \delta s(e_{C1})NP_M(M_2)]. \]

Since I treat \(e_{C1} \) as an exogenous variable, the firm’s problem is to choose \((C, M_1, M_2)\) maximizing
\[P_C(C) + NP_M(M_1) + \delta s(e_{C1})NP_M(M_2). \]
A.24 Proof of Proposition 13

The firm’s problem for guaranteed situation is to choose \(\tilde{\nu} \in [0, \infty) \) maximizing \(\tilde{F}(\tilde{\nu}) \) defined by

\[
\tilde{F}(\tilde{\nu}) \equiv \max_{\tilde{A}} s(e_C)(G_C - \tilde{W}^G_C) + (1 - s(e_C))(B_C - \tilde{W}^B_C)
\]

\[
+ \delta s(e_C)[s(e_C)(G_C - \tilde{W}^{GG}_C) + (1 - s(e_C))(B_C - \tilde{W}^{GB}_C)]
\]

\[
+ \delta(1 - s(e_C))[s(e_C)(G_C - \tilde{W}^{BG}_C) + (1 - s(e_C))(B_C - \tilde{W}^{BB}_C)]
\]

\[
+ N \left[s(e_M)(G_M - \tilde{W}^G_{M1}) + (1 - s(e_M))(B_M - \tilde{W}^B_{M1}) \right]
\]

\[
+ \delta N \left[s(e_M)(G_M - \tilde{W}^G_{M2}) + (1 - s(e_M))(B_M - \tilde{W}^B_{M2}) \right]
\]

subject to

\[
u(\tilde{W}^C) = \mathcal{V} + g(e_C) + (1 - s(e_C))\frac{g'(e_C)}{\beta} - V^G_2,\\
\]

\[
u(\tilde{W}^B) = \mathcal{V} + g(e_C) - s(e_C)\frac{g'(e_C)}{\beta} - V^B_2,\\
\]

\[
u(\tilde{W}^{GG}) = V^G_2 + g(e_C) + (1 - s(e_C))\frac{g'(e_C)}{\beta},\\
\]

\[
u(\tilde{W}^{GB}) = V^G_2 + g(e_C) - s(e_C)\frac{g'(e_C)}{\beta},\\
\]

\[
u(\tilde{W}^{BG}) = V^B_2 + g(e_C) + (1 - s(e_C))\frac{g'(e_C)}{\beta},\\
\]

\[
u(\tilde{W}^{BB}) = V^B_2 + g(e_C) - s(e_C)\frac{g'(e_C)}{\beta},\\
\]

\[
u(\tilde{W}^M_{M1}) = \mathcal{U}_M + g(e_M) + (1 - s(e_M))\frac{g'(e_M)}{\beta},\\
\]

\[
u(\tilde{W}^B_{M1}) = \mathcal{U}_M + g(e_M) - s(e_M)\frac{g'(e_M)}{\beta},\\
\]

\[
u(\tilde{W}^M_{M2}) = \mathcal{U}_M + g(e_M) + (1 - s((e_M))\frac{g'((e_M))}{\beta} - P(e_{-M})\mathcal{V}, \text{ and}\\
\]

\[
u(\tilde{W}^B_{M2}) = \mathcal{U}_M + g(e_M) - s(e_M)\frac{g'(e_M)}{\beta}.
\]

\[60^I \text{I use the hat notation to indicate guaranteed job security case.} \]
the optimal promotion incentive for a given CEO's effort level e

Also, this means that $\hat{\mathcal{A}} = \{\hat{W}_G^G, \hat{W}_M^G, \hat{W}_C^G, \hat{W}_C^{BG}, \hat{W}_C^{BB}, (\hat{W}_G^M, \hat{W}_M^B, (\hat{W}_G^M, \hat{W}_M^B)\}$.

$V_2^G = s(e)u(\hat{W}_C^{BG}) + (1 - s(e))u(\hat{W}_C^{BB}) - g(e)$, and

$V_2^B = s(e)u(\hat{W}_C^{BG}) + (1 - s(e))u(\hat{W}_C^{BB}) - g(e)$.

Then, the first order condition with respect to $\hat{\mathcal{V}}$ for unguaranteed situation is

$$-\frac{s(e)}{u'(\hat{W}_C^{G})} - \frac{1 - s(e)}{u'(\hat{W}_C^{B})} + \delta(1 - s(e))\frac{1 - (1 - s(e))}{u'(\hat{W}_C^{G})} + \frac{s(e)}{u'(\hat{W}_C^{G})} \frac{1 - (1 - s(e))}{u'(\hat{W}_C^{G})} = 0.$$

On the other hand, the condition for guaranteed case is

$$-\frac{s(e)}{u'(\hat{W}_C^{G})} - \frac{1 - s(e)}{u'(\hat{W}_C^{B})} + \delta \frac{1 - (1 - s(e))}{u'(\hat{W}_C^{G})} = 0.$$

First, I show that there is $\delta^* \in (0, 1)$ such that $(V_2^B)^* < \hat{\mathcal{V}}$ for a given $\hat{\mathcal{V}} \in [0, \infty)$. Note that $\hat{\mathcal{V}}$ and $(V_2^B)^*$ satisfy

$$\frac{1}{u'(\hat{W}_C^{B})} - \delta \left[\frac{s(e)}{u'(\hat{W}_C^{G})} + \frac{1 - s(e)}{u'(\hat{W}_C^{G})} \right] = 0.$$

Suppose that $\delta = 1$. Then, the equation cannot hold if $\hat{\mathcal{V}} \leq (V_2^B)^*$ since this inequality implies that $(\hat{W}_C^{BG})^* > (\hat{W}_C^{BB})^* \geq (\hat{W}_C^G)^*$. Here, the first inequality holds since $e_C > 0$ and the last inequality holds as a strict inequality unless $\mathcal{V} = (V_2^B)^* = 0$. Since this is true for all $\hat{\mathcal{V}} \in [0, \infty)$, there is $\delta^* \in (0, 1)$ such that $(V_2^B)^* < \hat{\mathcal{V}}$.

There are two possible cases when $e_C = 0$: 1) $\hat{\mathcal{V}}^*(0) > 0$, and 2) $\hat{\mathcal{V}}^*(0) = 0$, where $\hat{\mathcal{V}}^*(e_C)$ is the optimal promotion incentive for a given CEO’s effort level e_C. First, I show that $\frac{\partial (V_2^B)^*}{\partial \hat{\mathcal{V}}} > 0$ and $\frac{\partial \hat{\mathcal{V}}^*(e_C)}{\partial e_C} < 0$ when $\hat{\mathcal{V}}^*(e_C) > 0$ for $e_C \in (0, 1)$. Notice that, by the implicit function theorem,

$$\frac{\partial (V_2^B)^*}{\partial \hat{\mathcal{V}}} = \frac{u''(\hat{W}_C^B)}{u'(\hat{W}_C^B)^3} + \frac{\delta s(e_C)u''(\hat{W}_C^{BG})}{u'(\hat{W}_C^{G})^3} + \frac{\delta(1 - s(e_C))u''(\hat{W}_C^{BB})}{u'(\hat{W}_C^{G})^3} > 0.$$

Also, this means that $\frac{\partial (V_2^B)^*}{\partial \hat{\mathcal{V}}}$ is less than 1. Likewise, $0 < \frac{\partial (V_2^G)^*}{\partial \hat{\mathcal{V}}} < 1$. Hence,

$$\frac{\partial \hat{\mathcal{V}}^*(e_C)}{\partial e_C} = -\frac{\partial^2 \hat{F}(\hat{\mathcal{V}}^*)}{\partial e_C \partial \hat{\mathcal{V}}} < 0,$$

26
where

\[
\frac{\partial^2 F(\hat{\varphi})}{\partial e_C \partial \hat{\varphi}} = -\beta \left[\frac{1}{u'(\hat{W}_C^G)} - \frac{1}{u'(\hat{W}_B^G)} \right] + s(e_C) \frac{u''((\hat{W}_C^G)^*)}{u'(\hat{W}_C^G)^3} \left[(1 - s(e_C)) \frac{g''(e_C)}{\beta} - \frac{\partial(V_2^G)^*}{\partial e_C} \right] \\
+ (1 - s(e_C)) \frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} \left[-s(e_C) \frac{g''(e_C)}{\beta} - \frac{\partial(V_B^G)^*}{\partial e_C} \right] \\
= \beta \left[\frac{1}{u'(\hat{W}_C^G)} - \frac{1}{u'(\hat{W}_B^G)} \right] \\
- s(e_C) \frac{u''((\hat{W}_C^G)^*)}{u'(\hat{W}_C^G)^3} \cdot \\
\left[\frac{u''((\hat{W}_C^G)^*)}{u'(\hat{W}_C^G)^3} + \delta \left[s(e_C) \frac{u''((\hat{W}_C^G)^*)}{u'(\hat{W}_C^G)^3} + (1 - s(e_C)) \frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} \right] \right] \\
- (1 - s(e_C)) \frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} \cdot \\
\left[\frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} + \delta \left[s(e_C) \frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} + (1 - s(e_C)) \frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} \right] \right] \\
+ \delta s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta},
\]

and

\[
\frac{\partial^2 F(\hat{\varphi})}{\partial \hat{\varphi}^2} = s(e_C) \frac{u''((\hat{W}_C^G)^*)}{u'(\hat{W}_C^G)^3} \left[1 - \frac{\partial(V_2^G)^*}{\partial \hat{\varphi}} \right] + (1 - s(e_C)) \frac{u''((\hat{W}_B^G)^*)}{u'(\hat{W}_B^G)^3} \left[1 - \frac{\partial(V_B^G)^*}{\partial \hat{\varphi}} \right] \\
+ \delta(1 - (1 - s(e_M))^N) P(e_M) \frac{u''((\hat{W}_M^G)^*)}{u'(\hat{W}_M^G)^3} < 0,
\]
where I use the following two results

$$
\frac{\partial (V_2^G)^*}{\partial e_C} = \frac{u''(\hat{W}_C^G)}{u'(\hat{W}_C^G)^3} + \delta \left[s(e_C) \frac{u''(\hat{W}_C^{GG})}{u'(\hat{W}_C^{GG})^3} + (1 - s(e_C)) \frac{u''(\hat{W}_C^{GB})}{u'(\hat{W}_C^{GB})^3} \right] \left\{ (1 - s(e_C)) \frac{g''(e_C)}{\beta} \frac{u''(\hat{W}_C^G)}{u'(\hat{W}_C^G)^3} \right. \\
+ \delta \left[\beta \left(\frac{1}{u'(\hat{W}_C^{GG})} - \frac{1}{u'(\hat{W}_C^{GB})} \right) - s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{u''(\hat{W}_C^{GG})}{u'(\hat{W}_C^{GG})^3} - \frac{u''(\hat{W}_C^{GB})}{u'(\hat{W}_C^{GB})^3} \right) \right\}, \text{ and}
$$

$$
\frac{\partial (V_2^B)^*}{\partial e_C} = \frac{u''(\hat{W}_C^B)}{u'(\hat{W}_C^B)^3} + \delta \left[s(e_C) \frac{u''(\hat{W}_C^{BG})}{u'(\hat{W}_C^{BG})^3} + (1 - s(e_C)) \frac{u''(\hat{W}_C^{BB})}{u'(\hat{W}_C^{BB})^3} \right] \left\{ -s(e_C) \frac{g''(e_C)}{\beta} \frac{u''(\hat{W}_C^B)}{u'(\hat{W}_C^B)^3} \right. \\
+ \delta \left[\beta \left(\frac{1}{u'(\hat{W}_C^{BG})} - \frac{1}{u'(\hat{W}_C^{BB})} \right) - s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left(\frac{u''(\hat{W}_C^{BG})}{u'(\hat{W}_C^{BG})^3} - \frac{u''(\hat{W}_C^{BB})}{u'(\hat{W}_C^{BB})^3} \right) \right\}
$$

based on the implicit function theorem.

For the previous results, I exploit the condition \((\hat{W}_C^G)^* > (\hat{W}_C^B)^*, (\hat{W}_C^{GG})^* > (\hat{W}_C^{BG})^*, \) and \((\hat{W}_C^{GB})^*) > (\hat{W}_C^{BB})^*, \) which all hold since \((V_2^G)^* > (V_2^B)^*. \) These imply that

$$
\frac{1}{u'(\hat{W}_C^G)^*} = \delta \left[\frac{s(e_C)}{u'(\hat{W}_C^{GG})^*} + \frac{1 - s(e_C)}{u'(\hat{W}_C^{GB})^*} \right] > \delta \left[\frac{s(e_C)}{u'(\hat{W}_C^{GB})^*} + \frac{1 - s(e_C)}{u'(\hat{W}_C^{BB})^*} \right] = \frac{1}{u'(\hat{W}_C^B)^*}.
$$

Here, I show that why the condition, \((V_2^G)^* > (V_2^B)^*, \) holds. Suppose \((V_2^G)^* \leq (V_2^B)^*. \) Then \((\hat{W}_C^G)^* \leq (\hat{W}_C^B)^* \) according to the same logic above. Note that \(u((\hat{W}_C^G)^*) + (V_2^G)^* \) must be strictly greater than \(u((\hat{W}_C^B)^*) + (V_2^B)^* \) in order to induce managers to exert a positive effort. However, two conditions, \((V_2^G)^* \leq (V_2^B)^* \) and \((\hat{W}_C^G)^* \leq (\hat{W}_C^B)^*, \) yield \(u((\hat{W}_C^G)^*) + (V_2^G)^* \leq u((\hat{W}_C^B)^*) + (V_2^B)^*. \) Therefore, \((V_2^G)^* \) must be strictly greater than \((V_2^B)^*. \)

The next step is to show that there is \(\bar{e}_C \in (0, 1) \) such that \(\hat{V}^*(e_C) = 0 \) if \(e_C \in [\bar{e}_C, 1) \) and \(\hat{V}^*(e_C) > 0 \) if \(e_C \in [0, \bar{e}_C). \) Since \(\frac{\partial \hat{V}^*(e_C)}{\partial e_C} < 0 \) when \(\hat{V}^*(e_C) > 0, \) it is enough to show that there is \(\bar{e}_C \) such that \(\hat{V}^*(e_C) = 0. \) Recall that

$$
\frac{\partial \hat{F}(\hat{V})}{\partial \hat{V}} = -\frac{s(e_C)}{u'(\hat{W}_C^G)} - \frac{1 - s(e_C)}{u'(\hat{W}_C^B)} + \delta \frac{1 - (1 - s(e_M))^{N}}{u'(\hat{W}_M^{M2})}.
$$

When \(\hat{V} = 0, \) the last term is a positive constant regardless of the value of \(e_C. \) On the other hand, from
the condition

\[\frac{1}{u'(W^G_C)} - \delta \left[\frac{s(e_C)}{u'(W^G_G)} + \frac{1 - s(e_C)}{u'(W^G_B)} \right] = 0 \]

, it can be shown that the first term approaches negative infinity as \(e_C \) approaches one because \((V^G_2)^* \geq \frac{\hat{\nu}}{2} = 0 \) and \(u((W^G_C)^*) \) approaches positive infinity as \(e_C \) converges to one.

Hence, there is \(\bar{e}_C \) supporting the optimal choice of zero promotion incentive. This result yields that there is \(\bar{e}_C \in [0, \bar{e}_C) \) such that \((V^B_2)^* \leq 0 \) if \(e_C \in [\bar{e}_C, 1) \) since \((V^B_2)^* < \hat{\nu}^*(e_C)\).

The remaining proof is to show that \(\nu^*(e_C) \geq \hat{\nu}^*(e_C) \) when \(e_C \in [\bar{e}_C, 1) \). Notice that, when \(\nu = \hat{\nu} \in [0, \hat{\nu}^*(e_C)] \) for \(e_C \in [\bar{e}_C, 1) \),

\[\frac{\partial F(\nu)}{\partial \nu} > \frac{\partial \hat{F}(\hat{\nu})}{\partial \hat{\nu}} \]

since \((W^G_C)^* = (\hat{W}^G_C)^*, (W^B_C)^* < (\hat{W}^G_C)^*, \) and \((W^G_M)^* > (\hat{W}^G_M)^*\). Hence, \(\nu^*(e_C) \geq \hat{\nu}^*(e_C) \) when \(e_C \in [\bar{e}_C, 1) \). Moreover, when \(e_C \in [\bar{e}_C, \bar{e}_C], \nu^*(e_C) > \hat{\nu}^*(e_C) \) since \(\frac{\partial \hat{F}(\hat{\nu})}{\partial \hat{\nu}} |_{\hat{\nu} = \hat{\nu}^*(e_C)} = 0 \).

Consider the second case, \(\hat{\nu}^*(0) = 0 \). In this case, \(\hat{\nu}^*(e_C) = 0 \) for every \(e_C \in (0, 1) \). Hence, \(\nu^*(e_C) \geq \hat{\nu}^*(e_C) \) regardless of the value of \(e_C \in (0, 1) \).

A.25 Proof of Proposition 14

For brevity, I denote \(e_{M11} = e_{M21} \) by \(e_M \) and \(e_{M12} = e_{M22} \) by \(e_M \). Suppose that \((U^2_M)^* \leq (U^2_M)^*\). Note that, for a given \(\nu \), the expected utility for the second period, \(U^2_M \), is determined according to the equation

\[\frac{1}{u'(W^G_{Mi})} = \delta \left[\frac{s(e_{Mi})}{u'(W^G_G)} + \frac{1 - s(e_{Mi})}{u'(W^G_B)} \right], \]

\(i = 1, 2 \). This equation and the condition that \((U^2_M)^* \leq (U^2_M)^* \) imply that \((W^G_M)^* \leq (W^G_M)^* \) in order for the inequality to hold, the following must hold

\[(1 - s(e_{C1}))P(e_{-M1})\nu + (1 - (1 - s(e_{C1}))P(e_{-M1}))(U^2_M)^* \geq P(e_{-M1})\nu + (1 - P(e_{-M1}))(U^2_M)^*, \]

which implies that \((1 - P(e_{-M1}))(U^2_M)^* < (U^2_M)^* \) + \(s(e_{C1})P(e_{-M1})(U^2_M)^* \geq s(e_{C1})P(e_{-M1})\nu \).

Then, \((U^2_M)^* \) must be greater than \(\nu \) since \((U^2_M)^* \leq (U^2_M)^* \). This contradicts the given condition. Hence, \((U^2_M)^* > (U^2_M)^* \) if \(\nu^* > (U^2_M)^* \). Moreover, the difference between \(u(W^G_M) \) and \(u(W^G_M) \)
is
\[u(W_{M1}^G) - u(W_{M2}^G) = s(e_C)P(e_-)V - [(1 - P(e_-))(U_{M1}^2 - U_{M2}^2) + s(e_C)P(e_-)U_{M1}^2],\]
which has a positive value when \(V > (U_{M1}^2) > (U_{M2}^2).\) That is, \((W_{M1}^G)^* > (W_{M2}^G)^*\).

A.26 Proof of Proposition 15

First, I show that there is a constant \(\tilde{N}\) such that \(V^*(N+1) - V^*(N) \leq 0\) if \(N > \tilde{N}\).

For a given \(V\) and \(N\), \(e_C(N)\) is determined by
\[
E \left[f \left(\sum_{i=1}^{N} X_i \right) \right] \beta(G - B_C) = \beta(W_C^G(N) - W_B^B(N))
+ s(e_C(N))(1 - s(e_C(N))) \frac{g''(e_C(N))}{\beta} \left[\frac{1}{u'(W_C^G(N))} - \frac{1}{u'(W_B^B(N))} \right]. \tag{15}
\]

Claim 3. There is \(\mathcal{M}\) such that
\[
E \left[f \left(\sum_{i=1}^{N+1} X_i \right) \right] - E \left[f \left(\sum_{i=1}^{N} X_i \right) \right] > \mathcal{M}
\]
for every \(N\).

Proof. For brevity, denote
\[
E \left[f \left(\sum_{i=1}^{N} X_i \right) \right] = \sum_{i=0}^{N} \binom{N}{i} s(e_M)^i(1 - s(e_M))^{N-i} f(iG_M + (N - i)B_M)
\]
by \(I(N)\). Also, I denote
\[
\min_{i} \left[f(iG_M + (N + 1 - i)B_M) - f(iG + (N - i)B_M) \right]
\]
by \(f\). Note that there is \(\mathcal{M}_f > 0\) such that \(f \geq \mathcal{M}_f\) for every \(N\) since \(f'(x) > 0\) for every \(x \geq 0\).

Then,
\[I(N + 1) - I(N) = \sum_{i=0}^{N} \binom{N}{i} s(e_M)^i(1 - s(e_M))^{N-i}. \]

\[
\left[\frac{N + 1}{N + 1 - i} (1 - s(e_M)) f(iG_M + (N + 1 - i)B_M) - f(iG_M + (N - i)B_M) \right] \\
+ s(e_M)^{N+1} f((N + 1)G_M) \\
\geq \sum_{i=0}^{N} \binom{N}{i} s(e_M)^i(1 - s(e_M))^{N-i}. \\
\left[\frac{N + 1}{N + 1 - i} (1 - s(e_M)) - 1 \right] f(iG_M + (N - i)B_M) \\
+ s(e_M)^{N+1} f((N + 1)G_M) + f.
\]

Denote \([(N + 1)s(e_M)]\) by \(\hat{s}\). Then,

\[
\left[\frac{N + 1}{N + 1 - i} (1 - s(e_M)) - 1 \right] \begin{cases} > 0 & \text{if } i \geq \hat{s} \\ \leq 0 & \text{otherwise.} \end{cases}
\]

There are two possible cases.

1. \((\hat{s} = N + 1)\)

Then,

\[I(N + h) - I(h) \geq \sum_{i=0}^{N} \binom{N}{i} s(e_M)^i(1 - s(e_M))^{N-i}. \]

\[
\left[\frac{N + 1}{N + 1 - i} (1 - s(e_M)) - 1 \right] f(iG_M + (N - i)B_M) \\
+ s(e_M)^{N+1} f(NG_M) \\
+ s(e_M)^{N+1} [f((N + 1)G_M) - f(NG_M)] + f \\
> s(e_M)^{N+1} [f((N + h)G_M) - f(NG_M)] + f,
\]

where the last inequality holds since

\[
\sum_{i=0}^{N} \binom{N}{i} s(e_M)^i(1 - s(e_M))^{N-i} \left[\frac{(N + h)!(N - i)!}{N!(N + h - i)!} (1 - s(e_M))^h - 1 \right] = s(e_M)^{N+1}.
\]

2. \((\hat{s} < N + 1)\)
First, notice that if $\frac{N}{N+1} > s(e_M)$, then $\hat{s} < N+1$. That is, if N is sufficiently large, $\hat{s} < N+1$. In this case,

$$I(N+1) - I(N) \geq \sum_{i=0}^{\hat{s}-1} \binom{N}{i} s(e_M)^i (1 - s(e_M))^{N-i} \cdot \left[\frac{N+1}{N+1-i} (1 - s(e_M)) - 1 \right] f(iG_M + (N-i)B_M)$$

$$+ \sum_{i=\hat{s}}^{N} \binom{N}{i} s(e_M)^i (1 - s(e_M))^{N-i} \cdot \left[\frac{N+1}{N+1-i} (1 - s(e_M)) - 1 \right] f(iG_M + (N-i)B_M)$$

$$+ s(e_M)^{N+1} f(NG_M) + f$$

$$> \sum_{i=\hat{s}}^{N} \binom{N}{i} s(e_M)^i (1 - s(e_M))^{N-i} \cdot \left[\frac{N+1}{N+1-i} (1 - s(e_M)) - 1 \right] \cdot [f(\hat{s}G_M + (N-\hat{s})B_M) - f((\hat{s}-1)G_M + (N-\hat{s}+1)B_M)] + f$$

Hence

$$E \left[f \left(\sum_{i=1}^{N+1} X_i \right) \right] - E \left[f \left(\sum_{i=1}^{N} X_i \right) \right] > f \geq M_f > 0.$$

This result means that $e_C(N+1) > e_C(N)$ if \mathcal{V} is fixed.

Now, I show that there is \tilde{N} such that $\frac{\partial F(\mathcal{V})}{\partial \mathcal{V}} < 0$ for every $\mathcal{V} \in [0, \tilde{\mathcal{V}}]$. Note that

$$\frac{\partial F(\mathcal{V}|N)}{\partial \mathcal{V}} = \frac{s(e_C(\mathcal{V}, N))}{u'(M_{C}^{\mathcal{V}}(\mathcal{V}, e_C(\mathcal{V}, N)))} - \frac{1 - s(e_C(\mathcal{V}, N))}{u'(M_{C}^{\mathcal{V}}(\mathcal{V}, e_C(\mathcal{V}, N)))} + \frac{1 - (1 - s(e_M))}{u'(M_{\tilde{w}M}^{\mathcal{V}}(\mathcal{V}, e_C(\mathcal{V}, N)))}$$

$$\leq \frac{-s(e_C(\tilde{\mathcal{V}}, N))}{u'(M_{C}^{\mathcal{V}}(0, e_C(\mathcal{V}, N)))} - \frac{1 - s(e_C(\tilde{\mathcal{V}}, N))}{u'(M_{C}^{\mathcal{V}}(0, e_C(\mathcal{V}, N)))} + \frac{1 - (1 - s(e_M))}{u'(M_{\tilde{w}M}^{\mathcal{V}}(0, e_C(\mathcal{V}, N)))},$$

32
where
\[W^G_C(V_1, e_C(V_2, N)) = V_1 + g(e_C(V_2, N)) + (1 - s(e_C(V_2, N))) \frac{g'(e_C(V_2, N))}{\beta} \]
\[W^B_C(V_1, e_C(V_2, N)) = V_1 + g(e_C(V_2, N)) - s(e_C(V_2, N)) \frac{g'(e_C(V_2, N))}{\beta} \]
and \(e_C(V_2, N) \) satisfies
\[E \left[f \left(\sum_{i=1}^{N} X_i \right) \right] \beta(G_C - B_C) = \beta(W^G_C(V_2, e_C(V_2, N)) - W^B_C(V_2, e_C(V_2, N)) \]
\[+ s(e_C(V_2, N))(1 - s(e_C(V_2, N))) \frac{g''(e_C(V_2, N))}{\beta} \left[\frac{1}{u'(W^G_C(V_2, e_C(V_2, N)))} - \frac{1}{u'(W^B_C(V_2, e_C(V_2, N)))} \right] \]
\[\text{since} \]
\[\frac{\partial}{\partial V_1} \left[\frac{s(e_C(V_2, N))}{u'(W^G_C(V_1, e_C(V_2, N)))} + \frac{1 - s(e_C(V_2, N))}{u'(W^B_C(V_1, e_C(V_2, N)))} \right] > 0, \]
\[\frac{\partial}{\partial V_2} \left[\frac{s(e_C(V_2, N))}{u'(W^G_C(V_1, e_C(V_2, N)))} + \frac{1 - s(e_C(V_2, N))}{u'(W^B_C(V_1, e_C(V_2, N)))} \right] < 0. \]
\[\text{Since } V \text{ is bounded } \frac{1 - (1 - s(e_M))^{N}}{u'(W^G_M)} \leq - \frac{1}{u'(W^B_M)}, \text{ where } W^G_M \text{ satisfies} \]
\[u(W^G_M) = U_M + g(e_M) + (1 - s(e_M)) \frac{g'(e_M)}{\beta}. \]
Moreover, there is \(\hat{e}_C \in (0, 1) \) such that
\[\frac{s(e_C)}{u'(W^G_C(0, e_C))} + \frac{1 - s(e_C)}{u'(W^B_C(0, e_C))} > \frac{1}{u'(W^G_M)} \]
if \(e_C \geq \hat{e}_C \) since \(\lim_{e_C \to 1} W^G_C(0, e_C) = \infty. \) Since there is \(N_1 \) such that \(e_C(\bar{V}, N) \geq \hat{e}_C \text{ if } N \geq N_1, \)
\[\frac{\partial F(V|N)}{\partial V} \leq - \frac{s(e_C(\bar{V}, N))}{u'(W^G_C(0, e_C(\bar{V}, N)))} - \frac{1 - s(e_C(\bar{V}, N))}{u'(W^B_C(0, e_C(\bar{V}, N)))} + \frac{1 - (1 - s(e_M))^{N}}{u'(W^G_M)} \]
\[< - \frac{s(e_C(\bar{V}, N))}{u'(W^G_C(0, e_C(\bar{V}, N)))} - \frac{1 - s(e_C(\bar{V}, N))}{u'(W^B_C(0, e_C(\bar{V}, N)))} + \frac{1}{u'(W^G_M)} \]
\[< 0 \]
when \(N \geq N_1. \)

Hence, \(V^* = 0 \text{ if } N \geq N_1. \) Also, this implies that there is \(N_2 < N_1 \) such that \(V^*(N+1) - V^*(N) < 0 \) when \(N \in [N_2, N_1 - 1] \) if there is \(N^* < N_1 \) such that \(V^*(N^*) > 0. \)
Moreover, $e_C^*(N + 1) - e_C^*(N) > 0$ when $N \geq N_2$ since
\[
\frac{\partial E(V, e_C)}{\partial V} > 0 \text{ and } \frac{\partial E(V, e_C)}{\partial e_C} > 0,
\]
where
\[
E(V, e_C) \equiv \beta(W_C^G(V, e_C) - W_C^B(V, e_C))
\]
\[+ s(e_C)(1 - s(e_C)) \frac{g''(e_C)}{\beta} \left[\frac{1}{u'(W_C^G(V, e_C))} - \frac{1}{u'(W_C^B(V, e_C))} \right]
\]
comes from the right hand side of (15).

A.27 Proof of Proposition 16

First, note that constraints regarding managers give the following results

\[
u(W_C) = N
\]
\[
u(W_M^G) = U_M + g(\epsilon_L) + (1 - s_L(\epsilon_L)) \frac{g'(\epsilon_L)}{\beta} - \beta(\epsilon_M)N,
\]
\[
u(W_M^B) = U_M + g(\epsilon_L) - s_L(\epsilon_L) \frac{g'(\epsilon_L)}{\beta} - \beta(\epsilon_M)N, \text{ and}
\]
\[
\epsilon_H = \epsilon_L \frac{\beta}{\beta}
\]
for a given (ϵ_L, V). From now on, I use subscript 1 for promotion rule 1 and subscript 2 for promotion 2 in order to distinguish two problems. For a given ϵ_L^1 and ϵ_L^2, denote the optimal V by $V_C^1(\epsilon_L^1)$ under promotion rule 1 and $V_C^2(\epsilon_L^1)$ under promotion rule 2. Also, denote the firm’s objective function under promotion rule 1 and promotion rule 2 by $F_1(\epsilon_L^1|\gamma)$ and $F_2(\epsilon_L^2|\gamma)$, respectively, for a given γ. That is,

\[
F_1(\epsilon_L^1|\gamma) = \gamma \left[(\beta - \beta)H_1(\epsilon_L) + \beta \right] - W_C1 + 2[q_sH(\epsilon_H) + (1 - q)s_L(\epsilon_L)](G - W_M^G)
\]
\[+ 2[1 - q_sH(\epsilon_H) - (1 - q)s_L(\epsilon_L)](B - W_M^B), \text{ and}
\]
\[
F_2(\epsilon_L^2|\gamma) = \gamma \left[(\beta - \beta)H_2(\epsilon_L) + \beta \right] - W_C2 + 2[q_sH(\epsilon_H) + (1 - q)s_L(\epsilon_L)](G - W_M^G)
\]
\[+ 2[1 - q_sH(\epsilon_H) - (1 - q)s_L(\epsilon_L)](B - W_M^B),
\]
where

\[
H_1(\epsilon_L^1) = \frac{q_sH(\epsilon_H^1)}{q_sH(\epsilon_H^1) + (1 - q)s_L(\epsilon_L^1)} \left[2(q_sH(\epsilon_H^1) + (1 - q)s_L(\epsilon_L^1)) - (q_sH(\epsilon_H^1) + (1 - q)s_L(\epsilon_L^1))^2 \right]
\]
\[+ q \left[2(q_sH(\epsilon_H^1) + (1 - q)s_L(\epsilon_L^1)) + (q_sH(\epsilon_H^1) + (1 - q)s_L(\epsilon_L^1))^2 \right], \text{ and}
\]
\[
H_2(\epsilon_L^2) = q + q(1 - q)(s_H(\epsilon_H^2) - s_L(\epsilon_L^2)).
\]
Then, the firm’s problem is to choose e_L in order to maximize its objective function. Notice that, for a given e_{Lj}, $V_j^e(e_{Lj})$, $j = 1$ and 2, satisfies

$$\frac{\partial F_1(e_{L1}|\gamma)}{\partial V_1} = -\frac{1}{u'(W_{C1})} + \frac{2(qs_H(e_{H1}) + (1-q)s_L(e_{L1}))}{u'(W_{M1}^G)} P(e_{-M1}) = 0,$$

and

$$\frac{\partial F_2(e_{L2}|\gamma)}{\partial V_2} = -\frac{1}{u'(W_{C2})} + \frac{2(qs_H(e_{H2}) + (1-q)s_L(e_{L2}))}{u'(W_{M2}^G)} P(e_{-M2}) + \frac{2(1 - qs_H(e_{H2}) - (1-q)s_L(e_{L2}))}{u'(W_{L2}^B)} R(e_{-M2}) = 0.$$

Also, the first order conditions with respect to e_{Lj} are

$$\frac{\partial F_1(e_{L1}|\gamma)}{\partial e_{L1}} = \gamma(\beta - \beta)\frac{\partial H_1(e_{L1})}{\partial e_{L1}} + 2 \left(q\frac{\beta^2}{\beta} + (1-q)\beta \right) \left[G - B - (W_{M1}^G - W_{M1}^B) \right]$$

$$- 2\frac{\kappa}{\beta} \left[(1 - s_L(e_{L1})) \frac{qs_H(e_{H1}) + (1-q)s_L(e_{L1})}{u'(W_{M1}^G)} - s_L(e_{L1}) \frac{1 - qs_H(e_{H1}) - (1-q)s_L(e_{L1})}{u'(W_{M1}^B)} \right]$$

$$+ 2 \frac{qs_H(e_{H1}) + (1-q)s_L(e_{L1})}{u'(W_{M1}^G)} \frac{\partial P(e_{-M1})}{\partial e_{L1}} V_1^e(e_{L1}),$$

and

$$\frac{\partial F_2(e_{L2}|\gamma)}{\partial e_{L2}} = \gamma(\beta - \beta)\frac{\partial H_2(e_{L2})}{\partial e_{L2}} + 2 \left(q\frac{\beta^2}{\beta} + (1-q)\beta \right) \left[G - B - (W_{M2}^G - W_{M2}^B) \right]$$

$$- 2\frac{\kappa}{\beta} \left[(1 - s_L(e_{L2})) \frac{qs_H(e_{H2}) + (1-q)s_L(e_{L2})}{u'(W_{M2}^G)} - s_L(e_{L2}) \frac{1 - qs_H(e_{H2}) - (1-q)s_L(e_{L2})}{u'(W_{M2}^B)} \right]$$

$$+ 2 \frac{qs_H(e_{H2}) + (1-q)s_L(e_{L2})}{u'(W_{M2}^G)} \frac{\partial P(e_{-M2})}{\partial e_{L2}} V_2^e(e_{L2})$$

$$+ 2 \frac{1 - qs_H(e_{H2}) - (1-q)s_L(e_{L2})}{u'(W_{M2}^B)} \frac{\partial R(e_{-M2})}{\partial e_{L2}} V_2^e(e_{L2}).$$

According to Milgrom and Shannon (1994), $\frac{\partial e_{L1}}{\partial \gamma} \geq 0$ and $\frac{\partial e_{L1}}{\partial \gamma} \geq 0$ since

$$\frac{\partial^2 F_1(e_{L1}|\gamma)}{\partial e_{L1}\partial \gamma} = (\beta - \beta)\frac{\partial H_1(e_{L1})}{\partial e_{L1}}$$

$$= 2(\beta - \beta)q(1-q) \left(\frac{\beta^2}{\beta} - \beta \right) \left[1 - qs_H(e_{H1}) - (1-q)s_L(e_{L1}) \right] > 0,$$

and

$$\frac{\partial^2 F_2(e_{L2}|\gamma)}{\partial e_{L2}\partial \gamma} = (\beta - \beta)\frac{\partial H_2(e_{L2})}{\partial e_{L2}}$$

$$= (\beta - \beta)q(1-q) \left(\frac{\beta^2}{\beta} - \beta \right) > 0.$$

Moreover, these inequalities imply that $\frac{\partial e_{L1}}{\partial \gamma} > 0$ and $\frac{\partial e_{L1}}{\partial \gamma} > 0$ if $e^*_L \in \left(0, \frac{\beta}{\beta} \right)$ and $e^*_L \in \left(0, \frac{\beta}{\beta} \right)$, respectively, according to Edlin and Shannon (1998).
Also, there is γ_1^* such that $e_{L1}^* = \frac{\beta}{\bar{\beta}}$, which means that $e_{H1} = 1$, if $\gamma \geq \gamma_1^*$ since $\left. \frac{\partial F_1(e_{L1}|\gamma)}{\partial e_{L1}} \right|_{e_{L1}=1}$ is a strictly increasing function in γ and $\lim_{\gamma \to \infty} \left. \frac{\partial F_1(e_{L1}|\gamma)}{\partial e_{L1}} \right|_{e_{L1}=1} = \infty$.

Moreover, by the envelope theorem,

\[
\frac{\partial F_1(e_{L1}^*|\gamma)}{\partial \gamma} = (\bar{\beta} - \beta)H_1(e_{L1}^*) + \beta, \quad \text{and} \quad \frac{\partial F_2(e_{L2}^*|\gamma)}{\partial \gamma} = (\bar{\beta} - \beta)H_2(e_{L2}^*) + \beta.
\]

Since $H_1(e_{L1}) > H_2(e_{L1})$ when $e_{L1} = e_{L2}$, there is $\hat{e}_{L1} \in \left(0, \frac{\beta}{\bar{\beta}}\right)$ such that $H_1(\hat{e}_{L1}) > H_2 \left(\frac{\beta}{\bar{\beta}}\right)$. Hence, there is $\hat{\gamma}$ such that $F_1(e_{L1}^*|\gamma) > F_2(e_{L2}^*|\gamma)$ if $\gamma \geq \hat{\gamma}$.

Now, I show that $F_1(e_{L1}^*|\gamma) < F_2(e_{L2}^*|\gamma)$ when $\gamma = 0$. This is true since

\[
F_2(e_{L2}^*|\gamma) \geq F_2(e_{L1}^*|\gamma) > F_1(e_{L1}^*|\gamma).
\]

The second inequality holds since $(W_{M1}^G)^* = W_{M2}^G$ and $(W_{M1}^B)^* > W_{M2}^B$ if $(e_{L2}, \nu_2) = (e_{L1}^*, \nu_1^*)$. Hence, $\hat{\gamma} > 0$.

Appendix B Firm’s Problems in Detail

B.1 The Firm’s Problem in Section 7.1

Under this extension, the firm’s problem is to choose $\nu \in [0, \infty)$ maximizing $F(\nu)$ defined by

\[
F(\nu) = \max_{\{(W_{M1}^G, W_{M1}^B), (W_{M2}^G, W_{M2}^B), (W_{G1}^G, W_{G1}^B), \}} \left\{ s(e_{C})(G_C - W_{C}^G) + (1 - s(e_{C}))(B_C - W_{C}^B) \right. \\
+ N \left[s(e_{M1})(G_M - W_{M}^G) + (1 - s(e_{M1}))(B_M - W_{M}^B) \right] \\
+ \delta(Ns(e_{M1}) - 1 + (1 - s(e_{M1}))^N)\left[s(e_{M2})(G_M - W_{M}^{GG}) + (1 - s(e_{M2}))(B_M - W_{M}^{GB}) \right] \\
\left. \right\}
\]

subject to

\[
E[\mathcal{U}(W_{C}^G, W_{C}^B, e_{C})] = \nu \quad (IC_C), \\
E[\mathcal{U}(W_{M1}^G, W_{M1}^B, e_{M1})] + s(e_{M1})\left\{ P(e_{M1})\nu + (1 - P(e_{M1}))E[\mathcal{U}(W_{M1}^{GG}, W_{M1}^{GB}, e_{M2})] \right\} = U_{M1} \quad (IR_{M1}), \\
\]

\[
e_{C} \in \arg \max_{e} \quad E[\mathcal{U}(W_{C}^G, W_{C}^B, e)] \quad (IC), \\
e_{M1} \in \arg \max_{\hat{e}} \quad E[\mathcal{U}(W_{M1}^G, W_{M1}^B, \hat{e})] + s(\hat{e})\left\{ P(e_{M1})\nu + (1 - P(e_{M1}))E[\mathcal{U}(W_{M1}^{GG}, W_{M1}^{GB}, e_{M2})] \right\} \quad (IC_{M1}), \\
\]

\[
e_{M2} \in \arg \max_{\hat{e}} \quad E[\mathcal{U}(W_{M2}^{GG}, W_{M2}^{GB}, \hat{e})] \quad (IC_{M2}),
\]

36
where

\[E[\mathcal{U}(W^G, W^B, e)] = s(e)u(W^G) + (1 - s(e))u(W^B) - g(e). \]

Note that the expected number of senior managers in the second period is

\[\sum_{k=0}^{N} \binom{N}{k} s(e_{M1})^k (1 - s(e_{M1}))^{N-k} (k - 1) = \sum_{k=0}^{N} \binom{N}{k} ks(e_{M1})^k (1 - s(e_{M1}))^{N-k} - \sum_{k=0}^{N} \binom{N}{k} s(e_{M1})^k (1 - s(e_{M1}))^{N-k} + (1 - s(e_{M1}))^N = Ns(e_{M1}) - 1 + (1 - s(e_{M1}))^N. \]

B.2 The Firm’s Problem in Section 7.2

The objective of the firm is to choose \(V \in [0, \infty) \) maximizing \(F(V) \) defined by

\[
F(V) \equiv \max_A s(e_1)(G_C - W^G) + (1 - s(e_1))(B_C - W^B) \\
+ \delta s(e_1)[s(e_2)(G_C - W^{GG}) + (1 - s(e_2))(B_C - W^{GB})] \\
+ N [s(e_{M1})(G_M - W^G_{M1}) + (1 - s(e_{M1}))(B_M - W^B_{M1})] \\
+ \delta Ns(e_1) [s(e_{M2})(G_M - W^G_{M2}) + (1 - s(e_{M2}))(B_M - W^B_{M2})]
\]

subject to

\[
E[\mathcal{U}(W^G_C, W^B_C, e_1)] + s(e_1)E[\mathcal{U}(W^{GG}_C, W^{GB}_C, e_2)] = V \ (IR) \\
E[\mathcal{U}(W^G_{M1}, W^B_{M1}, e_{M1})] + s(e_{M1})(1 - s(e_{M1}))P(e_{-M1})V = U_{M1} \ (IRM1), \\
E[\mathcal{U}(W^G_{M2}, W^B_{M2}, e_{M2})] + s(e_{M2})P(e_{-M2})V = U_{M2} \ (IRM2) \\
e_{C1} \in \arg \max_{e} E[\mathcal{U}(W^G_C, W^B_C, e)] + s(\hat{e})E[\mathcal{U}(W^{GG}_C, W^{GB}_C, e_2)] \ (IC1) \\
e_{C2} \in \arg \max_{e} E[\mathcal{U}(W^{GG}_C, W^{GB}_C, \hat{e})] \ (IC2) \\
e_{M1} \in \arg \max_{e} E[\mathcal{U}(W^G_{M1}, W^B_{M1}, \hat{e})] + s(\hat{e})(1 - s(e_{C1}))P(e_{-M1})V \ (ICM1), \\
e_{M2} \in \arg \max_{e} E[\mathcal{U}(W^G_{M2}, W^B_{M2}, \hat{e})] + s(\hat{e})P(e_{-M2})V \ (ICM2),
\]
where
\[\mathcal{A} = \{(W_C^G, W_C^B, W_C^{GG}, W_C^{GB}), (W_M^G, W_M^B), (W_M^G, W_M^B)\} \]
and
\[E[U(W^G, W_B, e)] = s(e)u(W^G) + (1 - s(e))u(W^B) - g(e). \]

When the CEO’s individual rationality condition binds at \(\mathcal{V} \), the compensation scheme \((W_C^G, W_C^B, W_C^{GG}, W_C^{GB})\) for the CEO satisfies
\[
\begin{align*}
u(W_C^G) &= \mathcal{V} + g(e_{C1}) + (1 - s(e_{C1}))\frac{g'(e_{C1})}{\beta} - V_2, \\
u(W_C^B) &= \mathcal{V} + g(e_{C1}) - s(e_{C1})\frac{g'(e_{C1})}{\beta}, \\
u(W_C^{GG}) &= V_2 + g(e_{C2}) + (1 - s(e_{C2}))\frac{g'(e_{C2})}{\beta}, \\
u(W_C^{GB}) &= V_2 + g(e_{C2}) - s(e_{C2})\frac{g'(e_{C2})}{\beta},
\end{align*}
\]
where
\[V_2 = s(e_{C2})u(W_C^{GG}) + (1 - s(e_{C2}))u(W_C^{GB}) - g(e_{C2}) \]
is the successful CEO’s expected utility in the second period.

On the other hand, the compensation schemes for managers are characterized by
\[
\begin{align*}
u(W_M^G) &= U_M + g(e_{M1}) + (1 - s(e_{M1}))\frac{g'(e_{M1})}{\beta} - (1 - s(e_{C1}))P(e_{-M1})\mathcal{V}, \\
u(W_M^B) &= U_M + g(e_{M1}) - s(e_{M1})\frac{g'(e_{M1})}{\beta}, \\
u(W_M^{G}) &= U_M + g(e_{M2}) + (1 - s(e_{M2}))\frac{g'(e_{M2})}{\beta} - P(e_{-M2})\mathcal{V}, \text{ and} \\
u(W_M^{B}) &= U_M + g(e_{M2}) - s(e_{M2})\frac{g'(e_{M2})}{\beta}.
\end{align*}
\]

\[\text{B.3 The Firm’s Problem in Section 9} \]

The expected profit from two managers is
\[
E[\Pi_M(e_H, e_L, W_M^G, W_M^B)] = q^2[2s_H(e_H)(G_M - W_M^G) + (1 - s_H(e_H))(B_M - W_M^B)] \\
+ 2q(1 - q)[s_H(e_H)(G_M - W_M^G) + (1 - s_H(e_H))(B_M - W_M^B)] \\
+ [s_L(e_L)(G_M - W_M^G) + (1 - s_L(e_L))(B_M - W_M^B)] \\
+ (1 - q)^2[2s_L(e_L)(G_M - W_M^G) + (1 - s_L(e_L))(B_M - W_M^B)].
\]

38
Also, the choice of promotion rule determines the expected β when the firm requires e_H and e_L from high-type and low-type managers according to: 1) when the firm uses promotion rule 1, $E[\beta|e_H, e_L]$ is equal to

$$E^{P1}[\beta|e_H, e_L] = \frac{qs_H(e_H)}{qs_H(e_H) + (1 - q)s_L(e_L)} \left[2(qs_H(e_H) + (1 - q)s_L(e_L)) - (qs_H(e_H) + (1 - q)s_L(e_L))^2\right]$$

$$+ q \left[1 - 2(qs_H(e_H) + (1 - q)s_L(e_L)) + (qs_H(e_H) + (1 - q)s_L(e_L))^2\right],$$

2) while the expectation has the following value

$$E^{P2}[\beta|e_H, e_L] = q + q(1 - q)(s_H(e_H) - s_L(e_L))$$

if the firm adopts promotion rule 2.