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Since the seminal work of William Vickrey, auction theory has developed into one of
the most sophisticated and systematically investigated literatures in economics. Further-
more, auctions are being increasingly used as real-world allocation mechanisms (the most
celebrated example being the spectrum auctions run the the U.S. Federal Communications
Commission), thereby raising many interesting empirical issues. This combination of highly-
developed theory and real-world applications has spawned an impressive body of empirical
work.

This paper examines one branch of this empirical work — that dealing with structural
estimation of auction models. This work (see Paarsch (1992), Paarsch (1991) for two of
the earliest examples) derives the estimating equations directly from the equilibrium bid
functions posited in the theoretical auction literature, and attempts to recover the param-
eters of the underlying distribution of bidders’ valuations. In contrast, the reduced-form
empirical auction literature (see Hendricks and Porter (1988) for an example) tests the
comparative statics predictions of the theoretical auction models, without directly recovering
the parameters of the distribution of bidders’ valuations.

These two approaches are used to address different types of questions. The reduced-form
approach, which aims more to characterize bidder behavior in an auction rather than to
use the equilibrium bid functions as a mapping from observed bids to (unobserved) bidder
valuations in order to estimate the parameters of the distribution of the latter. For example,
the analysis of Hendricks and Porter (1988) tries to uncover patterns between the observed
bids, the number of participating bidders, and (proxies of) differences in informedness among
bidders in offshore oil and gas auctions, patterns which are predicted by auction theory.

On the other hand, the structural approach explicitly recovers the parameters of the
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distribution of bidders’ valuations. These parameters allow the researcher to simulate auc-
tion results under alternative auction formats, which is crucial for comparing the efficiency
and seller revenue optimality of alternative auction forms, as well as evaluating the effects
of policy changes. For example, Paarsch (1991) uses his estimates to calculate the optimal
reserve prices for British Columbian timber auctions, an important source of government
revenue. The price in taking the structural approach is the extra assumptions that the
researcher must make, relative to the reduced-form approach. Since, by definition, the
estimating equation in a structural auction model is derived from the equilibrium bid
functions of a theoretical auction model, the researcher must make the same assumptions
that are made in the corresponding theoretical model. Furthermore, structural estimation
is impossible for auction formats for which the forms of the equilibrium bid functions are
not known.

This paper offers a general view of structural estimation using auction data, and em-
phasizes the common components behind most structural econometric auction model. In
the next section, we discuss the general framework of a structural auction model. Section 2
illustrates this framework with several examples from the literature. Section 3 discusses
estimation methodologies and the econometric problems encountered in the estimation
procedure. Section 4 concludes.

1. A general structural empirical auction model

We restrict our attention to single object auctions. An auction has N bidders (indexed
i=1,...,N), each of whom have a valuation V; for the object, and receive a private signal
X; about V;. Bidder ¢ only observes X; prior to the beginning of the auction. He doesn’t
observe any of the valuations, V;, for j = 1,... , N, or any of the other bidder’s signal, X},
for j # i.

The bidders’ valuation s and private signals are jointly distributed according to the dis-
tribution function F(Vi,... ,Vy, X1,..., Xn). The researcher estimates a structural model
in order to identify the F' distribution, or parameters thereof.

An auction model is distinguished by (i) the form of the auction being studied and
(ii) the assumptions underlying the joint distribution of the bidders’ valuations and their
signals, which we call the paradigm of the auction.

The form of an auction includes the bidding rules (e.g. sealed-bid vs. open-cry, whether
there is a reserve price) as well as the allocation rule which dictates what price the winning
bidder must pay for the object. The most commonly used auction forms are first-price auc-



tions, second-price auctions, Dutch auctions and English(ascending) auctions. Particulars
about these auction forms are given in Milgrom and Weber (1982).

We refer to the set of assumptions made regarding F(Vi,...,Vn, X1,... ,Xn) as the
“paradigm” of a particular auction model. In the pure private value paradigm, V; = X; V ¢
(i.e. each bidder knows his true valuation for the object) while in the pure common value
paradigm V; = V, V i (i.e. the value of the object is the same to all bidders, but none of
the bidders knows the true value of the object; here the individual X;’s are noisy signals of
the true but unknown V). Typically, however, we would expect that there are both private
and common value components in the valuation that a bidder places on the object on
sale. Generally speaking, V; is a function of all the bidders’ signals: and other information
variables that may not be observed by any of the bidders.

When the joint distribution F' is symmetric with respect to 1,..., N, the model is
symmetric. Otherwise it is asymmetric. When the joint distribution F' can be factored
into marginal distributions of V;, X;, ¢ = 1,... N (ie., F(V1,... , VN, X1,... ,Xn) =
Fy(Vi,X1) Fa(Va,X3) ... Fn(Vn,XnN)), the bidders’ valuations are labeled independent.
Different combinations of private/common value assumptions, symmetric/asymmetric dis-
tribution assumptions and independence/dependence assumptions create a host of possible
paradigms for each auction form. Milgrom and Weber (1982) provided the seminal analysis
for the symmetric versions of most of the usual auction forms; much of the recent theoret-
ical work has focused on asymmetric cases (Maskin and Riley (1996), Bulow, Huang, and
Klemperer (1996)).

The data are the observed bids p1,...,pn. In many applications the researcher only
observes the winning bid. In other applications, the researcher observes all the bids, but
may choose only to estimate using winning bid data.

Given the assumptions underlying each model paradigm, a structural empirical auction
model has two components:

1. Equilibrium bid functions Theoretical equilibrium characterization results contribute
the form that the equilibrium bidding strategies take. Bidder #’s equilibrium bid is a function
of all the information variable available to him, denoted by €2;. In a sealed bid auction, the
only information variable he has is his own private signals, X;. On the other hand, in an
irreversible dropout ascending auction®, the information variables available to him during a
stage of the auction include all the signals of the already dropped-out bidders, which bidder
¢ infers from the dropped-out prices.

Generally, bidder #’s equilibrium bid can be considered a function of all the private
signals: b;(X1,... ,Xn), with the understanding that the form of the bid function b; (- - )

! the form considered in Milgrom and Weber (1982) and in most subsequent work on ascending auctions



depends both on the auction form, and on F', the joint distribution of valuation and
signals. For example, in seal bid auctions, b; (---) depends only on X;. The collection of
equilibrium bid functions by (--- ; F),... ,by(--- ; F) provide a mapping between the private
signals X71,... , Xn and the observed bids p1,... ,pn. Monotonicity assumptions about the
equilibrium bid functions usually ensure that this mapping is one-to-one.

2. Researcher’s distribution assumptions regarding F  Given this mapping, the distribu-
tional of the signals X’s induce a joint distribution function for the observed bids G(p1, ... ,pn),
usually in the form of a joint density function g (p1,...,pn), which forms the basis for
an estimating equation. An interesting feature of the structural auction model is that
G (p1,--- ,pN) depends on F' in two ways.

Consider g (p1,...,pn) = fx (X1,-..,Xn) X J (X1,...,XN|p1,... ,DN), where J ()
denotes the Jacobian transformation from the private signals to the observed prices. fx (- - )
is simply given by the marginal joint density of Xi,... , Xy from F. On the other hand,
J (---) usually also depends on F, in the sense that for the same auction form, j will vary
depending on assumptions made about F'.

The joint distribution of observed bid data, G (p1, ... ,pn; F') provides a way of identify-
ing the underlying latent distribution F' (which is the ultimate goal of structural estimation
of auction models) from the observed bids. In the following we will focus on parametric
models, in which the form of F' is assumed to be known up to a finite dimensional vector of
parameters. All the information needed for any estimation procedure is summerized in g (-),
the joint density of the bids. In maximum likelihood estimation procedure, we use g(---)
directly as the estimating equation. This is the approach taken by in the Paarsch papers
cited earlier. Alternatively, the moments of g can also be used to do minimum distance
estimation (nonlinear least squares), as in Laffont, Ossard, and Vuong (1995) and Hong
and Shum (1997). In what follows, we present a survey of previous work on structural
estimation of auction models, fitting these examples into the general framework described

above.

2. Deriving distribution of observed bid data: some examples

2.1. FIRST-PRICE AUCTION MODELS

The first-price auction proceeds as follows: Observing X; = z, bidder ¢ chooses a bid b; to
maximize his expected payoff, given the other bidders’ equilibrium behavior:

b = argmax, E [(v; —B)1 (Xj < b7 (b),j # z) IX; = x]



where as b; (-),i = 1,... ,n) denotes the equilibrium bidding strategy (or bid function) for
bidder .
The first order condition of this maximization problem is:
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where F; (X_;|X;;0) denotes the conditional distribution of X_;, the N — 1 subvector of
the signals excluding Xj;, given X; = x.

The system of N first-order-conditions implicitly defines the set of N equilibrium bid
functions by,... ,b,. These equations simplify under certain assumptions, which we now
proceed to make in steps.

First, for a priate value model (V; = X;, Vi), E(V; | ---) = Xj, so that the system of
differential equations simplify to:

hj (b1 (b; (X))
(X —b; (X)) - —— =1,
230, (5 0 ) 7 5,00

with the boundary conditions b; (z) = z, where z is the lower bound of the support of a

fori=1,...,N (2)

signal X.

Bajari (1996) relies on computational procedures to solve the system of differential
equations in (2). In a nonparametric framework, Vuong, Perrigne, and Guerre (1996) showed
that it is possible to nonparametrically identify F' from all bid data for private value first-
price auction models, regardless of the asymmetry and dependence of F', as long as F' is
such that it gives rise to a strictly increasing strategy equilibrum.

Next, if we assume the signals to be independently distributed, the joint density of the

observed bids (applying to both symmetric and asymmetric models) becomes g (py, ... ,pn) =
N hi(b7 ' (pi))
Hi:l b;(bi_l(p))
Finally, Laffont, Ossard, and Vuong (1995) made the additional assumption of symmetry.
This implies that Fx(x1,...,zn) = Hf\;l H(z;). In these models, the equilibrium bid
functions are defined by a first-order differential equation

b'(2)F(2)Y + Nb(2) f(2)F(2)" " = Naf(2)F(2)N "

together with the boundarty condition that b(pg) = pg. Given the symmetry assumption,
the bid function is expressible analytically as:

X N—-1
b (X)) in—W/ (H(2)'dz 3)
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where pyg is the reservation price in the auction. Without simplifying parametric assumptions
(see Paarsch (1992) for examples of several), no general closed-form solution exists for g,

given the nonlinearity in the transformation from z; to p; expressed in equation (3).

2.2. SYMMETRIC INDEPENDENT PRIVATE VALUE SECOND-PRICE (“VICKREY”)
AUCTION

This is the case considered by Paarsch (1991). Here F(X1,...,Xy) = Hfil H(z;), and
b; = X, Vi is unique increasing dominant-strategy equilibrium. Given these strategies, the
joint density of observed bids is the same as (assumed) joint density of the bidder signals:

g(p1,--- ,pn) = h(p1)h(p2) - .. h(pN) (4)

Paarsch assumes that H is the Weibull distribution, a flexible two-parameter distribution
which can have a monotonically increasing or decreasing hazard rate depending on the
values of the parameters.

Given the simple form of the equilibrium bidding strategies in the second-price private
value auction, if only the winning bid is observed, its density would be that of the second
highest draw out of N draws from the H distribution:

Fxen)(X) = N(N = DH(X)][L - HX)]"?h(X) (5)

2.3. ASYMMETRIC OPEN AUCTION MODELS

2.3.1. Private value models

Ever since Vickrey (1962), it has been known that in private value second-price auctions
and ascending auctions (which we will jointly refer to as open auctions), bidding up to
the private value (b;(X;) = X;) is the unique weakly undominated strategy equilibrium,
regardless of symmetry or independence assumptions.? Therefore, the Vickrey auction pro-
vides an example of an auction model where the Jacobian of the transformation from the
unobserved X'’s to the observed p’s does not explicitly depend on F', the joint distribution
function for the X’s. In equilibrium, p; = X;, so the Jacobian is simply the identity matrix.
This property disappears once common value components are added to the model. This is
the focus of the next section.

2.3.2. Models with common values
In common value auction models, it is assumed that there is an (unknown to all bidders)
component in bidders’ valuations of the object which is the same (i.e., “common”) across

% 1In fact, Vickrey generalizes this “highest rejected bid” principle to the simultaneous auctions of identical
objects.



all bidders. For this reason, each private signal signal X; is useful to each bidder j # i
in estimating his valuation Vj, so that V; is typically a function of all the private signals
X1,...,XnN.

Note the subtle difference between a common value model and a model with correlated
private values (such as that considered in Vuong, Perrigne, and Li (1997)). Both models
assume correlation among the private signals, i.e., Fx(X1,... , Xn) cannot be factored into
IL; H;(X;). In the correlated private value model, it remains the case that V; = X, for
i=1,...,N. In the common value model, however, V; = v;(X1,... ,Xy),fori=1,... |N,
which differs from the private value case.

As we will show, equilibria in open auctions with common value components under both
asymmetry and dependence have a very intuitive derivation, even allowing for asymmetry
and dependence in bidders’ private signals. One striking finding is that the inverse bid
functions, i.e., what a bidder’s signal would be if he chooses to bid the given price level p,
can be derived as solutions to a system of nonlinear equations defined as bidders’ expected
valuations conditional on all the information available during that stage of the auction.
From a computational point of view, this provides a way to derive the mapping from the
unobserved X’s to the observed p’s numerically in the usual case when it is analytically
intractable.

Here let us introduce the shorthand notation that bidder i’s bid function be written
simply as a function of his signal z; and the public information set Q: b;(x;) = b;i(z;; Q).
Then in these open auctions:

bl(.’El) = E[Vi | Al(.’El,bg(Xg),... ,bN(XN)),Q]

bN(.’L‘N) = E[VN | AN(bl(Xl),... ,BN_l(XN_l),CCN),Q]

where A;(---) denotes the conditioning event for bidder i. Typically, A; involves bidder
1’s private signal X; as well as his equilibrium beliefs about the other bidders’ signal
X1,...,X; 1, Xiy1,- .- , Xn. Furthermore, as will be seen below, 4; relates all the other bid-
ders’ signals to bidder #’s signal through the equilibrium bid functions b; (X;),i =1,... ,N.
In what follows we will explicitly write out A; for the second price and ascending auctions.

For a generic bid p = b; (x;),7 = 1,... , N, the special form of A; allows us to rewrite
the above system of conditional expectations as a system of N nonlinear equations, with
N unknowns ¢1(p), ... ,¢n(p), where ¢;(p) = b; ' (p), the inverse bid function for bidder i



evaluated at the generic bid p; i.e. the system (6) can be rewritten as

p=EWVi | Ai(¢1(p),.--,édn(P)); ]
(7)
p=E[Vy | Ax(¢1(p),... ,én(p)); .

By taking different values for p, we can solve the system (7) for the N inverse bid
functions in pointwise fashion. Given any distribution F' then, the existence, uniqueness,
and monotonicity properties of the equilibrium bid functions can be directly verified from
the existence, uniqueness, and monotonicity of solutions to the system of equations (7).

Note that assumptions about F', the joint distribution of bidders’ private signals, deter-
mine in practice only the form that the conditional expectations will take. The form that the
equilibrium bid functions take depends on the nature of the solution to the nonlinear system
of equations posed by the conditional expectation equations. It is in this sense that J, the
Jacobian of the mapping from the unobserved X’s to the observed p’s depends explicitly
on the assumptions made regarding F'. This is not the case for limited dependent variable
(LDV) models where the rules for mapping the unobserved utility indices to the observed
LDV’s are threshold-crossing conditions which are invariant to the distribution assumed for
the unobserved utility indices.3

Even given parametric assumptions about F', it is rare to find cases where the conditional
expectations will have a closed form, much less cases where both the conditional expectations
and the equilibrium bid functions are expresible in closed form. An example of this is the
log-normal irreversible-dropout English auction model, examined by Wilson (1995) and
recently implemented empirically by Hong and Shum (1997).

In general, solving for the equilibrium bid functions will require numerical procedures
both at the conditional expectation evaluation stage (requring numerical integration) and
the stage of solving for the implicitly-defined equilibrium bid functions (function approxi-

mation routines).

2.3.3. Asymmetric second price auctions

For general asymmetric second-price auctions, the equilibrium bidding strategies consist of
one bid function per bidder, i.e. a set of functions b;(X;), for ¢ = 1,... , N. In equilibrium,
bidder i believes that his bid is equal to the highest competing bid, i.e.,max;,;b; (X;) =
b; (X;). Therefore, the equilibrium bid functions satisfy the following system of conditional

3 Strictly speaking, the Jacobian is not defined from most LDV models. However, the rule for transforming
latent utility into observed actions does not depend on model parameters.



expectations:
bi(X1) = E[V1 | Xlagli‘]}_(bj(xj) = b1 (X1)]

by (X2) = E[V2 | X3, max b;(X;) = bz(X2)]
J#2

bn(Xn) = E[Vy | XNaljgéa]@(bj(Xj) = by (Xn)]-

Next we will rewrite these equations using the inverse bid functions, analogous to the system
(7) above.

Define f_; = max;,; bj(X;) and the function Vi(z,p) = E(V; | X; = z,6-; = p). We
will first discuss the event {_; = p}. {#-; = p} means that the highest bid among bidders
J,7 # 1 is p, which in turn implies that

§1 All bids by bidders j,j # ¢ are smaller than or equal to p. b;(X;) <p, V j #1.
§2 At least one of b;(X;) =p,j #i.
Therefore we can write the event {8_; = p} as
0,000 <] 0 [un) =p| = | 0060 < 00| 0 v = 00| ©
J#i J#i J#i J#i

where ¢;(p) = b;l (p) are the inverse bid functions of bidders j, j # i.* In view of (9), we
can rewrite (8) as:

(%) < 650 | 0 | 0, (%) = 050

=FE (W
b (1 71

X1 = ¢1(p), [J‘Ql

JINCHRY (p)] n L_;JN(XJ-) = ¢j(p)] )

p:E(VN‘XN =on(p), [ rl

which, analogously to the system (7), is a system of N equations in the N unknowns
¢1(p), - -- , ¢~ (p) which can be solved for different p’s for the inverse bid functions ¢, ... ,dn.
5

* Because we assume that the type space is continuous, the event (9) has zero probability. However, the
conditional expectation we are computing is well defined as long as we assume f(v,x) > 0 on its support.
5 In calculating the conditional expectations in (10), we will express it as:

“

Vi(xla--- amN):E(‘/i Xi = =z, g[XJ =z, X <mkak7éjai])
j#i

1 n—2
f V; fm_ij e fm_ij fVi,X1,... XN (Vva Zi,Tj, Xlij, A ,Xj_vl;2) Xml] R dXiVZ;QdV (1]_)
- N-2
Z fxl—ij . f”—ij fxi,... . xn (mi,wj,Xiij, e ,Xivi;2) Xmij . dXiVi;2
J#i



2.3.4. Asymmetric ascending auctions

The ascending auction proceeds in rounds. It enters a new round whenever another bidder
drops out. N bidders are present in the auction; there will be N —1 “rounds” in the auction,
indexed k = 0,... , N—2. Inround 0, all N bidders are active; in round k, only N —k bidders
are active. Each round ends when a bidder drops out; bidders are indexed by : =1,... , N.
Without loss of generality, the ordering 1,... , N indicates the order of dropout. In other
words, bidder N drops out in round 0, and bidder 1 wins the auction; generally, bidder
N — k drops out at the end of round k. The dropout prices are indexed by rounds, i.e.
Py, ..., Pyn_5.% To sum up, bidder i drops out at the end of round N — i, at the price Py_;.

Equilibrium bidding strategies in the ascending auction game specify, for each bidder 4,
bid functions b¥(X;) for each round k, k = 0,... ,N — 2, i.e. B(X;),... ,b) 2(X;). Given
a realization of the private signal X;, the bid function bf (X;) tells bidder ¢ which price he
should drop out at during round k. The collections of bid functions b(X;), ... ,bY 2(X;)
for bidders ¢ = 1,... , N are common knowledge. The equilibrium conjectures A; and the
bidders’ expectations (6) evolve during different rounds of the auction.

Again, consider bidder i, who is active during round k. As of round &, bidders N — k +
1,..., N have already dropped out, at prices Pyx_1,... , Py, respectively. Since the equilib-
rium bid functions are common knowledge, bidder i can use this information on the identity
of the dropout bidders and their dropout prices to infer the private signals Xn_g4+1,... , XN
observed by these bidders by inverting these bid functions: X; = (b;.v_j )~ (Pn—j), for
j=N—-k+1,...,N.

The price p at which bidder ¢ should quit the auction during round k, defined as his bid
function for round k, is the price bf(Xi) = p at which he will have a zero expected profit
in round k if all other active bidders simultaneously quit at the same price. In equilibrium,
the conditioning event Af, which changes for a given bidder across rounds (therefore the
superscript k) consists of (1) bidder i’s private signal X;; (2) the private signals of the bidders
who have dropped out before round &k, Xy_g41,... , Xy, where X; = (b;.vfj)_l(pN_j), for
j=N—k+1,...,N; and (3) bidder i’s beliefs that all the other remaining bidders have

where X_;; denotes the N — 2 vector of private signals for bidders other than ¢ and j, and X fz-j denotes

the generic kth element of the vector X_;;. Each term in the summation presents one event in the union;
they are disjointed from each other. The N — 2 integral in the denominator is the joint density of the
conditioning event. It integrates over the signal of each of the bidders, other than ¢ and j, from the lower
bound X up to each of the £y = ¢ (b). Unless the integrals can be analytically expressed, in general it can
be computationally intensive to calculate this conditional expectation because it involves multi-dimensional
integrals.

In particular, even for jointly normally distributed (v,z), the difficulty of evaluating the multivariate
normal distribution function is similar to that encountered in the estimation of multivariate probit models.
One recently proposed solution of this problem is to use simulation estimators, which evaluates the integral by
the empirical average from many independent random draws (see, for example, Hajivassiliou and McFadden
(1998) and Hajivassiliou and Ruud (1994)).

6 Note that Py—1, the winner’s bid, will generally not be observed in ascending auction datasets.
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the same targeted dropout price as he:

bi(X1) = E [V | X1, b5(X;)

D) =b(X1),5=2,...,N —k, Q]
b5(Xz) = E [Va | X, b5(X;) = b5(

&
1
X5),j=1,3,...,N —k,0

2),J k:] (12)
b _r(Xn_k) = E [VN_4 | XN7k7b_l;':(Xj) =0k _(Xn_g)j=1,...,N—k—1,0Q]

where Q = {Xj = OV )Y (Pyy) for j= N~k +1,... ,N}. The full set of equilib-
rium bid functions is analogously described by sets of N — k equations for each round
k=0,...,N—1.

In equilibrium, this entire system of equations must hold for any bid p, and the set of
signals ¢F(p) = (bF) (p), for i = 1,... , N — k. If we treat p as a parameter and the inverse
bid functions ¢¥) (p), i =1,... ,N — k as the unknown variables, we can rewrite (12) as a

system of N — k equations in N — k unknowns, analogous to (7):

p=EW | X1 =6{®), ... XNk =} 1(0); XN—k+1 = N i1 (Pr=1),-- ., XN = &N (po)]
p=EWVa|X1=0FD), ... Xn_r =K 1 (0); Xn—kt1 = O i1 (Pr-1),-- -, X = X (po)]

P=E[VN_i | X1 =8f®),... . Xnck = % _o(p); Xnvek1 = ¢va__1k+1(pk—1), o XN = 6% (po)]

(13)
where ¢k (p) = (5)~(p).
Looping over rounds k = 0,... , N —2 and for different values of p, we can solve in point-
wise fashion for the set of inverse equilibrium bid functions (¢ 1(p), ... , ¢ZN “Hp)y. .., ¢% (D))

which map the observed bids pg,... ,pn_2 to the private signals by the relation X; =
¢ (pv—i)-

From a computational point of view, the structure of the round k equilibrium bid func-
tions (13) is particularly attractive since the conditioning events are points rather than sets,
as is the case for asymmetric second price auctions (cf. equations (10)). In the case of the
latter, evaluation of conditional expectations would involve multi-dimensional integration,

which can be cumbersome as the number of dimensions becomes large.

2.3.5. Consistency conditions in asymmetric ascending auctions
In deriving the joint distribution of bids, G(pg,... ,pnN_2), in an asymmetric ascending
auction models, the researcher conditions on the dropout order observed in the data. In
other words, the order of the bids and the identity of their bidders is taken as given in
specifying the conditioning events in each round.

However, it is possible that, for some parameter values 6, the bidder signals inferred from
the calculated equilibrium bid functions (i.e., the inverse of the set of functions solved in

11



pointwise fashion from systems of equations like those in (13)) imply a dropout order which
differs from the observed dropout order. These signals will be inconsistent with the specified
form of the equilibrium bid functions, whichtake as given the observed bid ordering.

An example For clarification, we consider a 4-bidder example. If the bid order among 4
bidders is 2,3,1,4, then in deriving the density of bidder 3’s bid we condition on this bid
order in the sense of assuming that bidder 3 knows bidder 2’s signal,” and in deriving the
density of bidder 1’s bid we assume that he has observed the signals of bidders 3 and 2.8 In
specifying bidder 1’s equilibrium bidding strategy in round 3, for example, we assume that
upon observing bidder 3’s exit in the previous round, bidder 1 inverts bidder 3’s equilibrium
bid function for round 2 at the observed dropout price to obtain X3, i.e., X3 = (b2) 1(ps;0).
We include 8 as an argument here to make explicit the dependence of the bid function on
parameters that determine the joint distribution F'.

To be more specific, given knowledge of the inverse bid functions ¢¥ (p; #), we can recover
bidders’ private signals via the relations

X1 = ¢3 (p1;0)
X = ¢35 (p2;0) 14
Xy = 83 (ps36) ()
Xy = ¢7 (p4;0)

These signals could imply a different dropout order (say, 2,4,1,3) if it were the case that,
given 6:

bi(Xo = ¢3(p2;0);0) = min;—1 234 b} (X; = ¢} (pi;0);0) ie., bidder 2 drops out
b2(X4 = ¢5(p4;0);0) = min;_q 34 b2(X; = ¢?(p;;0);0)  i.e., bidder 4 drops out (15)
b3 (X1 = ¢3(p1;0);0) = minj—q 3b3(X; = ¢3(pi;0);0)  i.e., bidder 3 wins.

where b (z) = (¢F) 7 ().

However, our specification of the equilibrium bidding strategies condition on the observed
dropout order (2,3,1,4). In other words, bidder 1’s observed dropout bid p; is modeled as
in equation (13):

p1=b3(X1) = EV; | X1, Xz = (b3) " (p2), X3 = (03) " (ps), Xa = (b7) "' (3(X1))]  (16)

" ie., p3 = bi(X3) = E[V1 | X3, X1 = ¢3(p3), X4 = ¢3(p3); w2 = {X2}], which assumes that by round 2,
X5 is already in the public information set w2 which bidder 3 conditions upon in forming his bid in that
round.

8 e, p1 = b3(X1) = E[Vi | X1,Xa = ¢3(p1);ws = {X2, X3}], which assumes that by round 3, X» and
X3 are already in the public information set w1 which bidder 1 conditions upon in forming his bid for that
round.
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If, in fact, given the parameter vector 6, the draw of X1,... , X4 from Fx(X1,...,X4|0)
yields the bid ordering (2,4,1,3), then p; is modeled as

p1=b3(X1) = E[V; | X1, X3 = (b5) " (p2), X3 = (b3) 7 (b3(X1)), Xa = (b3) ' (pa)] (17)

which is clearly inconsistent with equation (16) since X4 # (b3)~!(p4) and, in equilibrium,
X3 # () (R (X)). W

For this reason, to ensure consistency with the specified equilibrium bidding strategies,
we limit the support of the underlying signals (Xi,...,Xy) to regions which — at the
estimated parameter values @ — would yield the given dropout order. In other words, given

parameter values 6%, we limit the support of (Xi,... ,Xx) to a region such that
b (X3 0) = j:rl;’l_iHNb;V*i(Xj;a), fori=1,...,N. (18)

Recall our indexing convention, stated earlier, that bidder ¢ drops out at the end of round
N —i. For an N-bidder English auction, there will be N(N — 1)/2 such constraints.!°
These conditions induce a truncated distribution for the observed bids. Define the set
T(0) as the set of draws from F(X1,... ,Xn | 0,0bserved bid ordering) which satisfy the
consistency conditions (18), conditional on the values 6.
Then the joint density function of all the observed bids is given by:

f (¢(])V@070)7 7¢éV72(pN—2;0)) * J(Xla 7XN |p07~~~ apN—Q) P 3
tX €T
g(Po,--- ,PN—2) = P(A) i (9)
0 otherwise

(19)

where, as before, J is the Jacobian of the transformation from the private signals to the
observed prices.!!

Note that this consistency problem does not appear in symmetric models, where (cf.
Milgrom and Weber (1982) pp. 1104-5) bz () = bg, (z), for all bidders i, i’ and rounds j.
The symmetry assumption implies that, for all parameter values # and across all rounds, the
ordering of the signals will always be the same as the ordering of targeted dropout prices.
Conditioning on the observed dropout order, then, is enough to ensure that, for all possible

values of 0, any draw from Fx (X1,..., Xy | 6) will satisfy the consistency conditions (18).

9 Unfortunately, as will be discussed below, these truncation conditions depend on #, the estimated
parameters of the F' distribution. The resulting maximum likelihood estimation problem is “non-regular”,
and the estimates will not have a limiting normal distribution.

19 For the log-normal model in Hong and Shum (1997), these constraints can be expressed as a set of
inequalities which are linear in the observed dropout prices and nonlinear in the model parameters.

1" Given the nonlinearity of the consistency conditions, the truncation probability P(A) will likely require
simulation methods to compute. See Hong and Shum (1997) for more details.
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For a different reason, consistency problems do not arise in single-round auction models
regardless of bidder asymmetries. Even though conditioning on the observed bid ordering
is not enough to ensure that draws from Fx(Xi,...,Xy | 0) will satisfy the restrictions
in (18) when bidder asymmetries are present, any ordering of the bids will be consistent
with the specified equilibrium bidding strategies in single-round auctions. This is because
in single-round auctions, unlike the ascending auction considered above, bidder ¢ never
learns the private signal of any other bidder, so that it is possible to observe a given bid
independent of the realized bids for any of the other bidders. This is not the case in the
ascending auction models in which a bidder’s equilibrium bid depends on the realized bids
for the bidders who have already dropped out.

3. Estimation strategies

3.1. MINIMUM DISTANCE (LEAST SQUARES) ESTIMATION

Once g(p1,... ,pn;0), the joint density (with parameters ) of the observed bids, has been
derived, various estimators of € are available. The first we consider is minimum distance
(method of moments) estimation, which attempts to match sample moments of the observed
bids against theoretical moments of the G distribution, computed at each parameter value.

Even under assumptions of symmetry and independence, the moments of G in first-price
auction models may not be expressible analytically and are perhaps difficult to evaluate
numerically. Furthermore, if the researcher only observes winning bid data, the moments of
order statistics are even more difficult to calculate. Similarly, for ascending auction models
which accommodate both asymmetries and common values, G is a multivariate distribution,
the moments of which are multivariate integrals which often are not expressible in closed
form. Numerical integration techniques are inadequate once the dimension of G (i.e., the
number of bidders in the auction) exceeds 4. For these reasons, we suggest adapting the
simulated method of moments approach of Laffont, Ossard, and Vuong (1995), in which the
moments are approximated using Monte Carlo integration techniques.

We consider a least squares objective function, i.e., an estimator which minimizes the
sum of squared deviations between the moments in the data and the theoretical sample
moments of the G distribution:

Nt

(L/T)) Y (v — Egph)? (20)

t k=1
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where T is the number of auctions, IV; is the number of bidders in the ¢th auction, p}fc is the
kth bid in the tth auction, and the expectation is taken with respect to the G distribution,
which perhaps does not exist in closed form.

The procedure for simulating E'gp’;c takes the following steps for draws s =1,...,S:

1. For each parameter vector 6 that characterizes the joint distribution F', draw X7,... , X3
from the marginal distribution Fx, holding the seed constant for random number
generation across different values of 6.

2. Given the parameter value 6, evaluate the bids which correspond to the drawn signals:
pi = bi(X{;0),... .py = bn (X3 0).

3. (For asymmetric ascending auction only) If the bids p5,... ,p} satisfy the consistency
conditions (18), we retain this draw. Otherwise we discard this draw and repeat the
above until we obtain a draw which satisfies these consistency conditions. This is
the simplest type of “acceptance/rejection” method for sampling from a conditional

distribution.2

Given S draws (or S accepted draws, for the case of the asymmetric ascending auction), we
approximate the first moment of the bids as:

Simulated Egp}, = (1/8)) > pik=1,... Ny (21)
S

Under standard conditions, this nonlinear least squares estimator is consistent and asymp-
3

totically normal, as S and N approach oo.!

This approach is applicable to any auction model, provided we can simulate the moments
of the G distribution, which require derivation of the equilibrium bid functions b;(- - - ; F'), Vi.
Note that explicit derivation of GG, the equilibrium distribution of the bids, is not necessary
for this estimation procedure, in contrast for maximum likelihood estimation. One main
advantage of simulation techniques is the ease in simulating moments of an otherwise
intractable (in this case, the G) distribution.

Given our distributional assumptions regarding the unobserved X’s, we throw away
information by only using the first moments for purposes of estimation. The distribution of

12 More sophisticated sampling schemes, such as the sequential GHK simulator and Gibbs sampling, are
described in Hajivassiliou and McFadden (1998).

13 Laffont, Ossard, and Vuong (1995) showed that, due to the linearity of their simulator in the draws,
the simulated nonlinear least squares estimator is consistent even with a fixed number of simulated draws.
However, the asymptotic variance of the estimator must be adjusted to take into account the variance
introduced by the finite number of simulate draws. However, for the case of the asymmetric ascending
auction with common value components, as in Hong and Shum (1997), the truncation probability also needs
to be simulated for each vector of observed bids, and in the case the simulated moment becomes nonlinear
in simulation draws. Therefore the simulated nonlinear least square estimator in this case is only consistent
when the number of simulated draws increases with the sample size.
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the winning bid in an auction will be asymmetric, even assuming that the private values
themselves are drawn from symmetric distributions. Therefore, in situations where only the
winning bid is observed (as in Laffont, Ossard, and Vuong (1995)), nonlinear regression
which attempts only to match the observed winning bids to the mean of the winning bid
distribution can be particularly inefficient.!* Presumably, this problem would be less severe
in situations where the researcher observes all of the bids from a given auction.

A special case deserves mention here. In their symmetric IPV framework, Laffont, Os-
sard, and Vuong (1995) derive the conditional mean of the winning bid distribution in an
interesting manner. They invoke the revenue equivalence theorem under which the expected
revenue (i.e., winning bid) from a first- and second-price auction would be equivalent.
Since they only observe the winning bid for their auctions, this theorem ensures that, in
equilibrium, the winning bid will have the same expectation as the second-highest draw
out of N draws from the H distribution (which is the winning bid in a symmetric IPV
second-price auction), with corresponding density function given above in equation 5. In
their simulated nonlinear least squares framework, they use this theorem to avoid having
to simulate the equilibrium bid function (in equation 3) for any number of given draws of
(X1,...,Xn). However, this approach works only for the symmetry IPV framework which
they consider, and is not generalizable to alternative auction paradigms.

3.2. MAXIMUM LIKELIHOOD ESTIMATION

Direct maximum likelihood estimation, on the other hand, utilizes all the information
embodied in the researcher’s distributional assumptions.

However, for several auction models, it turns out that equilibrium behavior of the bidders
implies that the support of the observed bids depends parameters of the F' distribution,
which we are trying to estimate. Hong (1998) shows that the resulting maximum likelihood
estimates of these parameters, while consistent, will not asymptotically normal.'® Next, we
discuss several examples which have arisen in the literature.

4 Thanks to Samita Sareen for this insight.

15 Essentially, in these “nonregular” cases, the MLE is derived from a constrained optimization problem,
and is therefore not a root of the unconstrained maximum likelihood score function. In the “regular” case,
the asymptotic normal distribution of the MLE is derived by expanding this score function around the true
parameter value. This will not work in the nonregular case. See Newey and McFadden (1994, pp. 2141fF.)
for more details. In fact, the MLE is super-consistent, converging at rate 7' to a mixture of exponential
distributions.

In contrast, the simulated method of moments estimator suggested in the previous section is a root of the
first-order condition of the least squares objective function (20), so that asymptotic normality obtains.
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3.2.1. First price auctions

For first-price auction models, equilibrium bidding behavior implies that the support of the
data depends on the parameters of the F' distribution. Assume that the (common) support
of each X is [z,7].

Both Laffont, Ossard, and Vuong (1995) and Donald and Paarsch (1993) note that,
for the symmetric IPV first-price auction model, the upper bound of the support for any
bid typically depends on the parameters of the H distribution. To see this, consider the
equilibrium bid function for this model in equation (3), which is reproduced here:

1 X
OX0) = X, T . (O (22
Given that b(X;) is increasing in X;, the upper bound of the support of any observed bid is
b(Z) — the bid that a bidder who observes a signal T would submit. This will be a function
of the parameters of the H distribution.'®

Similar problems arise in asymmetric and non-independent first-price auction models,
such as that considered by Bajari (1996). The absence of a clear asymptotic theory for
the MLE in these multivariate models favors alternative estimation techniques, such as the

minimum distance estimator described above.

3.2.2. Open auctions
Under the IPV assumption, no standard regularity conditions are violated in the second-
price and ascending auctions models described earlier, because the equilibrium bid function
is simply the identity function, and the support of p; is therefore [z, T], independently of 6.
However, these problems will crop up again in asymmetric models. As we pointed out
earlier, the consistency restrictions (18) impose truncation conditions on the support of
the bids observed in an asymmetric ascending auction which depend on 8. Unlike the con-
straints in first-price auction models discussed in the previous section, these constraints are
multivariate (e.g., I(p1,-..,pn;0) > 0). Very little work has been done on the asymptotics
of the MLE in these cases. In particular, although the maximum likelihood estimator is still
consistent, its asymptotic distribution is unknown.

4. Conclusions

This paper illustrates in general terms the basic methodology of structural estimation using
auction data. It provides a unified view of the common structure underlying structural

16 An exception is where T = +o0, in which case limg—, 400 b(z) = +00 and the regularity condition holds.
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econometric auction models under various model paradigms. We identify the most crucial
steps in building a structural econometric model and discuss the estimation strategies for
implementing these models.

The close dependence on a game-theoretic foundation is most the main advantage and
disadvantage of structural auction models. While the economic theory provides an efficient
framework for econometric estimation and allows for sharp prediction from the estimation
results, a structural model is not robust to misspecification and to deviations between the
assumptions in theoretical models and the rules of real-world auctions. Exactly the opposite
can be said about reduced form approaches.

A compromise between the structural and the reduced form approaches would be to use
very general behavioral assumptions — general enough to apply across a number of auction
paradigms — in deriving the mapping between bidders’ signals and their observed bids,
thus retaining the flavor of structural modeling without relying fully on the equilibrium
specifications of theoretical auction models. Recent work by Haile (1998) follows such an
approach.
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