
Introduction to Probability Theory

Unless otherwise noted, references to Theorems, page numbers, etc. from Casella-
Berger, chap 1.

Statistics: draw conclusions about a population of objects by sampling from the
population

1 Probability space

We start by introducing mathematical concept of a probability space, which has
three components (Ω,B, P ), respectively the sample space, event space, and probability
function. We cover each in turn.

���

Ω: sample space. Set of outcomes of an experiment.

Example: tossing a coin twice. Ω = {HH,HT, TT, TH}

���

An event is a subset of Ω. Examples: (i) “at least one head” is {HH,HT, TH}; (ii)
“no more than one head” is {HT, TH, TT}. &etc.

In probability theory, the event space B is modelled as a σ-algebra (or σ-field) of Ω,
which is a collection of subsets of Ω with the following properties:

(1) ∅ ∈ B
(2) If an event A ∈ B, then Ac ∈ B (closed under complementation)
(3) If A1, A2, . . . ∈ B, then ∪∞i=1Ai ∈ B (closed under countable union). A countable
sequence can be indexed using the natural integers.

Additional properties:
(4) (1)+(2) → Ω ∈ B
(5) (3)+De-Morgan’s Laws1 → ∩∞i=1Ai ∈ B (closed under coutable intersection)

���

Consider the two-coin toss example again. Even for this simple sample space Ω =
{HH,HT, TT, TH}, there are multiple σ-algebras:

1. {∅,Ω}: “trivial” σ-algebra

1(A ∪B)c = Ac ∩Bc
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2. The “powerset” P(Ω), which contains all the subsets of Ω

���

In practice, rather than specifying a particular σ-algebra from scratch, there is usually
a class of events of interest, C, which we want to be included in the σ-algebra. Hence,
we wish to “complete” C by adding events to it so that we get a σ-algebra.

For example, consider 2-coin toss example again. We find the smallest σ-algebra
containing (HH), (HT ), (TH), (TT ); we call this the σ-algebra “generated” by the
fundamental events (HH), (HT ), (TH), (TT ). It is...

Formally, let C be a collection of subsets of Ω. The minimal σ-field generated by C,
denoted σ(C), satisfies: (i) C ⊂ σ(C); (ii) if B′ is any other σ-field containing C, then
σ(C) ⊂ B′.

���

Finally, a probability function P assigns a number (“probability”) to each event in B.
It is a function mapping B → [0, 1] satisfying:

1. P (A) ≥ 0, for all A ∈ B.
2. P (Ω) = 1
3. Countable additivity: If A1, A2, · · · ∈ B are pairwise disjoint (i.e., Ai ∩Aj = ∅, for
all i 6= j), then P (∪∞i=1Ai) =

∑∞
i=1 P (Ai).

Define: Support of P is the set {A ∈ B : P (A) > 0}.

Example: Return to 2-coin toss. Assuming that the coin is fair (50/50 chance of
getting heads/tails), then the probability function for the σ-algebra consisting of all
subsets of Ω is

Event A P (A)
HH 1

4

HT 1
4

TH 1
4

TT 1
4

∅ 0
Ω 1
(HH, HT, TH) 3

4
(using pt. (3) of Def’n above)

(HH,HT) 1
2

...
...
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1.1 Probability on the real line

In statistics, we frequently encounter probability spaces defined on the real line (or a
portion thereof). Consider the following probability space: ([0, 1],B([0, 1]), µ)

1. The sample space is the real interval [0, 1]

2. B([0, 1]) denotes the “Borel” σ-algebra on [0,1]. This is the minimal σ-algebra
generated by the elementary events {[0, b), 0 ≤ b ≤ 1}. This collection contains
things like [1

2
, 2
3
], [0, 1

2
] ∪ (2

3
, 1],

{
1
2

}
, [
{

1
2

}
,
{

2
3

}
].

• To see this, note that closed intervals can be generated as countable inter-
sections of open intervals (and vice versa):

lim
n→∞

[0, 1/n) = ∩∞n=1[0, 1/n) = {0} ,

lim
n→∞

(0, 1/n) = ∩∞n=1(0, 1/n) = ∅,

lim
n→∞

(a− 1/n, b+ 1/n) = ∩∞n=1(a− 1/n, b+ 1/n) = [a, b]

lim
n→∞

[a+ 1/n, b− 1/n] = ∪∞n=1[a+ 1/n, b− 1/n] = (a, b)

(1)

(Limit has unambiguous meaning because the set sequences are mono-
tonic.)

• Thus, B([0, 1]) can equivalently be characterized as the minimal σ-field
generated by: (i) the open intervals (a, b) on [0, 1]; (ii) the closed intervals
[a, b]; (iii) the closed half-lines [0, a], and so on.

• Moreover: it is also the minimal σ-field containing all the open sets in
[0, 1]:

B([0, 1]) = σ(open sets on [0, 1]).

• This last characterization of the Borel field, as the minimal σ-field con-
taining the open subsets, can be generalized to any metric space (ie. so
that “openness” is defined). This includes R, Rk, even functional spaces
(eg. L2[a, b], the space of square-integrable functions on [a, b]).

3. µ(·), for all A ∈ B, is Lebesgue measure, defined as the sum of the lengths of the
intervals contained in A. Eg.: µ([1

2
, 2
3
]) = 1

6
, µ([0, 1

2
] ∪ (2

3
, 1]) = 5

6
, µ([1

2
]) = 0.
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���

More examples: Consider the measurable space ([0, 1],B). Are the following proba-
bility measures?

• for some δ ∈ [0, 1], A ∈ B,

P (A) =

{
µ(A) if µ(A) ≤ δ
0 otherwise

•
P (A) =

{
1 if A = [0, 1]
0 otherwise

• P (A) = 1, for all A ∈ B.

Can you figure out an appropriate σ-algebra for which these functions are probability
measures?

For third example: take σ-algebra as {∅, [0, 1]}.

1.2 Additional properties of probability measures

(CB Thms 1.2.8-11) For prob. fxn P and A,B ∈ B:

• P (∅) = 0;

• P (A) ≤ 1;

• P (Ac) = 1− P (A).

• P (B ∩ Ac) = P (B)− P (A ∩B)

• P (A ∪B) = P (A) + P (B)− P (A ∩B);

• Subadditivity (Boole’s inequality): for events Ai, i ≥ 1,

P (∪∞i=1Ai) ≤
∞∑
i=1

P (Ai).

• Monotonicity: if A ⊂ B, then P (A) ≤ P (B)
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• P (A) =
∑∞

i=1 P (A ∩ Ci) for any partition C1, C2, . . .

By manipulating the above properties, we get

P (A ∩B) = P (A) + P (B)− P (A ∪B)

≥ P (A) + P (B)− 1
(2)

which is called the Bonferroni bound on the joint event A ∩ B. (Note: when P (A)
and P (B) are small, then bound is < 0, which is trivially correct. Also, bound is
always ≤ 1.)

With three events, the above properties imply:

P (∪3
i=1Ai) =

3∑
i=1

P (Ai)−
3∑

i<j

P (Ai ∩ Aj) + P (A1 ∩ A2 ∩ A3)

and with n events, we have

P (∪ni=1Ai) =
n∑

i=1

P (Ai)−
n∑

1≤i<j≤n

P (Ai ∩ Aj) +
n∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak)+

· · ·+ (−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An).

This equality, the inclusion-exclusion formula, can be used to derive a wide variety
of bounds (depending on what is known and unknown).

2 Updating information: conditional probabilities

Consider a given probability space (Ω,B, P ).

Definition 1.3.2: if A,B ∈ B, and P (B) > 0, then the conditional probability of A
given B, denoted P (A|B) is

P (A|B) =
P (A ∩B)

P (B)
.

If you interpret P (A) as “the prob. that the outcome of the experiment is in A”,
then P (A|B) is “the prob. that the outcome is in A, given that you know it is in B”.

• If A and B are disjoint, then P (A|B) = 0/P (B) = 0.
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• If A ⊂ B, then P (A|B) = P (A)/P (B) < 1. Here “B is necessary for A”.

• If B ⊂ A, then P (A|B) = P (B)/P (B) = 1. Here “B implies A”

As CB point out, when you condition on the event B, then B becomes the sample
space of a new probability space, for which the P (·|B) is the appropriate probability
measure:

Ω→ B
B → {A ∩B, ∀A ∈ B}
P (·)→ P (·|B)

���

From manipulating the conditional probability formula, you can get that

P (A ∩B) = P (A|B) · P (B)

= P (B|A) · P (A)

⇒ P (A|B) =
P (B|A) · P (A)

P (B)
.

For a partition of disjoint events A1, A2, . . . of Ω: P (B) =
∑∞

i=1 P (B ∩ Ai) =∑∞
i=1 P (B|Ai)P (Ai). Hence:

P (Ai|B) =
P (B|Ai) · P (Ai)∑∞
i=1 P (B|Ai)P (Ai)

which is Baye’s Rule.

���

Example: Let’s Make a Deal.

• There are three doors (numbered 1,2,3). Behind one of them, a prize has been
randomly placed.

• You (the contestant) bet that prize is behind door 1

• Monty Hall opens door 2, and reveals that there is no prize behind door 2.

• He asks you: “do you want to switch your bet to door 3?”
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Informally: MH has revealed that prize is not behind 2. There are two cases: either
(a) it is behind 1, or (b) behind 3. In which case is MH’s opening door 2 more
probable? In case (a), MH could have opened either 2 or 3; in case (b), MH is forced
to open 2 (since he cannot open door 1, because you chose that door). MH’s opening
of door 2 is more probable under case (b), so you should switch. (This is actually a
“maximum likelihood” argument.)

More formally, define two random variables D (for door behind which the prize is) and
M (denoted the door which Monty opens). Consider a comparison of the conditional
probabilities P (D = 1|M = 2) vs. P (D = 3|M = 2). Note that these two sum to 1,
so you will switch D = 3 if P (D = 3|M = 2) > 0.5.

D M Prob
1 1 0
1 2 1

3
∗ 1

2
= 1

6

1 3 1
3
∗ 1

2
= 1

6

2 1 0
2 2 0
2 3 1

3
∗ 1 = 1

3

3 1 0
3 2 1

3
∗ 1 = 1

3

3 3 0

(Note that Monty will never open door 1, because you bet on door 1.)

Before Monty opens door 2, you believe that the Pr(D = 3) = 1
3
. After Monty opens

door 2, you can update to

Pr(D = 3|M = 2) = Pr(D = 3,M = 2)/Pr(M = 2) =
1

3
/(

1

3
+

1

6
) =

2

3
.

So you should switch.

3 Independence

Two events A,B ∈ B are statistically independent iff

P (A ∩B) = P (A) · P (B).

(Two disjoint events are not independent.)
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Independence implies that

P (A|B) = P (A), P (B|A) = P (B) :

knowing that outcome is in B does not change your perception of the outcome’s being
in A.

Example: in 2-coin toss: the events “first toss is heads” (HH,HT) and “second toss
is heads” (HH,TH) are independent. (Note that independence of two events does not
mean that the two events have zero intersection in the sample space.)

Some trivial cases for independence of two events A1 and A2: (i) P (A1) ≤ P (A2) = 1;
P (A1) = 0.

When there are more than two events (i.e., A1, . . . , An), we use concept of mutual
independence: A1, . . . , An are mutually independent iff

for any subcollection Ai1 , . . . , Aik : P (∩kj=1Aij) =
k∏

j=1

P (Aij).

This is very strong: it is stronger than P (∩ni=1Ai) =
∏n

i=1 P (Ai), and also stronger

than P (Ai∩Aj) = P (Ai)P (Aj), ∀i 6= j. Indeed, it involves
∑n

k=2

(
n
k

)
= 2n−n−1

equations (which are the number of subcollections of Ai1 , . . . , Aik).

4 Random variables

A random variable is a function from the sample space Ω to the real numbers

Examples: 2-coin toss. Let ti =

{
1 if H in i-th toss
2 if T in i-th toss

for i = 1, 2.

1. One RV is x ≡ t1 + t2.

Ω x
HH 2
HT 3
TH 3
TT 4

Note that RV need not be one-to-one mapping from Ω to R.

2. Another RV is x equal to the number of heads
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Ω P (·) x Px

HH 1
4

2 1
4

HT 1
4

1 1
4

TH 1
4

1 1
4

TT 1
4

0 1
4

implying

x =


0 w/prob 1

4

1 w/prob 1
2

2 w/prob 1
4
.

This example illustrates how we use (Ω,B, Pω), the original probability space, to define
(induce) a probability space for a random variable: here ({0, 1, 2} , all subsets of {0, 1, 2}, Px).

This is the simplest example of a discrete random variable: one with a countable
range.

4.1 Example: Continuous random variable

For continuous random variables x : ⊗ → R, we define the probability space:

• Sample space is real line R

• Event space is B(R), the “Borel” σ-algebra on the real line, which is generated
by the half-lines {(−∞, a], a ∈ (−∞,∞)}.

• Probability measure Px defined so that, for A ∈ B(R),

Px(A) = Pω(ω ∈ Ω : x(ω) ∈ A) ≡ Pω(x−1(A)).

Implicit assumption: for all A ∈ B(R), x−1(A) ∈ B(Ω). Otherwise, Pω(x−1(A))
may not be well-defined, since the domain of the P (·) function is B(Ω). This is
the requirement that the random variable x(·) is “Borel-measurable”.

Example: considerX(ω) = |ω|, with ω from the probability space ([−1, 1],B[−1, 1], µ/2).
Then the probability space for X(·) is (i) sample space [0, 1]; (ii) event space B[0, 1],
and (iii) probability measure Px such that

Px(A) = Pω(x(ω) ∈ A) = Pω(ω : ω ∈ A,−ω ∈ A) = µ(A).

For example, Px([1
3
, 2
3
]) = µ([1

3
, 2
3
])/2 + µ([−2

3
,−1

3
])/2 = µ([1

3
, 2
3
]).

9



4.2 CDF and PDF

For a random variable X on (R,B(R), Px), we define its cumulative distribution func-
tion (CDF)

FX(x) ≡ Px(X ≤ x), for all x.

(note that all the sets X ≤ x are in B(R)).

For a discrete random variable: step function which is continuous from the right
(graph)

For a continuous random variable:
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Thm 1.5.3: F(x) is a CDF iff

1. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0

2. F (x) is nondecreasing

3. F (x) is right-continuous: for every x0, limx↓x0 F (x) = F (x0)

Any random variable X is “tight”: For every ε > 0 there exists a constant M < ∞
such that P (|X| > M) < ε. Does not have a probability “mass” at ∞.

���

Definition 1.5.8: the random variables X and Y are identically distributed if for
every set A ∈ B(R), PX(X ∈ A) = PY (Y ∈ A).

Note that X, Y being identically distributed does not mean than X = Y ! (Example:
2-coin toss, with X being number of heads and Y being number of tails)

But Thm 1.5.10: X and Y are identically distributed⇐⇒ FX(z) = FY (z) for every
z.

���

Definition 1.6.1: Probability mass function (pmf) for a discrete random variable X
is

fX(x) ≡ PX(X = x).

Recover from CDF as the distance (on the y-axis) between the “steps”.

Definition 1.6.3: Probability density function (pdf) for a continuous random vari-
able X is fX(x) which satisfies

FX(x) =

∫ x

−∞
fX(t)dt. (3)

Thm 1.6.5 A function fx(x) is a pmf or pdf iff

• fX(x) ≥ 0 for all x

• For discrete RV:
∑

x fX(x) = 1; for continuous RV:
∫∞
−∞ fX(x)dx = 1.

���
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By Eq. (3), and the fundamental theorem of calculus, if fX(·) is continuous, then
fX(·) = F ′X(·) (i.e., FX is the anti-derivative of fX).

���

4.3 Conditional CDF/PDF

Random variable X ∼ (R,B(R), PX)

What is Prob(X ≤ x|X ∈ A) (conditional CDF)?

Go back to basics: Prob(X ≤ x|X ∈ A) = Prob({X≤x}∩A)
Prob(A)

This expression can be differentiated to obtain the conditional PDF.

• Example: X ∼ U [0, 1], with conditioning event X ≥ z.

Conditional CDF:

Prob(X ≤ x|X ≥ z) =

{
0 if x ≤ z
(x− z)/(1− z) if x > z

Hence, the conditional pdf is 1/(1− z), for x > z.

• Example: (truncated wages)

Wage offers X ∼ U [0, 10], and X > 5.25 (only observe wages when they lie
above minimum wage)

Conditional CDF:

FX(x|X ≥ 5.25) =
Prob({X ≤ x} ∩ {X ≥ 5.25})

Prob(X ≥ 5.25)

=
1
10

(x− 5.25)
1
10

4.75
for x ∈ [5.25, 10]

Hence,

fX(x|X ≥ 5.25) =
1

4.75
for x ∈ [5.25, 10].
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5 Lebesgue integral

Consider the measure space (R,B, P ), where P is any measure (not necessarily Les-
besgue measure). Then we define the Lebesgue-Stieltjes integral:

EPf =

∫
fdP ≡ sup{Ei}

{∑
i

(infω∈Ei
f(ω))P (Ei)

}
(4)

where the “sup” is taken over all finite partitions {E1, E2, . . .} of R. Assign value of
+∞ when this “sup” does not exist.

The definition above is not constructive, and typically when one needs to compute a
LS integral, one proceeds by converting it into the usual Riemann integral by replacing
dP (x) by p(x)dx, where p(x) denotes the density function of P (wrt. Lebesgue
measure). Then

∫
f(x)p(x)dx is a Riemann integral which can be computed in the

usual way.

5.1 Lebesgue vs. Riemann integral

These partitions can be defined quite generally. Consider a (bounded) function f and
a sequence of numbers yk with y1 < y2 < y3 < · · · < yK . Define the partition by

Ek = {ω : yk ≤ f(ω) < yk+1} , k = 1, . . . K − 1.

Letting P be Lesbesgue measure, we see that the Lesbesgue integral for this partition
is equal to (roughly) the areas of the rectangles when you “slice” along the y-axis.
Indeed this distinction between “slicing the range” vs. “slicing the domain” of the
function appears to have been a distinctive feature of his integration approach (vs.
Riemann’s approach) to Lebesgue himself.2

Using Lebesgue integration, one can consider the integral of a wider class of functions
than Riemann integration. (By “integrable” here, we are mean that the integral
exists, ie. is not undefined. Sometimes we make the additional restriction that it is
finite.) Indeed, we have

Theorem:3 Let f be a bounded real-valued function on [a, b].
(a) The function f is Riemann-integrable on [a, b] iff f is continuous almost everywhere

2It also suggests that the integral of a function should be the same no matter if you “reorder”
its domain

3Ash, Measure, Integration, and Functional Analysis, Academic Press, 1972. Theorem 1.7.1.
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on [a, b] (w.r.t Lebesgue measure)
(b) If f is Riemann-integrable on [a, b], then f is integrable w.r.t Lebesgue measure
on [a, b], and the two integrals are identical. �

A well-known example is the Dirichlet function:

f(ω) =

{
1 ω is rational
0 otherwise;

ω ∈ [0, 1].

The Lebesgue integral
∫ 1

0
fdµ = 0, but this function is nowhere continuous on [0,1],

and hence not Riemann-integrable.

5.2 Properties of Lesbesgue integral

• Indicator function: P (B) =
∫
1B(ω)dP ≡

∫
B
dP

• For disjoint sets A,B:
∫
A∪B dP =

∫
A
dP +

∫
B
dP.

• Scalar multiplication:
∫
kfdP = k

∫
fdP

• Additivity:
∫

(f + g)dP =
∫
fdP +

∫
gdP .

• Monotonicity: if f ≤ g P -almost everywhere, then
∫
fdP ≤

∫
gdP .

5.3 Convergence results for Lebesgue integrals

Consider a non-negative bounded function f(ω), and a sequence of partitions E1 ⊂
E2 ⊂ E3, etc. For a partition E i, consider the simple function defined as

∀ω ∈ Ek ∈ E i : f i(ω) = infω′∈Ek
f(ω′).

This function is constant on each element of the partition E i, and equal to the infimum
of the function f(ω) in each element.

Because the range of each function f i(ω) is finite, the Lesbesgue integral
∫
f idP is

just a finite sum and exists.4

Furthermore, we see that f i(ω) ↑ f(ω), for P -almost all ω. Intuitively
∫
fdP should

be the “limit” of
∫
f idP :

4Indeed, the LS integral, as defined in Eq. (4), can be defined as the sup over all simple function
dominated by f , i.e., supg simple

∫
gdP for g ≤ f , P -everywhere.
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Monotone convergence theorem: If {fn} is a non-decreasing sequence of measur-
able non-negative functions, with fn(ω) ↑ f(ω), then

lim
n→∞

∫
fndP =

∫
fdP.

(As stated, don’t require boundedness of fn, f : so both LHS and RHS can be ∞.)

For general functions f which may take both positive and negative values, we break
it up into the positive f+ = max {f, 0} and negative f− = (f+ − f) parts. Both f+

and f− are non-negative functions. We define∫
fdP =

∫
f+dP −

∫
f−dP

and use the Monotone Convergence Theorem for each integral separately.

Additional convergence results for Lebesgue integrals:

• Fatou’s lemma: for (possibly non-convergent) sequence of non-negative func-
tions fn:

liminfn→∞

∫
fndP ≥

∫
(liminfn→∞fn)dP.

(On the RHS, the “liminf” is taken pointwise in ω.) This is for sequences of
functions which need not converge.

• Dominated convergence theorem: If fn(ω)→ f(ω) for P -almost all ω, and
there exists a function g(ω) such that |fn(ω)| ≤ g(ω) for P -almost all ω and
for all n, and g is integrable (

∫
gdP < ∞), then

∫
fndP →

∫
fdP . That is,

Efn → Ef .

• Bounded convergence theorem: If fn(ω) → f(ω) for P -almost all ω, and
there exists constant B <∞ such that |fn(ω)| ≤ B for P -almost all ω and for
all n, then

∫
fndP →

∫
fdP .

5.4 Converting Lebesgue to Riemann integral

[skip]As we remarked above, for computational purposes we usually convert a Lebesgue
integral into the usual Riemann integral by replacing dP (x) by p(x)dx, where p(x)
denotes the density function of P (wrt. Lebesgue measure). Under what conditions
on the original probability function P (x) can be do this?
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By the Radon-Nikodym Theorem, a (necessary and sufficient) condition for the ex-
istence of a density function p(x) corresponding to the probability function P (x) is
that the probability measure P (x) of the real-valued random variable X be absolutely
continuous with respect to Lebesgue measure.

Absolutely continuous w.r.t. Lebesgue measure means that all sets in the support of
X (which is a part of the real line) which have zero Lebesgue measure must also have
zero probability under P (x); i.e., for all A ∈ R such that µ(A) = 0 → P (A) = 0.

Since only singletons (and countable sets of singletons) have zero Lebesgue measure,
this condition essentially rules out random variables which have a “point mass” at
some points. Intuitively, this implies jumps in the CDF F

Example: ([0, 1], B[0, 1], µ) and random variable

X(ω) =

{
1
2

if 1
4
≤ ω ≤ 1

2

ω otherwise.

Here µ(1
2
) = 0, but Prob(X = 1

2
) = P (ω ∈ [1

4
, 1
2
]) = 1/4.

So P is not absolutely continuous w.r.t. Lebesgue measure.

16


