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This paper proposes model selection criteria (MSC) for unconditional moment
models using generalized empirical likelihood (GEL) statistics. The use of GEL-
statistics in lieu of J-statistics (in the spirit of Andrews, 1999, Econometrica 67,
543-564; and Andrews and Lu, 2001, Journal of Econometrics 101, 123-164)
leads to an alternative interpretation of the MSCs that emphasizes the common
information-theoretic rationale underlying model selection procedures for both para-
metric and semiparametric models. The result of this paper also provides a GEL-
based model selection alternative to the information criteria—based nonnested tests
for generalized method of moments models considered in Kitamura (2000, Uni- Q1
versity of Wisconsin). The results of a Monte Carlo experiment are reported to
illustrate the finite-sample performance of the selection criteria and their impact
on parameter estimation.

1. INTRODUCTION

Exploiting insights from the recent literature on generalized empirical likeli-
hood (GEL) estimation as an alternative to optimal generalized method of mo-
ments (GMM) estimation (cf. Qin and Lawless, 1994; Kitamura and Stutzer,
1997; Kitamura, 1997; Imbens, Spady, and Johnson, 1998; Kitamura and Tri-
pathi, 2001; Newey and Smith, 2000; Smith, 1997), we propose model and mo-
ment selection criteria (MSC) for unconditional moment condition models based
on the GEL statistic, in the spirit of Andrews (1999) and Andrews and Lu (2001).
In these papers, Andrews and Lu investigate MSC for unconditional moment
models using the GMM J-statistics (J-MSC). In this paper, we replace the
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J-statistics with the GEL-statistics in the construction of the MSCs. We also
provide GEL analogs of the J-statistic-based “upward” and “downward” test-
ing procedures considered in Andrews and Lu (2001).

As an example, let (b,c) denote a pair of model and moment selection vec-
tors.! The GEL-MSC criterion selects the pair of vectors (b, c) that minimizes
GEL,(b,c) — (|c| — |b])logn, where GEL, is the GEL function defined in the
next section.

The use of GEL-statisticsin lieu of J-statistics allows an alternative interpre-
tation of the MSC and provides an information-theoretical analogy with MSCs
in standard parametric likelihood models. Depending on the choice of the car-
rier function (defined subsequently), the GEL approach (see Newey and Smith,
2000; Smith, 1997) includes as specia cases the empirical likelihood function
(EL) of Qin and Lawless (1994), the exponential tilting function (ET) of Kita-
mura and Stutzer (1997), the Cressie—Read discrepancy statistics (CR) of Imbens,
Spady, and Johnson (1998), and the continuous updating GMM function (CUE)
of Hansen, Heaton, and Yaron (1996). For example, when we use EL-based
MSC, our proposed selection criterion selects the model with the smallest KLIC Q2
from the true underlying probability measure to the class of probability distri-
butions implied by the moment conditions, and among those with the smallest
KLIC it selects the one with the most parsimonious parameterization (or with
the largest number of overidentification conditions).

The use of an information-theoretical approach for GMM model selection
can be found in Kitamura (2000) and Ramalho and Smith (2002). Kitamura
(2000) has developed information-theoretic nonparametric likelihood ratio tests
to choose between nonnested moment condition models. Smith (1997) pro-
poses nonnested Cox tests between GMM models using GEL functions. The
results of this paper provide a GEL-based MSC alternative to the nonnested
model selection tests of Kitamura (2000) and the nonnested Cox tests of Ra-
malho and Smith (2002). Although the advantage of GEL-MSC is that it facil-
itates choice among multiple competing models, it does have the disadvantage
of not providing aframework for probabilistic statements to be made regarding
the model choice (see Vuong, 1989). In contrast, the likelihood ratio testing
approach of Kitamura (2000) allows probability statements about the choice of
the best model in the framework of hypothesis testing.

2. MODEL SELECTION CRITERIA FOR
MOMENT CONDITION MODELS

Our notation closely follows Andrews and Lu (2001). Let g(X;vy) be the col-
lection of moment conditions under consideration. Let b be the model selection
vector that selects the elements of y € RP to be estimated, i.e., a p-dimensional
vector of 0 and 1's where 1 indicates that the corresponding parameter element
is to be estimated. Similarly, let ¢ be the r-dimensional moment selection vec-
tor that selects the moment conditions in g(-) € R" to be used in the estima-



ECT196-2 3/21 07/21/03 5:10 pm Page: 925

EMPIRICAL LIKELIHOOD MODEL SELECTION 925

tion. Let y, = b% * %y denote the subvector of y that is estimated and let
ge(+) = c% * %g(-;y) denote the subvector of g(-) that is used in estimation,
where % * % denotes Hadamard (element-by-element) product.

In what follows, we refer to (b,c) as a pair of moment and model selec-
tion vectors. We use |c| (resp. |b|) to denote the total number of moments
(resp. parameters) selected by the pair (b,c). Furthermore, 7. denotes the
|c|-dimensional vector of Lagrange multipliers corresponding to the g.(-)
moment conditions selected by c in the construction of the GEL function
described subsequently. Finally, |c| — |b| is the number of overidentifying
restrictions, and throughout we assume that the model is identified. This in
particular requires the necessary condition that |c| — |b| = 0.

We follow Andrews and Lu (2001) in defining the following sets. Let BC
denote the space of (b, c) vectors, which can be viewed as the “parameter space”
in the moment and model selection procedure. Furthermore, define the set

BCL® = {(b,c) € BC:EQ.(-;yp) = 0,75 = y% * %b, withy €T},

where Eg.(-;vp) denotes the population value of the empirical moment g.(X;yp).
In other words, BCLC is the set of “feasible” vectors (b, c) that select only
models and moments that equal zero asymptotically for some parameter vector.
Finally,

MBCLO = {(b,c) € BCLO:|c| — |b| = |c*| — |b*| O(b% c*) € BCLO}.

In short, MBCL is the set of “feasible” selection vectors (b, c) that maximize

the quantity |c| — |b]|, the number of overidentifying restrictions. Also let
#(MBCL®) denote the common values of |c| — |b| for all the elements of
MBCLO.

In the rest of the paper we restrict attention to the case when MBCLC is a
singleton. This implies that the GEL-MSC estimator (bBgusc, Comsc) defined in
the next section converges to a constant and allows for the usual asymptotic
distribution for the postselection parameter estimates. When MBCLC is not a
singleton, although the consistency result of Proposition 1 continues to hold,
(Bomse, Eomse) may still be random in the limit and the asymptotic distribution
for the postselection parameter estimates can be rather involved. Pétscher (1991)
provides a detailed analysis of this important difference.

2.1. Generalized Empirical Likelihood-Based
Model Selection Criteria

The GEL-MSC estimator, (Boysc, Camsc ), Minimizes GEL-based MSC over BC.
The criterion function is defined as

GELMSC(b,c) = GEL,(b,c) — h(|c| — |b])«,,

= 2nmin max Q,(vy,7.) — h(|c| — |b|) kp, 1)

Yb Tc
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where the GEL function (Newey and Smith, 2000) is defined as

1 n
Qu(yo7e) = > p(TL9(Xe5 b))
t=1

Both h(-), a strictly increasing function, and the sequence «,, are specified by
the researcher. The carrier function p(v) is afunction of a scalar v that is con-
cave on its domain V, an open interval containing O. It is normalized so that
p(0) = 0,Vp(0) = —1, and V?p(0) = —1, where Vp(-) and V?p(-) correspond
to the first and second derivatives of p(v), respectively. Therefore the GEL-
MSC isthe usual GEL criterion function, augmented by a penalty function that
varies with the number of overidentifying restrictions and also with the number
of observations.

The GEL function nests several special cases of interest: when p(v) =
log(1 — v) the GEL function corresponds to the EL function; for p(v) =1 — €
it corresponds to the ET estimator; and a quadratic p (-) corresponds to the con-
tinuous updating estimator. Discussions of these estimators can be found in
Newey and Smith (2000). Throughout the paper we assume that the data X; are
stationary and ergodic. The following assumptions on h(-) and «,, are necessary
for the consistency of the GEL-MSCs.

Assumption 1. h(-) is astrictly increasing function and x, — o0 ash — o«
and k, = o(n).

AsinAndrews and Lu (2001), examples of GEL-MSCs that satisfy Assump-
tion 1 include analogs of the Bayesian information criterion (BIC) and HQIC Q3
based on GEL, both of which use h(x) = x:

GEL-MSC-BIC:

Kk, = Inn; GELMSCg (b,c) = GEL,(b,c) — (|c| — |b])Inn,
GEL-MSC-HQIC:

kn, = Alninn; GELMSCyqic(b,c) = GEL,(b,c) — A-(|c| — [b])InInn.

2.2. Consistency of GEL Model Selection Criteria

A moment and model selection estimator (b, ¢) is defined to be consistent if
(b, &) € MBCLC with probability converging to 1. In the following we give a
set of assumptions under which the GEL-MSC estimator (Dgusc, Gamsc) Pro-
vides a consistent moment and model selection estimator. These assumptions
alow for both random sampling and dependent data.

Assumption 2. For each (b,c) € BC,

(1) yp € Iy, I is compact, 7. € A, and A, is compact and contains a neighborhood
of 0.
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(2) There exist interior points y* € I, and 7* € A for each (b, c) such that

min max Ep(:g(X;vp)) = Ep (7 9(X;v4))
YoETL TcEAC
and Ep (73 9(X;yvs) = 0if (b,c) € BCLY, Ep(rg g(X;vi) > 0if (b,c) &
BCLO.
(3) Qn(Fb, 7o) = Ep (72 9(X;v1)), where we denote

Qn(?b’f-c) = min max Qn(7b7Tc)~
Yo€Ib TcEAC

In particular, note that for (b,c) € BCL?, we can take 77 = 0.

The interior point condition (2) requires that the moment condition model is
not too misspecified and cannot be ruled out ex ante. For example, it can be
violated if g(X:;vp) > 0 with probability 1 for al y, € I},. The following lemma
gives a set of sufficient conditions for Assumption 2.

LEMMA 1. Assumption (2) holds if condition (1) of Assumption 2 is satis-
fied and the following conditions are met for each (b, c):

(1) Ep(7Lg(Xi;yp)) isuniformly continuous over (T, Ac).

(2') For each y, € T, 7c(yp) = argmax, e Ep(7'9c(X;vp)) isunique and is con-
tinuous in vyy,. The saddle point y, = argmin,, Ep(7.(vy)'9(X;;7yp)) IS unique.

(3) SUP,cry nen. Qu(¥o ) = Ep(7L(Xe; ¥p))| => 0.

A sufficient condition for the uniqueness of 7.(yp) in condition (2') of
Lemma 1 is that the matrix Eg.(X:;vp)9c(X:;vp)' is strictly positive definite
for al (b,c) and y, € T}, because this implies that Ep (7:9(X;yy)) is strictly
convex in 7. for each . Sufficient conditions for condition (3') of Lemma 1,
which also imply condition (1'), are as follows: (i) g(X;;yp) is uniformly con-
tinuous in yp; (i) sUp, er, rea lP(T69(Xi;¥p))| < oo; (iii) X; are independent
and identically distributed (i.i.d.). Condition (ii) is satisfied if g(X;yy) iS uni-
formly bounded.

Although beyond the results of this paper, much weaker conditions for uni-
form convergence using empirical process theory can be used to accommodate
nonsmooth g.(X;;vy,) (see, e.g., Andrews, 1994). Moreover, these weaker con-
ditions can potentially allow for more general cases such as unbounded values
of p(7Lg(X;;7yp)) for some redlizations of X, which isimportant in the context
of EL with unbounded moment functions. Consistency results under general
conditions are developed by Newey and Smith (2000), who also exploit the
concavity properties of the carrier function to bypass uniform convergence con-
ditions and obtain \/n-consistency in one step.

Assumption 2 ensures that with probability converging to 1, (b,¢) € BCLP.
This together with the next assumption will ensure also that (b, ¢) € MBCLC
with probability converging to 1.

Assumption 3. For each (b,c) € BCLC, nQn(P1,7c) = Op(1).



ECT196-2 6/21 07/21/03 5:10 pm Page: 928

928 HAN HONG ET AL.

Sufficient conditions for Assumption 3 are developed in Kitamura and Stutzer
(1997), Christoffersen, Hahn, and Inoue (1999), Chernozhukov and Hansen
(2001), and Newey and Smith (2000), among others. Kitamura and Stutzer
(1997) assume smooth moment functions. Chernozhukov and Hansen (2001)
and Christoffersen et al. (1999) use empirical process theory (for nonsmooth
guantile moment functions, see, e.g., Andrews, 1994). For completeness we col-
lect some of these conditions used in the aforementioned papers in the follow-
ing lemma.

LEMMA 2. Suppose that for each (b,c) € BCLP, there exists a unique
yii € Ty, such that Ege(Xy;yp) = 0 if and only if yp, = ;. Assume that 9, — y;:
and 7; - 0 and that the followi ng conditions are satisfied:

(D) p(-) istwice differentiable with bounded continuous derivatives on its domain V,
which includes all realizations of 7.g.(X;,yp) for all 7. € A; and y;, € T}.

(2) Let Oc(yb) = Ege(Xi;v0)9c(Xi;vp)’ be positive definite at v, and for any
6n — 0, suppose

1 . ! * p
sup [ = 2 9e(Xes¥0) Ge(Xeis ve) — Qelyi) | = 0.

lvb—vb|=8n t=1
(3) Asymptotic normality of moment conditions: 1/vVn XL, g.(Xi;¥i) = Op(1).
Then Assumption 3 holds and Vn7, = Op(1).

Note that although Lemmas 1 and 2 assume uniqueness of (v, 7s), thisis
not directly used in Assumptions 2 and 3. It is possible to relax these condi-
tions to alow for nonunique vy, 7¢, i.e., models that are not point identified.
These results are, however, beyond the scope of the paper. For correctly spec-
ified models, the results for Q,(p,7.) in Newey and Smith (2000) allow for
unidentified moment conditions.

Given these conditions, the next proposition introduces the notion of consis-
tency for GEL-based MSC.

Proposi'gion 1. Under Assumptions 1-3, we have, with probability converg-
ingto 1, (b, ¢) € MBCLP for the pair (b, ¢) = arg maXp, c)esc GELMSC(b,c).
In short, we say that the GEL-based MSC is consistent.

Other transformations of the GEL function can also be used to form MSCs.
For example, because log(1 — x) = —x + 0(x), the GEL-MSC may be re-
defined as

= nlog(1— Qu(¥, 7)) — h(lc| — [bl)«,

with corresponding conditions on «,,. In particular, in the case of exponential
tilting, Qn(¥p,7c) = /Ny (1 — e79%%)) and log(1 — Qn(Fp, 7)) corre-
sponds to the KLIC from the implied distribution to the true distribution in
Kitamura and Stutzer (1997).
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2.3. Time Series Data

The results of the previous section apply to both random sampling data and
dependent data. For time series data, under suitable stationarity, ergodicity, and
weak dependence conditions, condition (3) of Lemma (2) typically holds with
(see, e.g., Andrews, 1991; Newey and West, 1987)

1 n e}
77 2 %(X75) SN whereS= 3 EQ(X,,75)8e(Xi—j, V).
t=1 j=—o0

For i.i.d. data, S= Q.(yy) and the GEL estimator ¥, is as efficient as the op-
timally weighted GMM estimator for (b,c) € MBCLP. For time series data,
although the GEL-MSC in the previous section is still consistent by Proposi-
tion 1, the estimator ¥, is typicaly less efficient than the optimally weighted
GMM.

To achieve efficiency with dependent data, the blocking methods of Kita-
mura and Stutzer (1997) (in the special case of ET) and Smith (1997) can be
used to smooth the observations in constructing the GEL function. These au-
thors define the blockwise GEL objective function as

_ 1.2
Qn('}’b,Tc) = H zlp(Tc'gc(Xth)) where
t=

K

X, .
2K+1kZKgC( t k7’yb)

Gc(Xe5vp) =

and the blocks are constructed so that K — oo and K/4/n — 0. In what follows,
we briefly discuss the modifications needed when Q, (v, 7.) is used in place of
Qn(yp, 7c) in constructing consistent GEL-MSCs. We only outline the results
based on Kitamura and Stutzer (1997) and Smith (1997) and refer the reader to
these papers for the complete set of stationary and weak dependence condi-
tions and other regularity conditions that validate the blockwise GEL approach.
When (b,c) € BCLY, (4, 7s) — (v,0) and Qn($p, 7) —> 0. On the other
hand, for misspecified models in which (b,c) & BCLY, ($p,7:) LN (ve,7d)
and Qn (9, 7) > Ep (72 go(X;yi)) > 0. Furthermore, when (b,c) € BCLO

2n

K1 Qn(Fp, 7e) = Op(1).

Following the logic of Proposition 1, consistent MSC can be defined as before
by minimizing nQ.(9u,7.) — h(|c| — |b])«, over (b,c), where the condition
on k, is now modified to «,/K — oo and x,,/n — 0.

2.4. Testing Procedure

Given the general consistency result of GEL-based M SC, we also describe the
GEL analogs of two algorithms proposed in Andrews (1999) and Andrews and
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Lu (2001) to choose (b,c) consistently. In the following discussion we will
focus on Qn(yp, 7c) rather than Q,(yy, 7).

2.4.1. Downward testing procedure. Andrews and Lu (2001) define the
downward-testing model selection procedure as follows. Starting with vectors
(b,c) € BC for which |c| — |b| (the number of overidentifying restrictions) is
the largest, perform tests (described in detail subsequently) with progressively
smaller |c| — |b] (therefore the name “downward” testing) until atest is found
that cannot reject the null hypothesis that the moment conditions considered
are all correct for the given model. (Note that for each value of |c| — |b|, tests
are carried out for each (b,c) in BC with this value of |c| — |b|.) Let kot de-
note the number of overidentifying restrictions (i.e., |c| — |b|) for this first test
found to not reject the null. Given ko, the downward testing estimator (bor, €o1)
is the vector that maximizes GEL (b, c) over (b,c) € BC with |c| — |b| = K.

More formally, consider the GEL statistic: GEL (b, ¢) = 2nQ, (¥, 7c). Under
Assumptions 2 and 3, if the moment conditions are correctly specified (in the
sense that 7¢ = 0 for the limit GEL problem min, max, [Ep(7.9(X;;vp))]),
then GEL (b, c) = O,(1).2

The downward-testing procedure looks for the first acceptance among
(b,c) € BC of the test whose rejection region is defined by

GELn(b, C) = 77n,k = Xl%(an)7

where yZ(a,) denotes the (1 — a,)th quantile of the chi-squared distribution
with k = |c| — |b| degrees of freedom. The following consistency result can be
shown for the downward-testing estimators (b, €or), Which is analogous to
Theorem 2 in Andrews and Lu (2001).

Proposition 2. If the sequence of critical values satisfies for each k
Mk—© and 7m,,=0(n) asn— oo,
then under Assumptions 2 and 3, P((bpr, 6or) € MBCLO) 55 1.

2.4.2. Upward testing procedure. The GELs can also be applied to the
upward-testing procedure described in Andrews (1999). Starting with vectors
(b,c) € BC that have the smallest number of overidentifying restrictions
|c] — |b|, we perform tests (analogous to those described for the downward-
testing procedure previously) with progressively more overidentifying restric-
tions (i.e., larger |c| — |b|; therefore the name “upward testing”) until we find
that all tests with the same value of |c| — | b| reject the null hypothesis that the
moment conditions considered are all correct. Let kyr denote the largest value
such that for all k = kyr, there is at least one (b,c) € BC with |c| — |b|] = k
for which the null hypothesis is not rejected. Given kyr, we take the upward
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testing estimator (byr, Eur) to be the vector that minimizes GEL (b, c) over
(b,c) € BC with |c| — |b| = kyr.

It is necessarily true that the upward testing procedure described here will
never select a pair (b, c) with more overidentifying restrictions than the down-
ward testing procedure; i.e.

|6UT|_|éUT|S|6DT‘_|CDT|' 2

To avoid selecting a pair (b, c) with too few overidentification conditions, an
gdditional assumption (as in Andrews, 1999) is made to ensure consistency of
bUT and CUT'

Assumption 4. For each (b,c) € BC such that k= |c| — |b| < #(MBCLO),
there exists (b, ¢) with |c| — |b| = k for which (b,c) € BCLP.

Without this condition, the inequality (2) may hold strictly, even asymptoti-
cally. Note that this additional condition can be ensured by proper choice of the
parameter space BC for the selection vector (b, ¢). Under this additional condi-
tion, we state the following proposition.

Proposition 3. With probability converging to 1, (byr, €ur) € MBCLO.

2.5. Analogy with Parametric Likelihood Model Selection Procedure

Andrews (1999) shows that the J-statistic-based MSC is analogous to standard
MSC (such as the BIC, Akaike information criterion [AIC], and HQIC) often Q4
employed in parametric model selection procedures. When we use GEL to for-
mulate the MSC, this analogy is very transparent because, in this case, an ex-
plicit likelihood- (or information-) based rationale also underlies the moment
selection procedure, just as in the fully parametric case.

Andrews (1999) notes that his J-statistic MSC is analogous to the parametric
MSC in the sense that, among correct models, this criterion would choose
the more tightly specified model. Equation (6.6) in Andrews (1999) shows an
equivalence result between the problem of maximizing the number of moment
conditions (i.e., minimizing the number of excluded moment conditions) and
minimizing the number of parameters, among correctly specified models. In
this section, we show an analogous equivalence for GEL-based MSCs.

Under correct specification GEL is asymptotically equivalent to GMM esti-
mation using the optimal weighting matrix. The use of GEL-based MSC also
provides a transparent proof of this equivalence result by avoiding the issues
associated with choosing the optimal weighting matrix in GMM estimation,
which arise when considering the J-statistic.

Following Andrews (1999), we simplify notation by assuming that all the
models under consideration are correctly specified, and we focus on the mo-
ment selection problem (involving the moment selection vector ¢ and the asso-
ciated Lagrange multipliers 7.). Therefore, in the discussion that follows, we
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let b = 1, the vector whose elements are al 1, and vp = 7y throughout, and we
assume that g.(-) is sufficient for identification of y. Our goa is to show the
equivalence between

n
GEL,, = 2minmax [E p(Tégc(Xt;v))}, ©)
Y Tc t=1
where g.(-) is the subvector of g(-) selected by c, and
GEL 2, = Zryin max [2 P(7e0c(Xi3y) + 72 (9-c(Xi37) —w) |, 4
M T, T—c| t=1

where g_.(-) is the subvector of the totality of moment conditions g(-) that are
excluded by the selection vector c. Here p is of dimensionr — |c|, wherer is
the total number of moment conditions under consideration. This equivalence
is analogous to equation (6.6) in Andrews (1999) and implies that the moment
selection problem can alternatively be viewed as a model (i.e., parameter) se-
lection problem, with the augmented parameter vector (v, u)’.

The equivalence of (3) and (4) is easy to demonstrate; indeed, let (¥, 7.)
solve (3), i.e., satisfy the first-order conditions

2 2 9c(Xi3%) Vp(7e9c(Xi3%)) = 0,
t=1

i 7e09:( X5 %)
t=1 dy

2 Vp(7¢9:(Xi;%)) = 0.

Then it follows that (y = ¥,7. = 7.,7_c = 0) and
n n

w= (E g-c(Xt;V)Vp(?égc(xtﬁ))>/<Z Vp(?égc(xtﬁ))>
t=1 t=1

solves the problem in (4). Indeed, one can easily verify that the first-order con-
ditions for problem (4), which can be written as

a n

5 GELzy = 22 9:(Xi; #)Vp (79X %)) = 0,
Tc t=1

agc(xt;'?)

5 7P (7e8(X;7)) =0,
Y

a n
— GEL,, =2 Z Te
Iy t=1

d
oT_¢

n
GEL,, = 2 (9_o(Xi37) — m)Vp(7L9.(X; %)) = O,
t=1

9 n
a_ GELZn = 27—70 2 vp(f(;gc(xt;y)) =0,
I t=1
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are necessarily satisfied at these parameter values. It is also immediately obvi-
ous that at these parameter values the two GEL functions are identical:

GELln(y’ %C) = GELZn(77 My %Cao),

which is analogous to equation (6) in Andrews (1999). Thus the analogy be-
tween generalized empirical likelihood-based moment and model selection
procedures and Andrews' J-statistic based procedures is complete. The use of
GEL -based MSC allows us to generalize the likelihood-based rationale under-
lying the usual MSC for parametric models to semiparametric models in which
the data-generating process is only partially specified via population moment
restrictions.

3. MONTE CARLO EXPERIMENTS

In this section we report the results from a simple Monte Carlo study designed
to compare MSC based on the J-statistic as proposed by Andrews (1999) and
Andrews and Lu (2001) and also on two special cases of the GEL statistic: em-
pirical likelihood and exponential tilting. Formally, these criteria are written as

MSCJ,(b,c) = nlin NGnc( Vo) Wa One(¥p) — h(|c| — |b|)Kny
b

10N
Onc(Yp) = H 2 9e(Xe5b),
t=1
n
MSCEL (b,c) = minmax 2 X, log(1 — 7'g(X;, yp)) — h(lc| = [b]) kp,
7b T t=1

MSCET,(b,¢) = minmax 2 3 (1 — exp(r'g(X,, %)) — h(lc| = [b])y,
b o t=1
using the same notation as in the previous sections.

Appropriate choices of the h(-) function and the sequence of constants, «p,
deliver the BIC, AIC, and HQIC MSC. We also consider the choice of h(-) as
the identity mapping and sequence of constants as «, = v/n, which we refer to
as RNIC. Q5

The model is specified by the set of equations

y; = 1+ %, + 0.5u,(1 + a|z]),
X = n, + 0.5u,, z, =1, + 0.5¢,, f,=mn, + 0.3u,,

where u;, n;, and ¢, are all independently distributed N(0,1) random variables,
truncated at —2 and 2. Both z, and f; are candidate instruments. By considering
aternative values for the coefficient « the analysis can accommodate homoske-
dastic and heteroskedastic error structures. To this end, values of zero and a
small positive constant are considered. The fact that E[ f,u,] # O implies that



ECT196-2 12/21 07/21/03 5:10 pm Page: 934

934 HAN HONG ET AL.

moment conditions constructed from the instrument f; are invalid. Moment con-
ditions are constructed from the following five possible instrument groups.

M1. constant, cos(z) + sinz

M2. constant, z, cos(z) + sinz cos z

M3. constant, cos(z) + sinz f.

M4. constant, z cos(z) + sinz cos z sinf.
M5. constant, cos(z) + sin z cosf, sinf.

The econometrician is assumed to know that the M1 moment conditions are
valid and seeks to determine the verity of the remaining moment conditions for
estimation. In the preceding notation, M2 instruments are the true (b° c°), M1
instruments are other consistent (b, c), and the remaining instrument groups con-
tain inconsistent (b, c). Therefore, this model that we use for the Monte Carlo
experiments satisfies the condition that MBCLC is a singleton. This is a case
in which the limiting distribution of the postselection (for consistent MSCs)
estimator is known to be the same as if (b°%c®) are picked a priori (see, e.g.,
Potscher, 1991).

In the subsequent tables, these three groupings of instruments will be refer-
enced by the abbreviations OC, Truth, and IC, respectively. The sin(-) and cos(-) Q5A
functions are utilized as a convenient way to generate instruments. Following
the suggestions in Andrews and Lu (2001), we have chosen the moment condi-
tions in these models so that (i) there is a noticeable difference in efficiency
between the estimators that use all the correct moment conditions and the esti-
mators that use only those moment conditions that are known to be correct and
(ii) there are noticeable biases in the estimators that use incorrect moment con-
ditions. This setup allows for gains to be exploited from a good moment selec-
tion procedure. It is clear that the exercise can be generalized to allow also for
“model selection” over sets of possible regressors.

Following Andrews and Lu (2001), we assess the relative performance of
these MSC by comparing the probability with which the three MSCs select the
true (b® c°); other consistent (b, c); and inconsistent (b, c). MSC that have both
a high probability of selecting the true model and a low probability of selecting
inconsistent models are preferred. The performance of postselection estimators
is assessed by comparison of the bias and root mean squared errors (RMSESs)
of the estimated slope coefficient of each model. The rejection rates for a 5%
t-test that each of these parameter estimates is equal to the true value of unity
are also computed. These statistics are reported for estimation based on each of
the five instrument sets and for each of the four MSC, to give a total of nine
postselection model results. Because there are three estimation methods—
GMM, EL, and ET—we report postselection results for a total of 27 models.
Results based on the proposed EL- and ET-based MSC relative to the GMM-
based approach are of most interest. The results based on each of the five pos-
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sible instrument groups are presented for comparison, with the infeasible
estimator resulting from the use of M2 giving the “ideal” benchmark. The re-
sults are based on 500 repetitions for four sample sizes, N = 50, 250, 500, and
1,000.

Table 1 details the probabilities of selecting the true, other consistent, and
inconsistent models under assumption of a homoskedastic error structure (a = 0).
For each estimation method, results are collected by each of the four proposed
penalty functions (BIC, AIC, HQIC, and RNIC). Considering the BIC and VN QsB
criteria, it is clear that the MSCJ outperforms both the MSCEL and MSCET
for the smaller sample sizes. The probability of selecting the true model is higher
by 5% and the probability of selecting a misspecified model lower by up to 10%.
As the sample size increases the discrepancy between the MSCJ and MSCET
vanishes, whereas the MSCEL has slightly higher probability of selecting an
inconsistent model. Under the AIC criterion, the MSCET outperforms both MSCJ
and MSCEL at all sample sizes. The gains are of the order of 10%, though they
are somewhat smaller when compared to MSCEL at larger sample sizes. The

TABLE 1. Selection probabilities

J-statistic Empirical likelihood Exponential tilting
N OC  Truth IC OC  Truth IC OC  Truth IC
BIC criterion

50 0.010 0.678 0312 0.002 0.610 0.388 0.000 0582 0.478
250 0.004 0982 0014 0.000 0958 0.042 0000 0982 0.018
500 0.000 1.000 0.000 0000 0974 0026 0.000 1.000 0.000

1,000 0.000 1.000 0.000 0.000 0982 0018 0.000 1.000 0.000

AIC criterion
50 0.068 0.698 0.234 0.006 0.630 0.364 0.002 0.750 0.246
250 0.152 0.842 0.006 0.032 0914 0.054 0.028 0.958 0.014
500 0.162 0.838 0.000 0026 0926 0048 0.028 0.972 0.000
1,000 0.144 0.856 0.000 0014 0950 0.036 0.002 0.980 0.000

HQIC criterion
50 0.026 0.708 0.266 0.012 0.668 0.320 0.002 0.654 0.244
250 0.024 0966 0.010 0.004 0948 0.048 0.004 0.978 0.018
500 0.028 0.972 0.000 0.000 0.968 0.032 0.000 1.000 0.000
1,000 0.020 0.980 0.000 0.000 0.974 0.026 0.000 1.000 0.000

RNIC criterion
50 0014 0698 0288 0.006 0630 0364 0.000 0.618 0.382
250 0.000 0.986 0.014 0000 0.960 0.040 0000 00982 0.018
500 0.000 1.000 0.000 0.000 0.978 0.022 0.000 1.000 0.000
1,000 0.000 1.000 0.000 0.000 0.994 0.006 0.000 1.000 0.000




ECT196-2 14/21 07/21/03 5:10 pm Page: 936

936 HAN HONG ET AL.

inconsistency of the AIC selection procedure is immediate from the MSCJ re-
sults (though interestingly, in the context of this model, the inconsistency of
the AIC criterion seems to be small under EL- and ET-based methods and AIC
appears able to distinguish the correct model with high probability). Finaly,
for HQIC, MSCJ again performs better in the smallest sample size, whereas
MSCET is marginally better as N increases. For all models, we note that the
MSC appear to perform reasonably well for sample sizes above 250.

Table 2 presents the bias, RMSES, and rejection rates of the postselection
estimates of the model’s slope coefficient for the two smallest sample sizes. To
clarify notation, for each estimation method (GMM, EL, and ET), the results
based on each of the five instrument groups are labeled M1-M5, whereas those
postsel ection results arising from the four MSC are labeled by the correspond-
ing penalty term: i.e., BIC, AIC, HQIC, and RNIC.

Considering the results obtained under GMM, it is immediate that misspec-
ification can lead to poor postselection results. If estimates are based on any of
the incorrectly specified models (M3-M5) then the bias is some 10 times greater
than the infeasible estimator (M2), with a corresponding deterioration in the
RM SEs. For such models, the rejection rate in small sample size (N = 50) for a
5% t-test that the slope coefficient is equal to the true value of unity islikely to
be rejected over 60% of the time. Thus, misspecification can clearly lead to
erroneous conclusions. In contrast, for the MSC, we note that the performance
of the postselection estimators is much closer to the infeasible estimator. The
bias is approximately three times that under M2, whereas the RMSEs are mar-
ginally higher. Correspondingly, the rejection rates of a 5% t-test are reduced
for each of the MSC relative to misspecified models to about 20%. Of the four
selection criteria, the AIC seems to perform best in small sample sizes (N = 50),
even though it is theoretically inconsistent. This does not appear too surprising,
given the finite-sample bias and size distortion when N = 50 and the fact that
the selection probabilities for AIC compare very favorably to other MSCs in
this small sample size of N = 50. In addition, the post-AlC estimators are still
consistent, and the distortion in the sampling distribution might not be signifi-
cant for the model we consider and for small sample sizes. For larger sample
sizes, however, AIC clearly does not perform quite as well as other consistent
MSCs, even though the discrepancy appears marginal. As the sample size in-
creases to 250, the differences between results based on the true model and
those based on each of the four selection criteria are remarkably small. The
biases are comparable, whereas the RM SEs and rejection rates are slightly higher.

For the EL- and ET-based results, the same broad patterns of results are ob-
served. However, comparison of these results to those obtained under GMM
suggests that the former have smaller bias and comparable RM SEs for the small-
est sample size, though a dightly higher rejection rate under ET. For the N = 250
sample, ET seems to perform better than EL. The bias is half as much and the
RM SEs somewhat smaller. Relative to GMM, ET seems to perform marginally
better.
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TABLE 2. Postselection results 1
N = 50 N = 250
Bias RMSE Rej. Rate Bias RMSE Rej. Rate
GMM
M1 —0.006 0.115 0.078 0.000 0.046 0.056
M2 0.011 0.091 0.148 0.004 0.036 0.068
M3 0.139 0.152 0.674 0.137 0.139 0.998
M4 0.128 0.143 0.620 0.119 0.119 0.982
M5 0.130 0.146 0.616 0.122 0.122 0.990
BIC 0.032 0.110 0.256 0.005 0.039 0.084
AIC 0.021 0.111 0.224 0.003 0.041 0.080
HQIC 0.027 0.111 0.224 0.004 0.039 0.084
RNIC 0.031 0.111 0.256 0.005 0.038 0.084
Empirical likelihood
M1 —0.006 0.115 0.078 0.000 0.046 0.056
M2 —0.006 0.099 0.152 0.001 0.036 0.072
M3 0.128 0.144 0.626 0.125 0.128 0.992
M4 0.097 0.124 0.470 0.098 0.102 0.932
M5 0.116 0.137 0.536 0.107 0.111 0.958
BIC 0.028 0.109 0.226 0.006 0.042 0.108
AlC 0.020 0.108 0.236 0.008 0.045 0.124
HQIC 0.022 0.110 0.240 0.007 0.044 0.116
RNIC 0.025 0.111 0.252 0.005 0.042 0.108
Exponential tilting

M1 —0.006 0.115 0.078 0.000 0.046 0.056
M2 —0.004 0.113 0.150 0.001 0.036 0.062
M3 0.132 0.148 0.644 0.131 0.133 0.996
M4 0.104 0.135 0.514 0.096 0.100 0.910
M5 0.117 0.138 0.536 0.113 0.116 0.976
BIC 0.029 0.118 0.300 0.003 0.039 0.080
AIC 0.020 0.113 0.254 0.025 0.039 0.082
HQIC 0.024 0.115 0.270 0.003 0.039 0.082
RNIC 0.027 0.117 0.284 0.003 0.039 0.080

Finally, Table 3 presents an identical set of results to those in Table 2 but for
the sample sizes N = 500 and 1,000. Consistent with the results of Table 1, as
N increases from 250 to 1,000 the bias is essentially eliminated for GMM- and
ET-based models and the RMSEs fall at a rate consistent with the increase in
sample size. For both larger sample sizes the ET-based results are marginally
better than the GMM-based results, whereas the EL-based results are some-
what worse. For ET and GMM the BIC, HQIC, and RNIC MSC nearly always
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TABLE 3. Postselection results 2

N = 500 N = 1,000
Bias RMSE Rej. Rate Bias RMSE Rej. Rate
GMM
M1 0.000 0.033 0.052 0.000 0.025 0.068
M2 0.001 0.025 0.056 0.000 0.019 0.066
M3 0.135 0.137 1.000 0.135 0.136 1.000
M4 0.118 0.120 1.000 0.118 0.118 1.000
M5 0.121 0.123 1.000 0.122 0.122 1.000
BIC 0.001 0.025 0.056 0.000 0.019 0.066
AlC 0.002 0.030 0.068 0.000 0.022 0.088
HQIC 0.000 0.026 0.058 0.000 0.020 0.068
RNIC 0.001 0.025 0.056 0.000 0.019 0.068
Empirical likelihood
M1 0.000 0.033 0.052 0.000 0.025 0.068
M2 —0.001 0.025 0.060 —0.001 0.019 0.060
M3 0.123 0.125 1.000 0.124 0.124 1.000
M4 0.096 0.099 0.992 0.097 0.098 1.000
M5 0.106 0.108 1.000 0.107 0.107 1.000
BIC 0.002 0.031 0.084 0.001 0.025 0.076
AlIC 0.004 0.036 0.106 0.004 0.030 0.092
HQIC 0.003 0.032 0.090 0.002 0.027 0.084
RNIC 0.002 0.029 0.080 0.000 0.020 0.064
Exponential tilting
M1 0.000 0.033 0.052 0.000 0.025 0.068
M2 —0.001 0.025 0.058 —0.001 0.019 0.060
M3 0.129 0.131 1.000 0.129 0.130 1.000
M4 0.095 0.097 0.994 0.095 0.096 1.000
M5 0.111 0.113 1.000 0.112 0.113 1.000
BIC —0.001 0.025 0.058 —0.001 0.019 0.060
AIC —0.001 0.026 0.062 0.000 0.020 0.062
HQIC —0.001 0.025 0.058 —0.001 0.019 0.060
RNIC —0.001 0.025 0.058 —0.001 0.019 0.060

select the true model for the largest sample size. As expected, for large N the
rejection rates go to 1 for misspecified models and are in the neighborhood of
5% for the infeasible model and all M SC-based selection models.

We also study the performance of selection probabilities and postselection
estimators in a heteroskedastic version of the preceding model. The Monte Carlo
results for a heteroskedastic case are not reported given their similarity to the
homoskedastic results, but they can be obtained at the Web address www.
princeton.edu/ ~doubleh.



ECT196-2 17/21 07/21/03 5:10 pm Page: 939

EMPIRICAL LIKELIHOOD MODEL SELECTION 939

4. CONCLUSIONS

This paper, following Andrews (1999) and Andrews and Lu (2001), proposes
GEL-based MSC for unconditional moment-based models. The MSC seek to
minimize the GEL -statistic modified by a penalty function that rewards use of
additional correct moment conditions for a given number of parameters and
penalizes less tightly specified models for a given number of moment conditions.

The GEL-based criteria have an information-theoretic interpretation even if
all models are incorrectly specified. If there is at least one model that is cor-
rectly specified then the GEL-MSC chooses the most parsimoniously specified
model among correctly specified models with probability converging to 1. If
all models are misspecified, the proposed MSC choose the model that mini-
mizes the penalty-augmented GEL-statistic. Thus, in the case of EL, the con-
sistent MSC chooses the model that is closest to the population density in KLIC
distance and also the most parsimonious in the number of parameters.

The usefulness of the GEL-based MSC was considered in a simple Monte
Carlo study for two special cases of GEL: empirical likelihood and exponential
tilting. Whereas in small sample sizes, MSC based on the J-statistic performed
well relative to the EL- and ET-based MSC for a range of postselection statis-
tics, in larger samples the ET-based M SC performed marginally better than the
J-statistic MSC, with some improvements over the EL-based MSC. Although
these results are specific to the example we studied, they suggest that GEL-
based MSC can be a useful alternative to J-statistic-based MSC.

NOTES

1. For detailed definitions see Andrews and Lu (2001). We closely follow their notation.

2. For random sampling data typically GEL(b,c), as defined in (1), converges in distribution
to X\ch\z under correct specification, although for consistent model selection we only need
GELn(b,c) = Oy(1).

3. Using GEL to form MSC also has the advantage of not having to choose a weighting matrix.
Another benefit is that GEL criterion functions remain invariant to certain normalizations of mo-
ment conditions. We thank a referee for raising this point with us.
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APPENDIX: PROOFS

Proof of Lemma 1. Existence of (y;,7Z) in part (2) is ensured by the continuity of Q7
Ep (7<(yp)'9(Xs, yp)) and the compactness of the parameter space. Consider part (3) first.
Define

7e(vp) = argmax, e, Qn(vp, 7c)-

Using all three conditions, standard arguments as in Amemiya (1985) and Newey and
McFadden (1994) adjusted for the dependence of the objective function on 7y, can be
used to show that sup,, e, [7c(vs) — 7c(vb)| = 0p(1). Therefore by the definition that
Yo = argmin,, i, Qq(7c(vp), ¥p), 10 sShow ¥, — v, = 0p(1), it suffices to show that

SUp [ Qn(7e(¥b), ¥b) = Ep(7e(¥6) (X, ¥))| = 0p(1).

Vo€
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This can be split into two parts. The first part is

SUp | Qn(7e(¥6), ¥b) — Ep(7e(¥5)'9ec(Xes ¥u))| = 0p(2),

o€

and the second part is sup,,cr, | Ep (7c(vp) 9c(Xis ¥6)) = Ep(7e(y6)'9(Xt, ¥b))| = 0p(1).
The first part follows from condition (3'), and the second part follows from condition
(2’) and uniform convergence of 7.(yp) to 7c(yp)-

Consider part (2) next. For ¥, such that Ege(X:;vp) = O,

= Vp(0)Eg.(X;;7p) = 0.

P
P Ep (7¢9c(Xi5 7))
TC

7c=0

By concavity of p(-), Ep(7.9.(Xi; 7)) achieves a maximum value of O when 7. = 0.
Therefore for al (b,c) € BCLC, by the uniqueness assumption in condition (2'),
Ep(7.9(X;y,)) achieves a value of 0 at the unique saddle point (y;, 7 = 0). On the
other hand, for ¥y, such that Eg.(X;;y,) # 0,

= Vp (O) Egc(xt;yb) # 0’

9
— Ep(7¢0c(Xi; 7))
07

7c=0
so that 7.(¥,) # O by the concavity of p(-). Hence by the uniqueness assumption (2'),
Ep (7c(75)9(X;; 7)) > 0.

Therefore for (b,c) € BC, but & BCLS Ep (7 g(X,;vi)) > 0, as part (2) requires. W

Proof of Lemma 2. The arguments follow those in Kitamura and Stutzer
(1997), Christoffersen et al. (1999), Chernozhukov and Hansen (2001), and Newey
and Smith (2000). We summarize the key steps here. First define 75 =
argmax, ¢, 2-1 p(7¢9:(X;;vs)). Using conditions (1) and (2) to Taylor-expand the
first-order condition

12 ,
N Zlgc(xt;vﬁ)Vp(?é‘ 9e(Xi;¥5) =0
t=
around 7. = 0, we obtain that

10 o Ny
N Zlgc(xt;vé‘) + Qc(y2)VN7E + 0,(VN7E)

n

1
= VN7 = 0u(ys) ™ = 2 9e(Xe;¥85) + 0,(1) = Op(1),

vn &
where the last equality follows from conditions (2) and (3). Then a quadratic expansion
shows
- ! S 1 4 Ak * Ak 3
2 p(7¢ 9o(Xs78)) = Vn#g NG 2 9c(Xisve) + (VN7E) Qc(yv5) (VN7E) + 0,(ni?)
t=1 t=1

= 0, (D).
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Then, for arbitrary h,
n " . n h R
Op(l) = 2 p(Tc gc(xtf')’b)) = 2 P \/— gc(xtayb)
t=1 t=1 n
h . -~ ’ * 2
= zgc(xt;Yb) +h'Qc(yg)h + 0,(h?),

which implies /v =, go(X;;75) = Op(1). Next, Taylor-expand the first-order con-
dition for 7.:

1 . A N A
\/ﬁ E gc(xt;‘yb)vp(Tcgc(xt;'}’b)) =0
t=1

to obtain that

1 n
75 2 X Fo) + Qe(v) Vg + 0 (Vo)

1 n
= V%= 0c(75) " = 2 Ge(Xe;96) +0p(1) = Op(2).

Finaly, using 1/vn X g(Xi;95) = Op(1) and Vn7, = O,(1) in a Taylor expansion,
we obtain

n 1 n
2 p(70e(Xis 7)) = = 2 Ge(Xe, 7o) Ve + V70 () = Op(D).
t=1 t=1

As noted in Newey and Smith (2000), the preceding result does not require the com-
plete set of conditions for \/n-consistency and asymptotic normality of . The condi-
tions of the lemma can potentially be modified to alow for the cases when ¢ is not
uniquely identified. u

Proof of Proposition 1. The proof is very similar to Andrews and Lu (2001). Be-
cause by Assumption 2 condition (1) the domain of A includes O as an interior point,
by the saddle point definition of (y;,7), for each (b,c) € BC: Ep(r: g(X,;vi)) = 0.
Take (b,c) € BC but & BCL® By the uniqueness Assumption 2 condition (2),
Ep (7 g(Xe;v:)) > 0. Then by Assumption 2 condition (3),

Qu(Fps 7o) = Ep (7 9(Xi3v2)) > 0.

So, using Assumption 1 that «,/n — 0,

1 ,
o, GELMSC, (b,c) 5 Ep (' g(X;578)) > 0.
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On the other hand, if (b,c) € BCL®, Ep(7i9(X;;y,)) achieves a value of 0 at the
unigue saddle point (y, 75 = 0). Therefore, again using «,/n — 0,

1
o GELMSC, (b,c) 2.

Hence, the preceding two equations imply that (b, ¢) € BCLC with probability converg-

ing to 1.
On the other hand, for all (b,c) € BCLY Qn(95,%:) = Op(1). But for [c,| — |by| <
[co| — |by| (i.e., the pair (by,c,) has more overidentifying restrictions than the pair

(bs, ¢1)), such that both pairs are in BCLY, (h(|ci| — |bi]) — h(|ca| — |by])) kn — —o0.
Therefore, With probability converging to 1, GELMSC, (b,,c,) < GELMSC, (b4, c,),
namely, that (b,¢) € MBCLC with probability converging to 1. n

Proof of Proposition 2. For any (b,c) € BC but & BCLC, the proof of Proposi-
tion 1 has shown that

GEL (b, )/, ¢/ b| 5 o0

because iAn this case, GEL,(b, ¢) is Op(n).
Thus kot = #(MBCLC) w.p. = 1. On the other hand, for (b,c) € BCLC, under
Assumption 3,

GEL,(b,¢) <npg—jp] W.p. = 1.

In consequence, kp 1+ = #(MBCL®) w.p. — 1, and hence (bpr, épr) € MBCLS. MW
. Proof of P[oposition 3. For the same reason as in the previous proof, we see that
k= |éur| — |bur] = #(MBCLC) w.p. — 1. On the other hand, Assumption 4 implies
that each k = |¢| — |b| < #(MBCLP); we can find corresponding by and ¢, such that
(by, &) € BCLC, under which it is necessary that

GEL,(by, ) < M cd—|b] WP — 1.

Consequently, with probability tending to 1, kyr = |6ur| — |but| = #(MBCLO) and
(bur, €ur) € MBCLO.



