Alternatives to asymptotic approximations: data-resampling based techniques

- In point estimation and hypothesis testing, we have resorted to asymptotic theory (which holds when $N \to \infty$) to approximate the *finite-sample* $(n < \infty)$ distribution of statistics.
- Here, consider alternatives to this approaches.
- Focus on alternatives based on data resampling.

General idea:

- Data are a finite sample $x_1, \ldots, x_N \sim i.i.d.$ F
- Using data, construct finite-sample statistic $W_N \equiv W(x_1, \ldots, x_N)$ (this could be a point estimator, or a test statistic).
- Now we want to get idea about the sampling variability in W_N (some measure of the variance, or standard error). For concreteness, in this lecture we will focus on alternatives for estimating the *variance* of W_N , equal to $E_F W_N^2 (E_F W_N)^2$, where expectation is taken over the random variables x_1, \ldots, x_N . (Standard error would be the square root of this.)
- The "true" variance is calculated with respect to F:

$$E_F W_N^2 - (E_F W_N)^2 = \int \cdots \int W(x_1, \dots, x_N)^2 dF(x_1) \dots dF(x_N) - \left[\int \cdots \int W(x_1, \dots, x_N) dF(x_1) \dots dF(x_N) \right]^2.$$
(1)

• Asymptotic approach: we make assumptions such that $\sqrt{N}(W_N - W_0) \stackrel{d}{\to} N(0, V)$. Then approximate the finite-sample distribution of $W_N \stackrel{A}{\sim} N(W_0, \frac{1}{N}V)$, so that $\frac{1}{N}\hat{V}$ is estimate of W_N 's variance.. *Problem:* this approximation can be bad, especially if N is small.

• Resampling approach: we approximate the finite-sample distribution of W_N by the *exact* distribution of $W(x_1^*, \dots, x_M^*)$, where

$$x_1^*,\ldots,x_M^* \sim F^*(\cdots;x_1,\ldots,x_N)$$

where F^* is defined as the resampling distribution. Note that F^* explicitly depends on the original observations x_1, \ldots, x_N ; for this reasons, x_1^*, \ldots, x_M^* is called a resampled dataset. Furthermore, the size of the resampled dataset M is usually an increasing function of N, but does not have to coincide with N. Examples of resampling distributions F^* are given below.

• Then, we approximate the finite-sample CDF of W_N by the exact CDF of $W(x_1^*, \ldots, x_M^*)$:

$$Prob\left(W_{N} \leq z\right) \approx Prob\left(W\left(x_{1}^{*}, \dots, x_{M}^{*}\right) \leq z\right)$$

$$\int \dots \int \mathbf{1}\left(W\left(x_{1}^{*}, \dots, x_{M}^{*}\right) \leq z\right) F^{*}\left(dx_{1}^{*}, \dots, dx_{M}^{*}; x_{1}, \dots, x_{N}\right).$$

Moreover, the resampling estimate of W_N 's variance is $E_{F^*}W^2 - (E_{F^*}W)^2$, where both expectations are taken over the resampling distribution F^* :

$$E_{F^*}W^2 - (E_{F^*}W)^2 = \int \cdots \int W(x_1^*, \dots, x_M^*)^2 F^* (dx_1^*, \dots, dx_M^*; x_1, \dots, x_N)$$
$$- \left[\int \cdots \int W(x_1^*, \dots, x_M^*) F^* (dx_1^*, \dots, dx_M^*; x_1, \dots, x_N) \right]^2.$$
(2)

- Instances of resampling distributions:
 - **Bootstrap:** resampled dataset x_1^*, \ldots, x_N^* (same size as original dataset) are N iid draws (with replacement) from the original dataset x_1, \ldots, x_N . Specifically:

$$x_i^* = \begin{cases} x_1 & \text{w/prob } \frac{1}{N} \\ x_2 & \text{w/prob } \frac{1}{N} \\ \dots & \dots \\ x_N & \text{w/prob } \frac{1}{N} \end{cases} \quad i = 1, \dots, N.$$

- **Subsampling:** resampled dataset x_1^*, \ldots, x_M^* (with M < N, but $M \to \infty$ as $N \to \infty$, and $M/N \to 0$) is a random subsample (without replacement) of M datapoints from the original sample x_1, \ldots, x_N : that is,

$$x_1^*, \dots, x_M^* = \begin{cases} x_1, \dots, x_M & \text{w/prob } \frac{1}{\binom{N}{M}} \\ x_1, x_3, \dots, x_{M+1} & \text{w/prob } \frac{1}{\binom{N}{M}} \\ x_1, x_4, \dots, x_{M+2} & \text{w/prob } \frac{1}{\binom{N}{M}} \\ \dots & \dots \\ x_{N-M}, \dots, x_N & \text{w/prob } \frac{1}{\binom{N}{M}}. \end{cases}$$

1 Bootstrap

Consider a simple example: x_1, x_2 are *i.i.d.* (μ, σ^2) . Say (for simplicity) that the realized $x_1 = 1$ and $x_2 = 0$.

You make inference about the unknown μ by estimating μ using the sample average $\hat{\mu} \equiv \bar{x}_2 \equiv \frac{1}{2} (x_1 + x_2)$. For given x_1 and x_2 , $\bar{x}_2 = \frac{1}{2}$.

Next, you want to obtain standard errors and confidence intervals for $\hat{\mu}$.

Asymptotic approach: use asymptotic approximation that $\hat{\mu} \stackrel{A}{\sim} N(\mu_0, \sigma^2/n)$. Since σ^2 is not known, we approximate using sample variance, so that our estimate of variance is $\frac{1}{2} \frac{1}{2} \sum_{i=1}^{2} (x_i - \bar{x}_2)^2 = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{8}$. Then standard error is $\sigma^2/n = \sqrt{\frac{1}{16}} = \frac{1}{4}$.

Accordingly, a 95% asymptotic confidence interval is then given by $\mu \in \left[\frac{1}{2} - \frac{1.96}{4}, \frac{1}{2} + \frac{1.96}{4}\right]$.

Bootstrap approach: you estimate the variance of \bar{x}_2 by $E(\bar{x}_2^*)^2 - (E\bar{x}_2^*)^2$, where both expectations is taken with respect to the resampling distribution (and conditional on the original dataset x_1, x_2). Here, $\bar{x}_2^* \equiv \frac{1}{2}(x_1^* + x_2^*)$, where

$$x_i^* = \begin{cases} x_1 & \text{with prob } \frac{1}{2} \\ x_2 & \text{with prob } \frac{1}{2} \end{cases} \quad i = 1, 2.$$

For the given values of $x_1 = 1$, $x_2 = 0$, we can explicitly derive the bootstrap estimate of variance:

x_1^*	x_2^*	\bar{x}_2^*	$(\bar{x}_2^*)^2$	Prob	$((\bar{x}^*)_2^2)^2$
1	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{16}$
0	0	0	0	$\frac{1}{4}$	0
1	1	1	1	$\frac{1}{4}$	1
0	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{16}$

Hence, $E\bar{x}_2^* = \frac{1}{2}$, $E(\bar{x}_2^*)^2 = \frac{3}{8}$ and the bootstrap variance estimate therefore equals $\frac{3}{8} - \left(\frac{1}{2}\right)^2 = \frac{1}{8}$, which coincides with asymptotic estimate of variance.

However, consider the case of estimating μ^2 , using the sample average estimator $\hat{\mu}^2 = \bar{x}_2^2$. The asymptotic variance is obtained using the Delta method, yielding

$$AV(\hat{\mu}^2) = (2\mu)^2 \sigma^2 / n = 1^2 \cdot \frac{1}{6}.$$

The bootstrap variance is (see table above)

$$BV(\hat{\mu}^2) = E((\bar{x}^*)_2^2)^2 - [E(\bar{x}_2^*)^2]^2 = \frac{9}{32} - \left[\frac{3}{8}\right]^2 = \frac{9}{64}.$$

After obtaining estimates of standard error, bootstrap confidence intervals can be formed. There are different ways to do this, which we will look at below.

Use of simulation: One limitation of the bootstrap, however, is that it can be computationally intractable when N becomes large.

Example: $x_1, \ldots, x_N \sim \text{iid } (\mu, \sigma^2)$. N is finite but large. What is bootstrap estimate of the variance of sample mean $\hat{\mu} \equiv \bar{x}_N$?

 F^* , the bootstrap resampling distribution, is the discrete *multinomial* distribution with points of support at the N points x_1, \ldots, x_N , each with probability $\frac{1}{N}$ (ie. an "N-sided die" with faces reading x_1, \ldots, x_N) with mean $Ex^* = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}_N$. Accordingly, the bootstrap variance estimate is the sample variance of the

$$V_N^* \equiv E(\bar{x}_N^* - \bar{x}_N)^2 \tag{3}$$

(where x_N is taken as non-random). When N is big, this is not analytically tractable to calculate.

However, it can be approximated by *simulation*:

- 1. Draw B resampled datasets using the F^* resampling distribution: for each $b = 1, \ldots, B$, draw $x_{1,b}^*, \ldots, x_{N,b}^*$ from F^* . For each resampled dataset b, calculate the sample mean $\bar{x}_{N,b}^* \equiv \frac{1}{N} \sum_{i=1}^N x_{i,b}^*$.
- 2. Approximate the expectation in the expression for V_N^* by the sample variance (across the B resampled datasets) of $\bar{x}_{N,b}^*$:

$$V_N^{*,s} \equiv \frac{1}{B} \sum_{b=1}^B \left(\bar{x}_{N,b}^* - \bar{x}_N \right)^2 \tag{4}$$

By the LLN, Eq. (4) \xrightarrow{p} Eq. (3), as $B \to \infty$, for a fixed N, and for all realizations of (X_1, \ldots, X_N) .

Consistency of bootstrap: usual criterion for validity of using bootstrap. Consider a statistic $W_n = W(x_1, ..., x_N)$. Assume that it (suitably normalized and "blown-up") has a nondegenerate limiting distribution: $W_n \stackrel{d}{\to} J$. The requirement for consistency is that the bootstrapped version $\tilde{W}_n^* \stackrel{d}{\to} J$ also. That is, the non-bootstrapped \tilde{W}_n and bootstrapped statistics \tilde{W}_n^* have the same limiting distribution. Showing this can be quite technically involved.

Counterexample: One well-known counterexample¹ is when $X_1, \ldots, X_n \sim U[0, \theta]$. Obviously, the sample maximum $X_{(n)} \equiv \max(X_1, \ldots, X_n) \stackrel{p}{\to} \theta$. Consider bootstrapping the distribution of $T_n \equiv \frac{n(\theta - X_{(n)})}{\theta}$. The bootstrapped version is: $T_n^* \equiv \frac{n(X_{(n)} - X_{(n)}^*)}{X_{(n)}}$ where X_1^*, \ldots, X_n^* are iid draws from the multinomial distribution with support (X_1, \ldots, X_n) . Note that

$$P(T_n^* = 0) = P(X_{(n)}^* = X_{(n)})$$

$$= 1 - \prod_{i=1}^n P(X_i^* < X_{(n)}) = 1 - \left(\frac{n-1}{n}\right)^n = 1 - (1 - \frac{1}{n})^n$$

$$\to 1 - \exp(-1)$$

which is ≈ 0.63 .

¹Bickel and Freedman, "On the Consistency of Bootstrap Estimates", Annals of Statistics, 1981.

On the other hand, we know that (for k > 0)

$$P(T_n \le k) = P(X_{(n)} \ge \theta - \frac{\theta k}{n})$$

$$= 1 - P(X \le \theta - \frac{\theta k}{n})^n = 1 - (1 - \frac{k}{n})^n$$

$$\to 1 - \exp(-k)$$

which is the CDF of an exponential random variable, which evaluates to zero at k = 0. Hence T_n and T_n^* do not have the same limiting distribution, so bootstrap consistency fails.

1.1 Bootstrap confidence intervals

Recall: consider a *pivotal* statistic $W_n(X_1, \ldots, X_n; \theta)$ with distribution G_n , which does not depend on θ . A size- $(1 - \alpha)$ two-sided confidence interval is one such that

$$1 - \alpha = G_n(U) - G_n(L) = P(L \le W_n \le U \Leftrightarrow \underline{\theta} \le \theta \le \overline{\theta})$$

where we assume that the values U and L are chosen for the desired size, and we assume that the equation $L \leq W_n \leq U$ can be "inverted" to obtain the confidence interval $\underline{\theta} \leq \theta \leq \overline{\theta}$. We can set $U = G_n^{-1}(1 - \alpha/2)$ and $L = G_n^{-1}(\alpha/2)$.

The most-common test statistic used here is the T-statistic: $W_n = (\hat{\theta}_n - \theta)/\hat{\sigma}_n$, for which the associated confidence region is

$$\left[\hat{\theta}_n - \hat{\sigma}_n G_n^{-1} (1 - \alpha/2), \hat{\theta}_n - \hat{\sigma}_n G_n^{-1} (\alpha/2)\right]. \tag{5}$$

Problem is that for many cases, G_n is unknown, so we need to approximate it.

Asymptotic approach approximates G_n by N(0,1).

Bootstrap approach approximates G_n by F_n^* , the bootstrap resampling distribution corresponding to the observed X_1, \ldots, X_n . Next we go over several common ways of constructing bootstrap confidence intervals.

1.1.1 Bootstrap "t-stat"

Inference is based on T-statistic $W_n = (\hat{\theta}_n - \theta)/\hat{\sigma}_n$. By plug-in principle:

$$G_n(x) = P(W_n \le x) \longrightarrow G_n^*(x) = P_{F_n^*}(W_n^* = \sqrt{n}(\hat{\theta}_n^* - \hat{\theta}_n)/\hat{\sigma}_n^* \le x)$$

where $\hat{\theta}_n^*$ is the bootstrapped estimate, and $\hat{\sigma}_n^*$ is the bootstrapped estimate of standard error. If you are using simulation to approximate $G_n^*(x)$, $\hat{\theta}_n^*$ and $\hat{\sigma}_n^*$ have to be computed for each resampled dataset. (More below.)

Accordingly, the bootstrap confidence interval, corresponding to Eq. (5), is

$$\left[\hat{\theta}_n - \hat{\sigma}_n G_n^{*-1} (1 - \alpha/2), \hat{\theta}_n - \hat{\sigma}_n G_n^{*-1} (\alpha/2)\right].$$

Note: $\hat{\sigma}_n$ and $\hat{\sigma}_n^*$ are different. Often, as we consider above, the variance $\hat{\sigma}_n = Var(\hat{\theta}_n)$ is itself estimated by bootstrap. Then $\hat{\sigma}_n^*$ denotes the bootstrapped version of the bootstrapped standard error $\hat{\sigma}_n$.

If you are using simulation to approximate G_n^* , then bootstrapping the bootstrap (also called the "nested bootstrap") can require a great deal of computer time. The idea is: in order to simulate G_n^* , you draw B resampled datasets. For each resampled dataset $b = 1, \ldots, B$, consisting of observations $x_{1,b}^*, \ldots, x_{n,b}^*$:

- Estimate $\hat{\theta}_{n,b}^*$
- In order to estimate the standard error $\hat{\sigma}_{n,b}^*$, you resample M datasets using $F_{n,b}^*$, the bootstrap resampling distribution for the b-th resampled dataset $x_{1,b}^*, \ldots, x_{n,b}^*$.
 - For each resampled dataset (m, b), you estimate $\hat{\theta}_{n,b,m}^*$.
 - Then approximate $\hat{\sigma}_{n,b}^* \approx \sqrt{\frac{1}{M} \sum_{m=1}^M \left(\hat{\theta}_{n,b,m}^*\right)^2 \left[\frac{1}{M} \sum_{m=1}^M \hat{\theta}_{n,b,m}^*\right]^2}$.
- Form resampled T-statistic for resampled dataset b as $W_{n,b}^* = (\hat{\theta}_{n,b}^* \hat{\theta}_n)/\hat{\sigma}_{n,b}^*$.

Then approximate

$$G_n^*(x) \approx \frac{1}{B} \sum_{b=1}^B \mathbf{1}(W_{n,b}^* \le x).$$

This requires a total of B * M resampled datasets.

1.1.2 Bootstrap percentile

To avoid computational burden associated with boostrap t-stat, we can do the bootstrapped percentile, which is based on the unnormalized estimator $\hat{\theta}_n$. By plug-in principle:

$$G_n(x) = P_{F_n}(\hat{\theta} \le x) \longrightarrow G_n^*(x) = P_{F_n^*}(\hat{\theta}_n^* \le x)$$

where $\hat{\theta}_n^*$ is resampled estimator.

Accordingly, the bootstrap percentile confidence interval is

$$\left[G_n^{*-1}(\alpha/2), G_n^{*-1}(1-\alpha/2)\right].$$

As above, $G_n^*(x)$ can be simulated, but nested bootstrap is not necessary because there is no variance estimate here.

1.1.3 The hybrid bootstrap

This is based on the statistic: $W_n = \sqrt{n}(\theta_n - \theta)$. By the plug-in principle:

$$G_n(x) = P_{F_n}(\sqrt{n}(\hat{\theta} - \theta) \le x) \longrightarrow G_n^*(x) = P_{F_n^*}(\sqrt{n}(\hat{\theta}_n^* - \hat{\theta}_n) \le x)$$

where $\hat{\theta}_n^*$ is resampled estimator. Accordingly, the bootstrap confidence interval is

$$\left[\hat{\theta}_n - (1/\sqrt{n})G_n^{*-1}(1-\alpha/2), \hat{\theta}_n - (1/\sqrt{n})G_n^{*-1}(\alpha/2)\right].$$

As with the Bootstrap percentile, this avoids the computational burdens associated with the bootstrap t-stat method.

2 Subsampling

To illustrate, start with an n = 3 Bernoulli experiment, with $x_1 = 1$, $x_2 = 0$, $x_3 = 0$. We take the subsample size as M = 2. Each subsampled dataset, then, is

$$x_1^*, x_2^* = \begin{cases} x_1, x_2 & \text{w/ prob } \frac{1}{3} \\ x_1, x_3 & \text{w/ prob } \frac{1}{3} \\ x_2, x_3 & \text{w/ prob } \frac{1}{3}. \end{cases}$$

The sample mean \bar{x}_3 is $\frac{1}{3}$. The asymptotic estimate of the variance is $\frac{1}{n}\bar{x}_3(1-\bar{x}_3)=\frac{1}{3}\frac{1}{3}\frac{2}{3}=\frac{2}{27}$.

The subsample variance estimate is $E(\bar{x}_2^*)^2 - (E\bar{x}_2^*)^2$, where the expectation is taken over the subsampling distribution above. We can explicitly derive the distribution of \bar{x}_2^* :

Hence, the subsampling variance estimate is $\frac{1}{6} - \left(\frac{1}{3}\right)^2 = \frac{1}{18}$.

Simulating the subsample variance More generally, if N is large, the subsample variance will become difficult to calculate, due to the large number of subsamples (for given dataset size N and subsample size M < N, the total number of subsamples is $\binom{N}{M}$). However, as for the bootstrap, the subsample variance can also be approximated by simulation. The simulation procedure is simple:

- 1. For $b=1,\ldots,B$ (where presumably $B<<\binom{N}{M}$), randomly draw a M-datapoint subset $x_{1,b}^*,\ldots,x_{M,b}^*$ of the original dataset. For each subsampled dataset, calculate the sample mean $\bar{x}_{M,b}^*\equiv \frac{1}{M}\sum_{i=1}^M x_{i,b}^*$
- 2. Approximate the subsample variance by averaging over subsampled datasets:

$$\frac{1}{B} \sum_{b=1}^{B} (\bar{x}_{M,b}^*)^2 - \left(\frac{1}{B} \sum_{b=1}^{B} \bar{x}_{M,b}^*\right)^2.$$

Validity of Subsampling We say that the subsampling procedure is valid when the subsampled distribution of $\tilde{W}_n^* \equiv M^{\gamma}(W(x_1^*, \dots, x_M^*) - W_n)$ resembles that of $\tilde{W}_n \equiv n^{\gamma}(W_n - W_0)$ as n gets large; γ denotes the rate of convergence of W_n . Unlike for the bootstrap, it is often simple to establish this result: the standard theorem for subsampling states that all that is required is for the limiting distribution of \tilde{W}_n to be nondegenerate.

Theorem 1 (2.2.1 in Politis, Romano and Wolf (1999).) Assume \tilde{W}_n has a nondegenerate limiting distribution with CDF J. Also assume $M/n \to 0$ and $M^{\gamma}/n^{\gamma} \to 0$. Then, letting $L_n^*(\cdot)$ denote the CDF of the subsampled statistic \tilde{W}_n^* , we have

- (i) $L_n^*(x) \xrightarrow{p} J(x)$, for all x where $J(\cdot)$ is continuous
- (ii) $\sup_x |L^*(x) J(x)| \stackrel{p}{\to} 0$.
- (iii) Asymptotically valid subsample p-values: for $\alpha \in (0,1)$, let $c_n^*(1-\alpha)$ and $c(1-\alpha)$ denote, respectively, the quantile functions of $L_n^*(x)$ and J(x). Then

$$P(\tilde{W}_n \le c_n^*(1-\alpha)) \to 1-\alpha; \quad as \ n \to \infty.$$

Subsampling Hypothesis testing Another advantage of the subsampling approach is the ease in performing hypothesis tests. All we require is that the test statistic (suitably normalized) has a nondegenerate limiting distribution under the null hypothesis.

Assume that we have a test-statistic $T_n = T(x_1, ..., x_N)$ such that $T_n \stackrel{p}{\to} 0$ under H_0 , and $\stackrel{p}{\to} > 0$ under the alternative H_1 (one-sided test-statistics, as well as chi-squared, likelihood ratio test statistics satisfy this). Furthermore, assume that $n^{\gamma}T_n$ converges is distribution to some non-degenerate limiting distribution (so γ is the rate of convergence).

We construct a subsampled distribution for the normalized test statistic $n^{\gamma}T_n$; for each subsampled dataset k, we construct an analogous test statistic $M^{\gamma}T_{k,M}^* \equiv M^{\gamma}T(x_{k,1}^*,\ldots,x_{k,M}^*)$. Let

$$G_{N,M}(z) \equiv \frac{1}{\binom{N}{M}} \sum_{i=1}^{\binom{N}{M}} \mathbf{1} \left(M^{\gamma} T_M^* \leq z \right)$$

denote the CDF of the set of subsampled test statistics (it is the proportion of the subsampled test stats which do not exceed z). Also, let $g_{N,M}(1-\alpha)$ denote the $1-\alpha$ -th quantile of this CDF: $g_{N,M}(\tau) = \min(z: G_{N,M}(z) \ge \tau)$ for $0 \le \tau \le 1$.

Given this, a subsample size- α test of H_0 vs. H_1 obtains if we reject H_0 whenever $n^{\gamma}T_n > g_{N,M}(1-\alpha)$. In other words, we reject the null when the test statistic

(normalized by its rate of convergence) calculated using the original data exceeds over $(1 - \alpha)\%$ of the analogous subsampled test statistics.

Theorem 2 (2.6.1 in Politis, Romano, Wolf (1999).)

Assume that, under H_0 , $n^{\gamma}T_n$ has limiting distribution with CDF G, and corresponding quantile function g. Let G_n^* and g_n^* denote CDF and quantile function of the subsampled test statistic $M^{\gamma}T_n^*$.

(i) Under
$$H_0$$
, $P(n^{\gamma}T_n > g_n^*(1-\alpha)) \to \alpha$; as $n \to \infty$

(ii) Under
$$H_1$$
, $P(n^{\gamma}T_n > g_n^*(1-\alpha)) \to 1$; as $n \to \infty$

Given the previous theorem, part (i) is not surprising. However (ii) is interesting. The argument is this: note that the quantile function for $M^{\gamma}T_n^*$ is just M^{γ} times the quantile function for T_n^* , which we denote by $g_n^0(1-\alpha)$. Therefore

$$P(n^{\gamma}T_n > g_n^*(1-\alpha)) = P(n^{\gamma}T_n > m^{\gamma}g_n^0(1-\alpha)) = P(\frac{n^{\gamma}}{m^{\gamma}}T_n > g_n^0(1-\alpha)).$$

Since, by assumption, $T_n \stackrel{p}{\to} T > 0$, we have also that $g_n^0(1-\alpha) \stackrel{p}{\to} T$ (for all α). Because $\frac{n^{\gamma}}{m^{\gamma}} \to \infty$, asymptotic rejection probability is one.

As an example, consider an N=4, M=3 Bernoulli case, with $x_1=1, x_2=0, x_3=0, x_4=0$. We test $H_0: p=\frac{1}{2}$ versus $H_1: p\neq \frac{1}{2}$.

Consider the test statistic $T_n \equiv |\bar{X}_n - \frac{1}{2}|$, which converges to zero under H_0 but converges to something strictly > 0 under H_1 . It turns out that under the null, $\sqrt{n}T_n$ converges to a non-degenerate distribution. We obtain critical regions for this test statistic using resampling techniques.

The test statistic in the original sample is $\sqrt{4}\frac{1}{4} = \frac{1}{2}$.

As before, we can derive the exact distribution of T_3^* , the subsampled test statistic formed from considering three-datapoints subsamples:

Dataset	\bar{x}_3^*	$\sqrt{3}T_3^*$	Prob
$\{x_1, x_2, x_3\}$	$\frac{1}{3}$	$\sqrt{3}\frac{1}{6}$	$\frac{1}{4}$
$\{x_2, x_3, x_4\}$	0	$\sqrt{3}\frac{1}{2}$	$\frac{1}{4}$
$\{x_1, x_2, x_4\}$	$\frac{1}{3}$	$\sqrt{3}\frac{1}{6}$	$\frac{1}{4}$
$\{x_1, x_3, x_4\}$	$\frac{1}{3}$	$\sqrt{3}\frac{1}{6}$	$\frac{1}{4}$

so that the CDF for $\sqrt{3}T_3^*$ is

$$G_{4,3}(z) = \begin{cases} 0 & z \in [0, \sqrt{3}\frac{1}{6}) \\ \frac{3}{4} & z \in [\sqrt{3}\frac{1}{6}, \sqrt{3}\frac{1}{2}) \\ 1 & z \in [\sqrt{3}\frac{1}{2}, +\infty). \end{cases}$$

Hence, an $\alpha=0.25$ sized test would reject when $\sqrt{4}T_4 \geq \sqrt{3}\frac{1}{6}\approx 0.289$. Hence, for our assumed data, we would reject this test.