Problem Set #2: Random variables

- 1. Consider the random variable $X \sim U[-1,1]$. Derive the CDF and (for continuous cases) the density function for the following random variables.
 - (a) Y = X
 - (b) $Y = X^2$
 - (c) $Y = \begin{cases} 0 & \text{if } X < 0 \\ 1 & \text{otherwise} \end{cases}$
 - (d) Y = X + 2
 - (e) $Y = X^3$
 - (f) Y = |X|
 - (g) $Y = \log(X+2)$
 - (h) Y = F(X), where F(X) denotes the CDF of X
 - (i) $Y = \begin{cases} 0 & \text{if } X \in [-1/2, 1/2] \\ X & \text{otherwise} \end{cases}$
 - (j) Z = F(Y), where F(Y) is the CDF of Y as defined in the previous problem.
- 2. What is the expectation of each of the random variables in problem 1?
- 3. What is the variance for each of the random variables in problem 1?
- 4. Assume that $X_1, \ldots, X_n \sim i.i.d.$ $N(\mu, \sigma^2)$. Assume σ is known. Which of the following are random variables? Please answer yes or no and explain briefly.
 - (a) X_i , i = 1, ..., n.
 - (b) $E(X_i), i = 1, ..., n$.
 - (c) $f(X_i) = \log(X_i)$
 - (d) $E(f(X_i))$
 - (e) $g(X_1, X_2) = \log(X_1 + X_2)$
 - (f) $E(g(X_1, X_2)|X_2 = 2)$
 - (g) $E(g(X_1, X_2)|X_2)$
 - (h) $\bar{X}_n \equiv \frac{1}{n} \sum_{i=1}^n X_i$
 - (i) $\sqrt{n}\left(\bar{X}_n-3\right)$
 - (j) $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n X_i$
 - (k) $|\bar{X}_n 3|$
 - (1) Prob $(|\bar{X}_n 3| > \epsilon)$, for some small $\epsilon > 0$.
 - (m) $\lim_{n\to\infty} |\bar{X}_n 3|$

- (n) $\frac{\bar{X}_n-3}{\sigma}$
- (o) $\frac{1}{\sigma}\phi\left(\frac{\bar{X}_n}{\sigma}\right)$, where $\phi\left(\cdots\right)$ denotes the standard normal density function.
- (p) $\Phi\left(\frac{\bar{X}_n}{\sigma}\right)$, where $\Phi\left(\cdots\right)$ denotes the standard normal cumulative distribution function.
- (q) $\operatorname{Prob}\left(\left|\frac{\bar{X}_n}{\sigma}\right| > 1.96 | \mu = 0\right)$
- (r) $\mathbf{1}(X_i > 0)$, where $\mathbf{1}([\cdots])$ denotes the "indicator" function, and equals 1 when the event $[\cdots]$ is true, and 0 otherwise.
- (s) $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(X_i > 0)$
- (t) $E1(X_i > 0)$
- (u) $\tilde{X}_i \equiv X_i \cdot \mathbf{1} (X_i > 0)$
- (v) $E(\tilde{X}_i)$
- (w) $\max\{X_1, \dots, X_n\}$
- (x) $T_n \equiv \mathbf{1} \left(\left| \frac{\bar{X}_n}{\sigma} \right| > 1.96 \right)$.
- (y) $\rho(\mu) \equiv \text{Prob}(T_n = 1|\mu)$.
- 5. (Joint, conditional, and marginal distributions) Consider the random variables X, Y, which are joint uniformly distributed on the unit square (i.e., the density f(x,y) = 1 on $x, y \in [0,1]$). What is:
 - (a) E(X)
 - (b) E(Y)
 - (c) E(X|Y)
 - (d) $E(X|Y < \frac{1}{2})$
 - (e) $E(X|Y > \tilde{X})$
 - (f) $E(X|Y > \frac{1}{2} + X)$
 - (g) Cov(X, Y)
 - (h) Cov(X, Y|Y < X)
 - (i) Corr(X, Y)
 - (j) Corr(X, Y|Y < X)
- 6. Consider two random variables X, Y. Suppose we know the marginal CDF's $F_X(x)$, $F_Y(y)$. Define x_s such that $F_X(x_s) = s$, and y_t such that $F_Y(y_t) = t$. We wish to make inference regarding the joint CDF $F(x_s, y_t)$.
 - (a) Can you derive a lower bound on $F(x_s, y_t)$?
 - (b) Can you derive an upper bound on $F(x_s, y_t)$?