Problem Set #3: Misc.

- 1. Let $X \sim U[1, 2]$, and define $Y = \log X$.
 - (a) What is Prob $(Y \ge \epsilon)$, for any $\epsilon > 0$?
 - (b) Use Chebyshev's inequality to bound $\operatorname{Prob}(Y \geq \epsilon)$.
- 2. Suppose U and V are independent with exponential distribution with parameter λ . (A random variable T is exponentially distributed with parameter λ if its density is given by $f(t) = \lambda \exp(-\lambda t)$ with support T > 0.) Define X = U + V and Y = UV. (Source: Amemiya, p. 86, #18)
 - (a) Derive the joint density of (X, Y). For part (a) only, consider the truncated distribution of (U, V), truncated to the region U > V.
 - (b) Find the best linear predictor of Y given X.
 - (c) Find the best predictor of Y given X.
- 3. Find the best linear predictor and best predictor of Y given X if (X, Y) are bivariate normal $N(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$.
- 4. Let $x \sim \chi_k^2$. Derive the distribution of $(x k)/\sqrt{2k}$, as $k \to \infty$.