Point Estimation: properties of estimators

- finite-sample properties (CB 7.3)
- large-sample properties (CB 10.1)

1 FINITE-SAMPLE PROPERTIES

How an estimator performs for finite number of observations n.

Estimator: W
Parameter: θ

Criteria for evaluating estimators:

- **Bias**: does $EW = \theta$?
- Variance of W (you would like an estimator with a smaller variance)

Example: $X_1, \ldots, X_n \sim \text{i.i.d.} (\mu, \sigma^2)$

Unknown parameters are μ and σ^2.

Consider:

- $\hat{\mu}_n = \frac{1}{n} \sum_{i} X_i$, estimator of μ
- $\hat{\sigma}^2_n = \frac{1}{n} \sum_{i} (X_i - X_n)^2$, estimator of σ^2.

Bias: $E\hat{\mu}_n = \frac{1}{n} \cdot n\mu = \mu$. So **unbiased**.

Var $\hat{\mu}_n = \frac{1}{n^2} n\sigma^2 = \frac{1}{n} \sigma^2$.

$$E\hat{\sigma}^2 = E\left(\frac{1}{n} \sum_{i} (X_i - \bar{X}_n)^2\right)$$

$$= \frac{1}{n} \cdot \sum_{i} \left(EX_i^2 - 2EX_i\bar{X}_n + E\bar{X}_n^2\right)$$

$$= \frac{1}{n} \cdot n \left[(\mu^2 + \sigma^2) - 2(\mu^2 + \frac{\sigma^2}{n}) + \frac{\sigma^2}{n} + \mu^2 \right]$$

$$= n - \frac{1}{n} \sigma^2.$$
Hence it is biased.

To fix this bias, consider the estimator
\[s_n^2 \equiv \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2, \]
and
\[E s_n^2 = \sigma^2 \] (unbiased).

Mean-squared error (MSE) of \(W \) is \(E(W - \theta)^2 \). Common criterion for comparing estimators.

Decompose: \(MSE(W) = VW + (EW - \theta)^2 = \text{Variance} + (\text{Bias})^2 \).

Hence, for an unbiased estimator: \(MSE(W) = VW \).

Example: \(X_1, \ldots, X_n \sim U[0, \theta] \). \(f(X) = \frac{1}{\theta}, x \in [0, \theta] \).

- Consider estimator \(\hat{\theta}_n \equiv 2\bar{X}_n \).
 \[E\hat{\theta}_n = 2 \frac{1}{n} \cdot E \sum_i X_i = 2 \cdot \frac{1}{n} \cdot \frac{1}{2} n \cdot \theta = \theta. \] So unbiased
 \[MSE(\hat{\theta}_N) = \frac{4}{n^2} \sum_i VX_i = \frac{\theta^2}{3n}. \]

- Consider estimator \(\tilde{\theta}_n \equiv \max(X_1, \ldots, X_n) \).
 In order to derive moments, start by deriving CDF:
 \[P(\tilde{\theta}_n \leq z) = P(X_1 \leq z, X_2 \leq z, \ldots, X_n \leq z) \]
 \[= \prod_{i=1}^{n} P(X_i \leq z) \]
 \[= \left\{ \begin{array}{ll} \left(\frac{z}{\theta} \right)^n & \text{if } z \leq \theta \\ 1 & \text{otherwise} \end{array} \right. \]
 Therefore \(f_{\tilde{\theta}_n}(z) = n \cdot \left(\frac{z}{\theta} \right)^{n-1} \frac{1}{\theta}, \) for \(0 \leq x \leq \theta \).

 \[E(\tilde{\theta}_n) = \int_0^{\theta} z \cdot n \cdot \left(\frac{z}{\theta} \right)^{n-1} \frac{1}{\theta} dz \\ = \frac{n}{\theta^n} \int_0^{\theta} z^n dz = \frac{n}{n+1} \theta. \]

 Bias(\(\tilde{\theta}_n \)) = \(-\theta/(n + 1)\)
 \[E(\tilde{\theta}_n^2) = \frac{n}{\theta^2} \int_0^{\theta} z^{n+1} dz = \frac{n}{n+2} \theta^2. \]

 Hence \(V \tilde{\theta}_n = \theta^2 \left(\frac{n}{n+2} - \left(\frac{n}{n+1} \right)^2 \right) = \theta^2 \frac{n}{(n+2)(n+1)}. \)

 Accordingly, \(MSE = \frac{2\theta^2}{(n+2)(n+1)} \).
Continue the previous example. Redefine $\tilde{\theta}_n = \frac{n+1}{n} \max(X_1, \ldots, X_n)$. Now both estimators $\hat{\theta}_n$ and $\tilde{\theta}_n$ are unbiased.

Which is better? $V\hat{\theta}_n = \frac{\theta^2}{3n} = O(1/n)$.

$V\tilde{\theta}_n = (\frac{n+1}{n})^2 V(\max(X_1, \ldots, X_n)) = \theta^2 \left(\frac{1}{n(n+2)} \right) = O(1/n^2)$.

Hence, for n large enough, $\tilde{\theta}_n$ has a smaller variance, and in this sense it is “better”.

Best unbiased estimator: if you choose the best (in terms of MSE) estimator, and restrict yourself to unbiased estimators, then the best estimator is the one with the lowest variance.

A best unbiased estimator is also called the “Uniform minimum variance unbiased estimator” (UMVUE).

Formally: an estimator W is a UMVUE of θ satisfies:

(i) $E_\theta W = \theta$, for all θ (unbiasedness)

(ii) $V_\theta W \leq V_\theta \tilde{W}$, for all θ, and all other unbiased estimators \tilde{W}.

The “uniform” condition is crucial, because it is always possible to find estimators which have zero variance for a specific value of θ.

It is difficult in general to verify that an estimator W is UMVUE, since you have to verify condition (ii) of the definition, that VW is smaller than all other unbiased estimators.

Luckily, we have an important result for the lowest attainable variance of an estimator.

• Theorem 7.3.9 (Cramer-Rao Inequality): Let X_1, \ldots, X_n be a sample with joint pdf $f(X|\theta)$, and let $W(X)$ be any estimator satisfying

(i) $\frac{d}{d\theta} E_{\theta} W(X) = \int \frac{\partial}{\partial \theta} \left[W(X) \cdot f(X|\theta) \right] dX$;

(ii) $V_\theta W(X) < \infty$.

Then

$$V_\theta W(X) \geq \frac{\left(\frac{d}{d\theta} E_{\theta} W(X) \right)^2}{E_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2}.$$
The RHS above is called the Cramer-Rao Lower Bound.

Proof: (Cramer, Mathematical Methods of Statistics, p. 475ff) Start with the following manipulation of the equality $E_\theta W(X) = \int W(X)f(X|\theta)dX$:

$$
\frac{d}{d\theta}E_\theta W(X) = \frac{d}{d\theta} \int W(X)f(X|\theta)dX
= \int W(X)\frac{\partial}{\partial\theta}f(X|\theta)dX
= \int (W(X) - E_\theta W(X))\frac{\partial}{\partial\theta}f(X|\theta)dX \quad \text{(note } \int E_\theta W(X)\frac{\partial}{\partial\theta}f(X|\theta)dX = 0) \\
= \int W(X) - E_\theta W(X) \left(\frac{\partial}{\partial\theta} \log f(X|\theta) \right) f(X|\theta)dX
$$

Applying the Cauchy-Schwarz inequality, we have

$$
\left[\frac{d}{d\theta}E_\theta W(X) \right]^2 \leq \text{Var}_\theta W(X) \cdot E_\theta \left[\frac{\partial}{\partial\theta} \log f(X|\theta) \right]^2
$$
or

$$
\text{Var}_\theta W(X) \geq \frac{\left[\frac{d}{d\theta}E_\theta W(X) \right]^2}{E_\theta \left[\frac{\partial}{\partial\theta} \log f(X|\theta) \right]^2}.
$$

- The LHS of condition (i) above is $\frac{d}{d\theta} \int W(\vec{X})f(X|\theta)dX$, so by Leibniz’ rule, this condition rules out cases where the support of X is dependent on θ.

The crucial step in the derivation of the CR-bound is the interchange of differentiation and integration which implies

$$
E_\theta \frac{\partial}{\partial\theta} \log f(\vec{X}|\theta) = \int \frac{1}{f(\vec{X}|\theta)} \frac{\partial f(\vec{X}|\theta)}{\partial\theta} f(\vec{X}|\theta)dx
= \frac{\partial}{\partial\theta} \int f(\vec{X}|\theta)dx
= \frac{\partial}{\partial\theta} \cdot 1 = 0
$$

- (skip) The above derivation is noteworthy, because

$$
\frac{\partial}{\partial\theta} \log f(\vec{X}|\theta) = 0
$$
is the FOC of maximum likelihood estimation problem.
In the i.i.d. case, this becomes the sample average
\[\frac{1}{n} \sum_i \frac{\partial}{\partial \theta} \log f(x_i|\theta) = 0. \]

And by the LLN:
\[\frac{1}{n} \sum_i \frac{\partial}{\partial \theta} \log f(x_i|\theta) \xrightarrow{p} E_{\theta_0} \frac{\partial}{\partial \theta} \log f(x_i|\theta), \]

where \(\theta_0 \) is the true value of \(\theta_0 \). This shows that maximum likelihood estimation of \(\theta \) is equivalent to GMM estimation based on the moment condition
\[E_{\theta_0} \frac{\partial}{\partial \theta} \log f(x_i|\theta) = 0. \] (2)

From the previous derivation, we see that this condition holds at the true value \(\theta = \theta_0 \). (What happens when we evaluate LHS of (2) at values \(\theta \neq \theta_0 \)?)

- In the iid case, the CR lower bound can be simplified

Corollary 7.3.10: if \(X_1, \ldots, X_n \sim \text{i.i.d. } f(X|\theta) \), then
\[V_\theta W(\bar{X}) \geq \frac{\left(\frac{\partial}{\partial \theta} E_{\theta} W(\bar{X}) \right)^2}{n \cdot E_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2}. \] (3)

- Up to this point, Cramer-Rao results not operational, because the estimator \(W(\bar{X}) \) is on both sides of the inequality. However, for an unbiased estimator, \(E_{\theta} W(\bar{X}) = \theta \), so that \(\frac{\partial}{\partial \theta} E_{\theta} W(\bar{X}) = 1 \). Then
\[V_\theta W(\bar{X}) \geq \frac{1}{E_{\theta} \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2}. \]

Hence, if we find an unbiased estimator with variance corresponding to CRLB, then we’ve identified a UMVUE.

- **Example**: \(X_1, \ldots, X_n \sim \text{i.i.d. } N(\mu, \sigma^2) \).

What is CRLB for an unbiased estimator of \(\mu \)?

Unbiased \(\rightarrow \) numerator =1.
\[
\log f(x|\theta) = \log \sqrt{2\pi} - \log \sigma - \frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2
\]
\[
\frac{\partial}{\partial \mu} \log f(x|\theta) = - \left(\frac{x - \mu}{\sigma} \right) \cdot \left(-\frac{1}{\sigma} \right) = \frac{x - \mu}{\sigma^2}
\]
\[
E \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 = E \left((X - \mu)^2 \right) = \frac{1}{\sigma^4} V X = \frac{1}{\sigma^2}.
\]

Hence the CRLB = \(\frac{1}{n} \cdot \frac{1}{\sigma^2} = \frac{\sigma^2}{n} \).

This is the variance of the sample mean, so that the sample mean is a UMVUE for \(\mu \).

Lemma 7.3.11 (Information inequality): if \(f(X|\theta) \) satisfies

\[
(*) \quad \frac{d}{d\theta} E_\theta \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right) = \int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right) f(X|\theta) \right] dx,
\]

then
\[
E_\theta \left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 = -E_\theta \left(\frac{\partial^2}{\partial \theta^2} \log f(X|\theta) \right).
\]

Proof:

LHS of (*): Using Eq. (1) above, we get that LHS of (*) =0.

RHS of (*):

\[
\int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} \log f \right) f \right] dx
\]
\[
= \int \frac{\partial^2 \log f}{\partial \theta^2} f dx + \int \frac{1}{f} \left(\frac{\partial f}{\partial \theta} \right)^2 dx
\]
\[
= E \frac{\partial^2 \log f}{\partial \theta^2} + E \left(\frac{\partial \log f}{\partial \theta} \right)^2.
\]

Putting the LHS and RHS together yields the desired result. ■

- The LHS of the above condition (*) is just \(\frac{d}{d\theta} \int (\frac{\partial}{\partial \theta} \log f(X|\theta)) f(X|\theta) dX \). As before, the crucial step is the interchange of differentiation and integration.

- The CRLB is a feature of a particular model (or sampling distribution \(f(X|\theta) \)), and not a feature of the estimator.
• **Example:** for the previous example, consider CRLB for unbiased estimator of \(\sigma^2 \).

We can use the information inequality, because condition (*) is satisfied for the normal distribution. Hence:

\[
\frac{\partial}{\partial \sigma^2} \log f(x|\theta) = -\frac{1}{2 \sigma^2} + \frac{1}{2} \frac{(x - \mu)^2}{\sigma^4}
\]

\[
\frac{\partial}{\partial \sigma^2} \left(\frac{\partial}{\partial \sigma^2} \log f(x|\theta) \right) = \frac{1}{2 \sigma^4} - \frac{(x - \mu)^2}{\sigma^6}
\]

\[-E \left(\frac{\partial}{\partial \sigma^2} \left(\frac{\partial}{\partial \sigma^2} \log f(x|\theta) \right) \right) = - \left(\frac{1}{2 \sigma^4} - \frac{1}{\sigma^4} \right) = \frac{1}{2 \sigma^4}.
\]

Hence the CRLB is \(\frac{2 \sigma^4}{n} \).

• **Example:** \(X_1, \ldots, X_n \sim U[0, \theta] \). Check conditions for CRLB for an unbiased estimator \(W(\vec{X}) \) of \(\theta \).

\[
\frac{d}{d\theta} EW(\vec{X}) = 1 \text{ (because it is unbiased)}
\]

\[
\int \frac{\partial}{\partial \theta} \left[W(\vec{X}) f(\vec{X}|\theta) \right] d\vec{X} = \int W(\vec{X}) \cdot \left(-\frac{1}{\theta^2} \right) d\vec{X} \neq \frac{d}{d\theta} EW(\vec{X}) = 1
\]

Hence, condition (i) of theorem not satisfied.

• **But when can CRLB (if it exists) be attained?**

Go back to derivation of CRLB, by the Cauchy-Schwarz inequality we have:

\[
\left[\int (W(X) - \theta) \left(\frac{\partial \log L}{\partial \theta} \right) dF(X|\theta) \right]^2 \leq \int (W(X) - \theta)^2 dF(X|\theta) \int \left(\frac{\partial \log L}{\partial \theta} \right)^2 dF(X|\theta).
\]

Note that the equality binds when (turns out this is iff) \(\frac{\partial \log L}{\partial \theta} \) is proportional to \(W(X) - \theta \), that is:

\[
\frac{\partial \log L}{\partial \theta} = a(\theta) \ast (W(X) - \theta)
\]

where the proportionality constant \(a(\theta) \) can depend on \(\theta \) but does not depend on \(X \).

Under this condition then, the \(Var(W(X)) \) is exactly the CRLB; that is, the CRLB is attainable.

Corollary 7.3.15: \(X_1, \ldots, X_n \sim i.i.d. f(X|\theta) \), satisfying the conditions of CR theorem.
– Let $L(\theta|\vec{X}) = \prod_{i=1}^{n} f(X_\theta)$ denote the likelihood function.
– Estimator $W(\vec{X})$ unbiased for θ
– $W(\vec{X})$ attains CRLB iff you can write
\[
\frac{\partial}{\partial \theta} \log L(\theta|\vec{X}) = a(\theta) \left[W(\vec{X}) - \theta \right]
\]
for some function $a(\theta)$.

Example: $X_1, \ldots, X_n \sim \text{i.i.d. } N(\mu, \sigma^2)$
Consider estimating μ:
\[
\frac{\partial}{\partial \mu} \log L(\theta|\vec{X}) = \frac{\partial}{\partial \mu} \left(\sum_{i=1}^{n} \log f(X_\theta) \right)
= \frac{\partial}{\partial \mu} \left(\sum_{i=1}^{n} - \log \sqrt{2\pi} - \log \sigma - \frac{1}{2} \left(\frac{(X - \mu)^2}{\sigma^2} \right) \right)
= \sum_{i=1}^{n} \left(\frac{X - \mu}{\sigma^2} \right)
= \frac{n}{\sigma^2} \cdot (\bar{X}_n - \mu).
\]
Hence, CRLB can be attained (in fact, we showed earlier that CRLB attained by \bar{X}_n).
Additional examples: Poisson, Binomial.

■■■

Loss function optimality

Let $\vec{X} \sim f(\vec{X}|\theta)$.

Consider a *loss function* $\mathcal{L}(\theta, W(\vec{X}))$, taking values in $[0, +\infty)$, which penalizes you when your $W(\vec{X})$ estimator is “far” from the true parameter θ. Note that $\mathcal{L}(\theta, W(\vec{X}))$ is a random variable, since \vec{X} (and $W(\vec{X})$) are random.

Consider estimators which *minimize expected loss*: that is
\[
\min_{W(\cdots)} E_{\theta} \mathcal{L}(\theta, W(\vec{X})) \equiv \min_{W(\cdots)} R(\theta, W(\cdots))
\]
where $R(\theta, W(\cdots))$ is the *risk function*. (Note: the risk function is not a random variable, because \vec{X} has been integrated out.)
Loss function optimality is a more general criterion than minimum MSE. In fact, because $MSE(W(\bar{X})) = E_\theta \left(W(\bar{X}) - \theta \right)^2$, the MSE is actually the risk function associated with the \textit{quadratic loss function} $L(\theta, W(\bar{X})) = (W(\bar{X}) - \theta)^2$.

Other examples of loss functions:

- **Absolute error loss**: $|W(\bar{X}) - \theta|
- **Relative quadratic error loss**: $\frac{(W(\bar{X}) - \theta)^2}{|\theta| + 1}$

The exercise of minimizing risk takes a given value of θ as given, so that the minimized risk of an estimator depends on whichever value of θ you are considering. You are typically interested in an estimator which does well regardless of which value of θ you are considering. (Analogous to the focus on the \textit{uniform} minimal variance.)

For this different problem, you want to consider a notion of risk which does not depend on θ. Two possible criteria are:

- **“Average” risk**:
 \[
 \min_{W(\cdots)} \int R(\theta, W(\cdots)) h(\theta) d\theta.
 \]
 where $h(\theta)$ is some weighting function across θ. (In a Bayesian interpretation, $h(\theta)$ is a prior density over θ.)

- **Minmax criterion**:
 \[
 \min_{W(\cdots)} \max_{\theta} R(\theta, W(\cdots)).
 \]
 Here you choose the estimator $W(\cdots)$ to minimize the maximum risk $= \max_\theta R(\theta, W(\cdots))$, where θ is set to the “worse” value. So minmax optimizer is the best that can be achieved in a “worst-case” scenario. This can represent a decision criterion for “ambiguous” settings where you have little information about the possible values of θ.

2 LARGE SAMPLE PROPERTIES OF ESTIMATORS

Large-sample properties: exploit LLN, CLT

Consider data \(\{X_1, X_2, \ldots \} \) by which we construct a sequence of estimators \(W_n \equiv \{W(X_1), W(X_2), \ldots \} \). \(W_n \) is a random sequence.

Define: we say that \(W_n \) is consistent for a parameter \(\theta \) iff the random sequence \(W_n \) converges stochastically to \(\theta \). Strong consistency obtains when \(W_n \xrightarrow{\text{st}} \theta \). Weak consistency obtains when \(W_n \xrightarrow{\text{p}} \theta \).

For estimators like sample-means, consistency can be proved using a LLN. Now we want to consider estimators which are not sample means.

Define: an M-estimator is an estimator of \(\theta \) which a maximizer of an objective function \(Q_n(\theta) \).

Examples:

- MLE: \(Q_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log f(x_i; \theta) \)
- Least squares: \(Q_n(\theta) = \sum_{i=1}^{n} [y_i - g(x_i; \theta)]^2 \). OLS is special case when \(g(x_i; \theta) = \alpha + X_i'\beta \).
- GMM: \(Q_n(\theta) = G_n(\theta)'W_n(\theta)G_n(\theta) \) where

\[
G_n(\theta) = \left[\frac{1}{n} \sum_{i=1}^{n} m_1(x_i; \theta), \frac{1}{n} \sum_{i=1}^{n} m_2(x_i; \theta), \ldots, \frac{1}{n} \sum_{i=1}^{n} m_M(x_i; \theta) \right]',
\]

an \(M \times 1 \) vector of sample moment conditions, and \(W_n \) is an \(M \times M \) weighting matrix.

Notation: For each \(\theta \in \Theta \), let \(f_\theta \equiv f(x_1, \ldots, x_n; \theta) \) denote the joint density of the data for the given value of \(\theta \). For \(\theta_0 \in \Theta \), we denote the limit objective function \(Q_0(\theta) = \text{plim}_{n \to \infty, f_{\theta_0}} Q_n(\theta) \) (pointwise for each \(\theta \)).

Consistency of M-estimators Make the following assumptions:

1. For each \(\theta_0 \in \Theta \), the limiting objective function \(Q_0(\theta) \) is uniquely maximized at \(\theta_0 \) (“identification”)
2. Parameter space Θ is a compact subset of \mathbb{R}^K.

3. $Q_0(\theta)$ is continuous in θ

4. $Q_n(\theta)$ converges uniformly in probability to $Q_0(\theta)$; that is:

$$
\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| \xrightarrow{P} 0.
$$

Theorem: (Consistency of M-Estimator) Under assumption 1,2,3,4, $\theta_n \xrightarrow{P} \theta_0$.

Proof: We need to show: for any arbitrarily small neighborhood \mathcal{N} containing θ_0, $P(\theta_n \in \mathcal{N}) \to 1$.

For n large enough, the uniform convergence conditions that, for all $\epsilon, \delta > 0$,

$$
P \left(\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| < \epsilon/2 \right) > 1 - \delta.
$$

The event “$\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| < \epsilon/2$” implies

$$
Q_n(\theta_n) - Q_0(\theta_n) < \epsilon/2 \iff Q_0(\theta_n) > Q_n(\theta_n) - \epsilon/2
$$

Similarly,

$$
Q_0(\theta_0) - Q_n(\theta_0) > -\epsilon/2 \Rightarrow Q_n(\theta_0) > Q_0(\theta_0) - \epsilon/2.
$$

Since $\theta_n = \arg\max_{\theta} Q_n(\theta)$, Eq. (5) implies

$$
Q_0(\theta_n) > Q_n(\theta_0) - \epsilon/2.
$$

Hence, adding Eqs. (6) and (7), we have

$$
Q_0(\theta_n) > Q_0(\theta_0) - \epsilon.
$$

So we have shown that

$$
\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| < \epsilon/2 \Rightarrow Q_0(\theta_n) > Q_0(\theta_0) - \epsilon
$$

$$
\iff P \left(Q_0(\theta_n) > Q_0(\theta_0) - \epsilon \right) \geq P \left(\sup_{\theta \in \Theta} |Q_n(\theta) - Q_0(\theta)| < \epsilon/2 \right) \to 1.
$$

Now define \mathcal{N} as any open neighborhood of \mathbb{R}^K, which contains θ_0, and $\bar{\mathcal{N}}$ is the complement of \mathcal{N} in \mathbb{R}^K. Then $\Theta \cap \bar{\mathcal{N}}$ is compact, so that $\max_{\theta \in \Theta \cap \bar{\mathcal{N}}} Q_0(\theta)$ exists.

Set $\epsilon = Q_0(\theta_0) - \max_{\theta \in \Theta \cap \bar{\mathcal{N}}} Q_0(\theta)$. Then

$$
Q_0(\theta_n) > Q_0(\theta_0) - \epsilon \Rightarrow Q_0(\theta_n) > \max_{\theta \in \Theta \cap \bar{\mathcal{N}}} Q_0(\theta)
$$

$$
\Rightarrow \theta_n \in \mathcal{N}
$$

$$
\iff P(\theta_n \in \mathcal{N}) \geq P(\theta_n \in \mathcal{N}) \Rightarrow P(Q_0(\theta_n) > Q_0(\theta_0) - \epsilon) \to 1.
$$
Since the argument above holds for any arbitrarily small neighborhood of \(\theta_0 \), we are done.

- In general, the limit objective function \(Q_0(\theta) = \lim_{n \to \infty} Q_n(\theta) \) may not be that straightforward to determine. But in many cases, \(Q_n(\theta) \) is a sample average of some sort:

\[
Q_n(\theta) = \frac{1}{n} \sum_i q(x_i|\theta)
\]

(eg. least squares, MLE). Then by a law of large numbers, we conclude that (for all \(\theta \))

\[
Q_0(\theta) = \lim_{n \to \infty} \frac{1}{n} \sum_i q(x_i|\theta) = E_{x_i} q(x_i|\theta)
\]

where \(E_{x_i} \) denote expectation with respect to the true (but unobserved) distribution of \(x_i \).

** Let’s unpack the uniform convergence condition. Sufficient conditions for this conditions are:

1. Pointwise convergence: For each \(\theta \in \Theta \), \(Q_n(\theta) - Q_0(\theta) = o_p(1) \).
2. \(Q_n(\theta) \) is stochastically equicontinuous: for every \(\epsilon > 0, \eta > 0 \) there exists a sequence of random variable \(\Delta_n(\epsilon, \eta) \) and \(n^*(\epsilon, \eta) \) such that for all \(n > n^* \), \(P(|\Delta_n| > \epsilon) < \eta \) and for each \(\theta \) there is an open set \(\mathcal{N} \) containing \(\tilde{\theta} \) with

\[
\sup_{\theta \in \mathcal{N}} |Q_n(\tilde{\theta}) - Q_n(\theta)| \leq \Delta_n, \ \forall n > n^*.
\]

Note that both \(\Delta_n \) and \(n^* \) do not depend on \(\theta \): it is uniform result.

To understand this more intuitively, consider what we need for consistency. By continuity of \(Q_0 \), we know that \(Q_0(\theta) \) is close to \(Q_0(\theta_0) \) for \(\theta \in \mathcal{N}(\theta_0) \). By pointwise convergence, we have \(Q_n(\theta) \) converging to \(Q_0(\theta) \) for all \(\theta \). However, what we need is that even if \(Q_n(\theta) \) is not optimized by \(\theta_0 \), the optimizer \(\theta_n = \arg\max_\theta Q_n(\theta) \) should not be far from \(\theta_0 \). Pointwise convergence does not guarantee this.

For the last part, we need \(Q_n(\theta) \) to be “equally close” to \(Q_0(\theta) \) for all \(\theta \), because then the optimizers of \(Q_n \) and \(Q_0 \) cannot be too far apart. However, pointwise convergence is not enough to ensure this “equally closeness”. At any given \(n \), \(Q_n(\theta_0) \) being close to \(Q_0(\theta_0) \) does not imply this at other points. Uniform convergence ensures that at any given \(n \), \(Q_n \) and \(Q_0 \) are “equally close” at all points \(\theta \). This was exploited in the proof (eqs. (5), (6)).
allows us to argue that with high probability, \(Q_0(\theta_n) \) is within a small neighborhood of \(Q_0(\theta_0) \). By continuity of \(Q_0 \), this implies that \(\theta_n \) lies within a small neighborhood of \(\theta_0 \) with high probability.

Asymptotic normality for M-estimators Define the “score vector”

\[
\nabla_\theta Q_n(\theta) = \left[\frac{\partial Q_n(\theta)}{\partial \theta_1} \Big|_{\theta = \hat{\theta}}, \ldots, \frac{\partial Q_n(\theta)}{\partial \theta_K} \Big|_{\theta = \hat{\theta}} \right]'.
\]

Similarly, define the \(K \times K \) Hessian matrix

\[
\begin{bmatrix}
\nabla_{\hat{\theta} \hat{\theta}} Q_n(\theta)
\end{bmatrix}_{i,j} = \frac{\partial^2 Q_n(\theta)}{\partial \theta_i \partial \theta_j} \Big|_{\theta = \hat{\theta}}, \quad 1 \leq i,j \leq K.
\]

Note that the Hessian is symmetric.

Make the following assumptions:

1. \(\theta_n = \arg\max_{\theta} Q_n(\theta) \overset{p}{\to} \theta_0 \)
2. \(\theta_0 \in \text{interior}(\Theta) \)
3. \(Q_n(\theta) \) is twice continuously differentiable in a neighborhood \(\mathcal{N} \) of \(\theta_0 \).
4. \(\sqrt{n} \nabla_{\theta_0} Q_n(\theta) \overset{d}{\to} N(0, \Sigma) \)
5. Uniform convergence of Hessian: there exists the matrix \(H(\theta) \) which is continuous at \(\theta_0 \) and \(\sup_{\theta \in \mathcal{N}} ||\nabla_{\theta \theta} Q_n(\theta) - H(\theta)|| \overset{p}{\to} 0. \)
6. \(H(\theta_0) \) is nonsingular

Theorem (Asymptotic normality for M-estimator): Under assumptions 1,2,3,4,5,

\[
\sqrt{n}(\theta_n - \theta_0) \overset{d}{\to} N(0, H_0^{-1}\Sigma H_0^{-1}).
\]

where \(H_0 \equiv H(\theta_0) \).

Proof: (sketch) By Assumptions 1,2,3, \(\nabla_{\theta_n} Q_n(\theta) = 0 \) (this is FOC of maximization problem). Then using mean-value theorem (with \(\hat{\theta}_n \) denoting mean value):

\[
0 = \nabla_{\theta_n} Q_n(\theta) = \nabla_{\theta_0} Q_n(\theta) + \nabla_{\theta_n \hat{\theta}_n} Q_n(\theta)(\theta_n - \theta_0)
\]

\[
\Rightarrow \nabla_{\hat{\theta}_n \hat{\theta}_n} Q_n(\theta) \sqrt{n}(\theta_n - \theta_0) = -\sqrt{n} \nabla_{\theta_0} Q_n(\theta)
\]

\[
\overset{p}{\to} H_0 \text{ (using A5)} \quad \overset{d}{\to} N(0, \Sigma) \text{ (using A4)}
\]

\[
\Leftrightarrow \sqrt{n}(\theta_n - \theta_0) \overset{d}{\to} -H(\theta_0)^{-1}N(0, \Sigma) = N(0, H_0^{-1}\Sigma H_0^{-1}). \quad \blacksquare
\]
Note: A5 is a uniform convergence assumption on the sample Hessian. Given previous discussion, it ensures that the sample Hessian $\nabla_{\theta} Q_n(\theta)$ evaluated at $\hat{\theta}_n$ (which is close to θ_0) does not vary far from the limit Hessian $H(\theta)$ at θ_0, which is implied by a type of “continuity” of the sample Hessian close to θ_0.

2.1 Maximum likelihood estimation

The consistency of MLE can follow by application of the theorem above for consistency of M-estimators.

Essentially, as we noted above, what the consistency theorem showed above was that, for any M-estimator sequence θ_n:

$$\text{plim}_{n \to \infty} \theta_n = \arg\max_{\theta} Q_0(\theta).$$

For MLE, there is a distinct and earlier argument due to Wald (1949), who shows that, in the i.i.d. case, the “limiting likelihood function” (corresponding to $Q_0(\theta)$) is indeed globally maximized at θ_0, the “true value”. Thus, we can directly confirm the identification assumption of the M-estimator consistency theorem. This argument is of interest by itself.

Argument: (summary of Amemiya, pp. 141–142)

- Define $\hat{\theta}_n^{MLE} \equiv \arg\max_{\theta} \frac{1}{n} \sum_i \log f(x_i|\theta)$. Let θ_0 denote the true value.
- By LLN: $\frac{1}{n} \sum_i \log f(x_i|\theta) \xrightarrow{P} E_{\theta_0} \log f(x_i|\theta)$, for all θ (not necessarily the true θ_0).
- By Jensen’s inequality: $E_{\theta_0} \log \left(\frac{f(x|\theta)}{f(x|\theta_0)} \right) < \log E_{\theta_0} \left(\frac{f(x|\theta)}{f(x|\theta_0)} \right)$
- But $E_{\theta_0} \left(\frac{f(x|\theta)}{f(x|\theta_0)} \right) = \int \left(\frac{f(x|\theta)}{f(x|\theta_0)} \right) f(x|\theta_0) = 1$, since $f(x|\theta)$ is a density function, for all θ.
- Hence:

$$E_{\theta_0} \log \left(\frac{f(x|\theta)}{f(x|\theta_0)} \right) < 0, \forall \theta$$

$$\implies E_{\theta_0} \log f(x|\theta) < E_{\theta_0} \log f(x|\theta_0), \forall \theta$$

$$\implies E_{\theta_0} \log f(x|\theta) \text{ is maximized at the true } \theta_0.$$

In this step, note the importance of assumption A3 in CB, pg. 516. If x has support depending on θ, then it will not integrate to 1 for all θ.

\[\text{1}\]In this step, note the importance of assumption A3 in CB, pg. 516. If x has support depending on θ, then it will not integrate to 1 for all θ.

14
This is the “identification” assumption from the M-estimator consistency theorem.

Now we introduce another idea, efficiency, which is a large-sample analogue of the “minimum variance” concept.

For the sequence of estimators W_n, suppose that

$$k(n)(W_n - \theta) \xrightarrow{d} N(0, \sigma^2)$$

where $k(n)$ is a polynomial in n. Then σ^2 is denoted the asymptotic variance of W_n.

In “usual” cases, $k(n) = \sqrt{n}$. For example, by the CLT, we know that $\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$. Hence, σ^2 is the asymptotic variance of the sample mean \bar{X}_n.

Definition 10.1.11: An estimator sequence W_n is asymptotically efficient for θ if

- $\sqrt{n}(W_n - \theta) \xrightarrow{d} N(0, v(\theta))$, where
- the asymptotic variance $v(\theta) = \frac{1}{E_{\theta_0}(\frac{\partial}{\partial \theta} \log f(X|\theta))^2}$

By comparison with Eq. (3), note that the asymptotic variance $\frac{1}{E_{\theta_0}(\frac{\partial}{\partial \theta} \log f(X|\theta))^2}$ is equivalent to the CRLB for one observation ($n = 1$). $I(\theta) \equiv E_{\theta_0}(\frac{\partial}{\partial \theta} \log f(X|\theta))^2$ is called the Fisher information.

Some intuition: Recall that $N(0, 1/I(\theta))$ is the distribution for the sample mean estimator for the mean parameter of a normal distribution using only one observation. (cf. Eq. (4)) So essentially asymptotically efficient estimators are asymptotically equivalent to such an estimation problem. A fuller discussion of efficiency is deep and beyond this course.

By asymptotic normality result for M-estimator, we know what the asymptotic distribution for the MLE should be. However, it turns out given the information inequality, the MLE’s asymptotic distribution can be further simplified.
Theorem 10.1.12: Asymptotic efficiency of MLE

Proof: (following Amemiya, pp. 143–144)

- \(\hat{\theta}_n^{MLE} \) satisfies the FOC of the MLE problem:
 \[
 0 = \frac{\partial \log L(\theta|\bar{X}_n)}{\partial \theta} |_{\theta = \hat{\theta}_n^{MLE}}.
 \]

- Using the mean value theorem:
 \[
 0 = \frac{\partial \log L(\theta|\bar{X}_n)}{\partial \theta} |_{\theta = \theta_0} + \frac{\partial^2 \log L(\theta|\bar{X}_n)}{\partial \theta^2} |_{\theta = \theta_n} (\hat{\theta}_n^{MLE} - \theta_0)
 \]

 \[
 \implies \sqrt{n} (\hat{\theta}_n - \theta_0) = \sqrt{n} \frac{\partial \log L(\theta|\bar{X}_n)}{\partial \theta} |_{\theta = \theta_0} = \frac{1}{n} \sum_i \frac{\partial \log f(x_i|\theta)}{\partial \theta} |_{\theta = \theta_0} = \frac{1}{n} \sum_i \frac{\partial^2 \log f(x_i|\theta)}{\partial \theta^2} |_{\theta = \theta_0} \quad (**)
 \]

- Note that, by the LLN,
 \[
 \frac{1}{n} \sum_i \frac{\partial \log f(x_i|\theta)}{\partial \theta} |_{\theta = \theta_0} \xrightarrow{p} E_{\theta_0} \frac{\partial \log f(X|\theta)}{\partial \theta} |_{\theta = \theta_0} = \int \frac{\partial f(x_i|\theta)}{\partial \theta} |_{\theta = \theta_0} dx.
 \]

 Using same argument as in the information inequality result above, the last term is:
 \[
 \int \frac{\partial f}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int f dx = 0.
 \]

- Hence, the CLT can be applied to the numerator of (**):
 \[
 \text{numerator of (**)} \xrightarrow{d} N \left(0, E_{\theta_0} \left(\frac{\partial \log f(x_i|\theta)}{\partial \theta} |_{\theta = \theta_0} \right)^2 \right).
 \]

- By LLN, and uniform convergence of Hessian term:
 \[
 \text{denominator of (**)} \xrightarrow{p} E_{\theta_0} \frac{\partial^2 \log f(X|\theta)}{\partial \theta^2} |_{\theta = \theta_0}.
 \]

- Hence, by Slutsky theorem:
 \[
 \sqrt{n} (\hat{\theta}_n - \theta_0) \xrightarrow{d} N \left(0, \left[E_{\theta_0} \left(\frac{\partial \log f(x_i|\theta)}{\partial \theta} |_{\theta = \theta_0} \right)^2 \right] \left[E_{\theta_0} \left(\frac{\partial^2 \log f(X|\theta)}{\partial \theta^2} |_{\theta = \theta_0} \right)^2 \right] \right).
 \]
• By the information inequality:
\[
E_{\theta_0} \left(\frac{\partial \log f(x_i|\theta)}{\partial \theta} \bigg|_{\theta=\theta_0} \right)^2 = -E_{\theta_0} \frac{\partial^2 \log f(X|\theta)}{\partial \theta^2} \bigg|_{\theta=\theta_0}
\]
so that
\[
\sqrt{n} \left(\hat{\theta}_n - \theta_0 \right) \xrightarrow{d} N \left(0, \frac{1}{E_{\theta_0} \left(\frac{\partial \log f(x_i|\theta)}{\partial \theta} \bigg|_{\theta=\theta_0} \right)^2} \right)
\]
so that the asymptotic variance is the CRLB.
Hence, the asymptotic approximation for the finite-sample distribution is
\[
\hat{\theta}_n^{MLE} \sim N \left(\theta_0, \frac{1}{n E_{\theta_0} \left(\frac{\partial \log f(x_i|\theta)}{\partial \theta} \bigg|_{\theta=\theta_0} \right)^2} \right).
\]