Problem Set #7

Total points: 100. Each question weighted equally.

1. This question reconsiders the problem you solved in the previous problem set (you can use your results from that problem).

Consider $\mathbf{X}_n \equiv X_1, \dots, X_n \sim i.i.d.$ $U[0, \theta]$. Let $\lambda(\mathbf{X}_n; \theta_0)$ denote the likelihood ratio statistic for testing

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$
(1)

where $0 < \theta_0 \le 5$.

Consider the likelihood ratio test of the form: $\mathbf{1}(\lambda(\mathbf{X}_n) < c)$, for some $c \in [0, 1]$. Recall from the previous problem set that, for a size α test, you would choose $c = \alpha$.

- (a) Is $\lambda(\mathbf{X}_n; \theta_0)$ a pivotal statistic?
- (b) Derive the (1α) confidence set for θ_0 by inverting the likelihood ratio test.
- 2. For the above problem, construct an asymptotic 95% confidence interval for θ , based on
 - the method of moments estimator $\hat{\theta}_n \equiv 2\frac{1}{n} \sum_{i=1}^n X_i$; and
 - the T-statistic $\frac{\sqrt{n}(\hat{\theta}_n \theta)}{\sqrt{\hat{V}}}$. \hat{V} denotes an estimate of the asymptotic variance, equal to $\frac{\hat{\theta}_n}{3}$.
- 3. Consider three i.i.d. draws X_1, X_2, X_3 from a Bernoulli experiment

$$X_i = \begin{cases} 1 & \text{with prob } p \\ 0 & \text{with prob } 1 - p. \end{cases}$$

Assume that $X_1 = 1$, $X_2 = 0$, and $X_3 = 1$, and let $\bar{X}_3 \equiv \frac{1}{3} (X_1 + X_2 + X_3)$ denote an estimator for p.

- (a) Derive the exact distribution of \bar{X}_3 .
- (b) Consider the interval estimator $p \in [\bar{X}_3 0.1, \bar{X}_3 + 0.1]$. Derive the coverage probability of this interval for each $p \in [0, 1]$, and derive the confidence coefficient.
- (c) Use asymptotic theory (law of large numbers and central limit theorem) to derive the asymptotic distribution of \bar{X}_3 . Derive a symmetric asymptotic 50% confidence interval for p, as a function of \bar{X}_3 , of the sort $p \in [\bar{X}_3 t, \bar{X}_3 + t]$, for some t > 0.
- (d) Analytically derive the bootstrap approximation to the distribution of \bar{X}_3 . (Please use a spreadsheet program to do this!)

Also construct the bootstrap approximation to the distribution of $\exp(\bar{X}_3)$. Compare your result to the one obtained from asymptotic approximation and the Delta method.

(e) Perform a subsampling-based test (using subsamples of size M=2) for the null hypothesis of $H_0: p=0.5$ vs. $H_1: p \neq 0.5$.