Nonparametric Identification of Dynamic Models with Unobserved State Variables

Yingyao Hu
Johns Hopkins University
Matthew Shum
California Institute of Technology

First version: April 2008
This version: June 2009

Abstract

We consider the identification of a Markov process \(\{W_t, X_t^*\} \) when only \(\{W_t\} \) is observed. In structural dynamic models, \(W_t \) includes the choice variables and observed state variables of an optimizing agent, while \(X_t^* \) denotes the serially correlated unobserved state variables (or agent-specific unobserved heterogeneity). In the non-stationary case, we show that the Markov law of motion \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) is identified from five periods of data \(W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3} \). In the stationary case, only four observations \(W_{t+1}, W_t, W_{t-1}, W_{t-2} \) are required. Identification of \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) is a crucial input in methodologies for estimating Markovian dynamic models based on the “conditional-choice-probability (CCP)” approach pioneered by Hotz and Miller.

1 Introduction

In this paper, we consider the identification of a Markov process \(\{W_t, X_t^*\} \) when only \(\{W_t\} \), a subset of the variables, is observed. In structural dynamic models, \(W_t \) typically consists of the choice variables and observed state variables of an optimizing agent. \(X_t^* \) denotes the serially correlated unobserved state variables (or agent-specific unobserved heterogeneity), which are observed by the agent, but not by the econometrician.

We demonstrate two main results. First, in the non-stationary case, where the Markov law of motion \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \), can vary across periods \(t \), we show that, for any period \(t \), \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) is identified from five periods of data \(W_{t+1}, \ldots, W_{t-3} \). Second, in the

*The authors can be reached at yhu@jhu.edu and mshum@caltech.edu. We thank Xiaohong Chen, Jeremy Fox, Han Hong, Ariel Pakes, and Susanne Schennach for their suggestions. Seminar participants at BU, Clark, Harvard, LSE, MIT, NYU, Penn, Penn State, Toulouse, UCL, UCLA, USC, the Cowles 2008 Summer Conference at Yale, the 2008 ERID Conference at Duke, the 2008 Greater New York Econometrics Colloquium at Princeton, and the “Econometrics of Industrial Organization” workshop at Toulouse provided useful comments.
stationary case, where \(f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} \) is the same across all \(t \), only four observations \(W_{t+1}, \ldots, W_{t-2} \), for some \(t \), are required for identification.

In most applications, \(W_t \) consists of two components \(W_t = (Y_t, M_t) \), where \(Y_t \) denotes the agent’s action in period \(t \), and \(M_t \) denotes the period-\(t \) observed state variable(s). \(X_t^* \) are persistent unobserved state variables (USV for short), which are observed by agents and affect their choice of \(Y_t \), but unobserved by the econometrician. The economic importance of models with unobserved state variables has been recognized since the earliest papers on the structural estimation of dynamic optimization models. Two examples are:

1. **Miller’s (1984)** job matching model was one of the first empirical dynamic discrete choice models with unobserved state variables. \(Y_t \) is an indicator for the occupation chosen by a worker in period \(t \), and the unobserved state variables \(X_t^* \) are the posterior means of workers’ beliefs regarding their occupation-specific match values. The observed state variables \(M_t \) include job tenure and education level.

2. **Pakes (1986)** estimates an optimal stopping model of the year-by-year renewal decision on European patents. In his model, the decision variable \(Y_t \) is an indicator for whether a patent is renewed in year \(t \), and the unobserved state variable \(X_t^* \) is the profitability from the patent in year \(t \), which is not observed by the econometrician. The observed state variable \(M_t \) could be other time-varying factors, such as the stock price or total sales of the patent-holding firm, which affect the renewal decision.

These two early papers demonstrated that dynamic optimization problems with an unobserved process partly determining the state variables are indeed empirically tractable. Their authors (cf. Miller (1984, section V); Pakes and Simpson (1989)) also provided some discussion of the restrictions implied on the data by their models, thus highlighting how identification has been a concern since the earliest structural empirical applications of dynamic models with unobserved state variables. Obviously, the nonparametric identification of these complex nonlinear models has important practical relevance for empirical researchers, and our goal here is to provide identification results which apply to a broad class of Markovian dynamic models with unobserved state variables.

Our main result concerns the identification of the Markov law of motion \(f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} \). Once this is known, it factors into conditional and marginal distributions of economic interest. For Markovian dynamic optimization models (such as the examples given above),
\[
f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} \text{ factors into}
\]
\[
= f_{Y_t,M_t,X_t^*|Y_{t-1},M_{t-1},X_{t-1}^*} \cdot f_{M_t,X_t^*|Y_{t-1},M_{t-1},X_{t-1}^*}.
\]
\[
= f_{Y_t,M_t,X_t^*} \cdot f_{M_t,X_t^*|Y_{t-1},M_{t-1},X_{t-1}^*}.
\]
\[
= f_{Y_t} \cdot f_{M_t,X_t^*|Y_{t-1},M_{t-1},X_{t-1}^*}.
\]

The first term denotes the conditional choice probability for the agent’s optimal choice in period \(t \). The second term is the Markovian law of motion for the state variables \((M_t, X_t^*)\).

Once the CCP’s and the law of motion for the state variables are recovered, it is straightforward to use them as inputs in a CCP-based approach for estimating dynamic discrete-choice models. This approach was pioneered in Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith (1994). A general criticism of these methods is that they cannot accommodate unobserved state variables. In response, Aguirregabiria and Mira (2007), Buchinsky, Hahn, and Hotz (2004), and Houde and Imai (2006), among others, recently developed CCP-based estimation methodologies allowing for agent-specific unobserved heterogeneity, which is the special case where the latent \(X_t^* \) is time-invariant. Arcidiacono and Miller (2006) developed a CCP-based approach to estimate dynamic discrete models where \(X_t^* \) varies over time according to an exogenous first-order Markov process.

While these papers have focused on estimation, our focus is on identification. Our identification approach is novel because it is based on recent econometric results in nonlinear measurement error models. Specifically, we show that the identification results in Hu and Schennach (2008) and Carroll, Chen, and Hu (2009) for nonclassical measurement models (where the measurement error is not assumed to be independent of the latent “true” variable) can be applied to Markovian dynamic models, and we use those results to establish nonparametric identification.

Kasahara and Shimotsu (2009, hereafter KS) consider the identification of dynamic models with discrete unobserved heterogeneity, where the latent variable \(X_t^* \) is time-invariant and discrete. KS demonstrate that the Markov law of motion \(W_{t+1}|W_t, X^* \) is identified in this setting, using six periods of data. Relative to this, we consider a more general setting.
where \(X_t^* \) varies over periods, and is drawn from a continuous distribution.

Henry, Kitamura, and Salanie (2008, hereafter HKS) exploit exclusion restrictions to identify Markov regime-switching models with a discrete and latent state variable. While our identification arguments are quite distinct from those in HKS, our results share some of HKS’s intuition, because we also exploit the feature of first-order Markovian models that, conditional on \(W_{t-1}, W_{t-2} \) is an “excluded variable” which affects \(W_t \) only via the unobserved state \(X_t^* \).

Cunha, Heckman, and Schennach (2006) apply the result of Hu and Schennach (2008) to show nonparametric identification of a nonlinear factor model consisting of \((W_t, W_t', W_t'', X_t^*) \), where the observed processes \(\{W_t\}_{t=1}^T \), \(\{W_t'\}_{t=1}^T \), and \(\{W_t''\}_{t=1}^T \) constitute noisy measurements of the latent process \(\{X_t^*\}_{t=1}^T \), contamined with random disturbances. In contrast, we consider a setting where \((W_t, X_t^*) \) jointly evolves as a dynamic Markov process. We use observations of \(W_t \) in different periods \(t \) to identify the conditional density of \((W_t, X_t^*|W_{t-1}, X_{t-1}^*) \). Thus, our model and identification strategy differ from theirs.

The paper is organized as follows. In Section 2, we introduce and discuss the main assumptions we make for identification. In Section 3, we present, in a sequence of lemmas, the proof of our main identification result. Subsequently, we also present several useful corollaries which follow from the main identification result. In Section 4, we discuss several examples, including a discrete case, to make our assumptions more transparent. We conclude in Section 5. While the proof of our main identification result is presented in the main text, the appendix contains the proofs for several lemmas and corollaries.

2 Overview of assumptions

Consider a dynamic process \(\{(W_T, X_T^*), \ldots, (W_t, X_t^*), \ldots, (W_1, X_1^*)\}_i \) for agent \(i \). We assume that for each agent \(i \), \(\{(W_T, X_T^*), \ldots, (W_t, X_t^*), \ldots, (W_1, X_1^*)\}_i \) is an independent random draw from a bounded distribution \(f_{(w_t, x_t^*), \ldots, (w_1, x_1^*)}. \) The researcher observes a panel dataset consisting of an i.i.d. random sample of \(\{W_T, W_{T-1}, \ldots, W_1\}_i \), with \(T \geq 5 \), for many agents \(i \). We first consider identification in the nonstationary case, where the Markov law of motion \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) varies across periods. This model subsumes the case of unobserved heterogeneity, in which \(X_t^* \) is fixed across all periods.

Next, we introduce our four assumptions. The first assumption below restricts attention to certain classes of models, while Assumptions 2-4 establish identification for the restricted

4Similarly, Bouissou, Laffont, and Vuong (1986) exploit the Markov restrictions on a stochastic process \(X \) to formulate tests for the noncausality of another process \(Y \) on \(X \).
Assumption 1. (i) First-order Markov: \(f_{W_t | W_{t-1}, X_{t-1}^*} = f_{W_t | X_{t-1}^*} \), where \(\Omega_{<t-1} \equiv \{ W_{t-2}, ..., W_1, X_{t-2}^*, ..., X_1^* \} \), the history up to (but not including) \(t - 1 \).

(ii) Limited feedback: \(f_{W_t | W_{t-1}, X_{t-1}^*} = f_{W_t | W_{t-1}, X_t^*} \).

Assumption (i) is just a first-order Markov assumption, which is satisfied for Markovian dynamic decision models (cf. Rust (1994)). Assumption (ii) is a “limited feedback” assumption, because it rules out direct feedback from the last period’s USV, \(X_{t-1}^* \), on the current value of the observed \(W_t \). When \(W_t = (Y_t, M_t) \), as before, Assumption 1 implies:

\[
f_{W_t | W_{t-1}, X_{t-1}^*, X_{t-1}^*} = \frac{f_{Y_t | M_t, Y_{t-1}, M_{t-1}, X_{t-1}^*, X_{t-1}^*}}{f_{Y_t | M_t, Y_{t-1}, M_{t-1}, X_{t-1}^*} \cdot f_{M_t | Y_{t-1}, M_{t-1}, X_{t-1}^*, X_{t-1}^*}} = \frac{f_{Y_t | M_t, X_t^*, Y_{t-1}, M_{t-1}, X_{t-1}^*}}{f_{Y_t | M_t, X_t^*, Y_{t-1}, M_{t-1}, X_{t-1}^*} \cdot f_{M_t | Y_{t-1}, M_{t-1}, X_t^*}}.
\]

In the bottom line of the above display, the limited feedback assumption eliminates \(X_{t-1}^* \) as a conditioning variable in both terms. In Markovian dynamic optimization models, the first term (the CCP) further simplifies to \(f_{Y_t | M_t, X_t^*} \), because the Markovian laws of motion for \((M_t, X_t^*) \) imply that the optimal policy function depends just on the current state variables. Hence, Assumption 1 imposes weaker restrictions on the first term than Markovian dynamic optimization models.\(^5\)

In the second term of the above display, the limited feedback condition rules out direct feedback from last period’s unobserved state variable \(X_{t-1}^* \) to the current observed state variable \(M_t \). However, it allows indirect effects via \(X_{t-1}^* \)’s influence on \(Y_{t-1} \) or \(M_{t-1} \). Implicitly, the limited feedback assumption (ii) imposes a timing restriction, that \(X_t^* \) is realized before \(M_t \), so that \(M_t \) depends on \(X_t^* \). While this is less restrictive than the assumption that \(M_t \) evolves independently of both \(X_{t-1}^* \) and \(X_t^* \), which has been made in many applied settings to enable the estimation of the \(M_t \) law of motion directly from the data, it does rule out models such as \(M_t = h(M_{t-1}, X_{t-1}^*) + \eta_t \), which implies the alternative timing assumption that \(X_t^* \) is realized after \(M_t \).\(^6\)

\(^5\) Moreover, if we move outside the class of these models, the above display also shows that Assumption 1 does not rule out the dependence of \(Y_t \) on \(Y_{t-1} \) or \(M_{t-1} \), which corresponds to some models of state dependence. These may include linear or nonlinear panel data models with lagged dependent variables, and serially correlated errors, cf. Arellano and Honoré (2000). Arellano (2003, chs. 7–8) considers linear panel models with lagged dependent variables and persistent unobservables, which is also related to our framework.

\(^6\) Most empirical applications of dynamic optimization models with unobserved state variables satisfy the Markov and limited feedback conditions: examples from the industrial organization literature include Erdem, Imai, and Keane (2003), Crawford and Shum (2005), Das, Roberts, and Tybout (2007), Xu (2007), and Hendel and Nevo (2006).
$X_t^* = X_{t-1}^*$, $\forall t$, the limited feedback assumption is trivial. Finally, the limited feedback assumption places no restrictions on the law of motion for X_t^*, and allows X_t^* to depend stochastically on $X_{t-1}^*, Y_{t-1}^*, M_{t-1}$.

For this paper, we assume that the unobserved state variable X_t^* is scalar-valued, and is drawn from a continuous distribution. An important role in the identification argument is played by many integral equalities which demonstrate the equivalence of multivariate density functions which contain the latent variable X_t^* as an argument (which are not identified directly in the data), and those containing only observed variables W_t (which are identified directly from the data). To avoid cumbersome repetition, we will express these integral equalities in the convenient notation of linear operators, which we introduce here.

Let R_1, R_2, R_3 denote three random variables, with support $\mathcal{R}_1, \mathcal{R}_2$, and \mathcal{R}_3, distributed with joint density $f_{R_1,R_2,R_3}(r_1,r_2,r_3)$ with support $\mathcal{R}_1 \times \mathcal{R}_2 \times \mathcal{R}_3$. The linear operator $L_{R_1|R_2,R_3}$ is a mapping from the L^p-space of functions of R_3 to the L^p space of functions of R_1, defined as

$$(L_{R_1|R_2,R_3}h)(r_1) = \int f_{R_1|R_2,R_3}(r_1|r_2,r_3)h(r_3)dr_3; \quad h \in L^p(\mathcal{R}_3), \ r_2 \in \mathcal{R}_2.$$

Similarly, we define the diagonal (or multiplication) operator

$$(D_{r_1|r_2,R_3}h)(r_3) = f_{R_1|R_2,R_3}(r_1|r_2,r_3)h(r_3); \quad h \in L^p(\mathcal{R}_3), \ r_1 \in \mathcal{R}_1, \ r_2 \in \mathcal{R}_2.$$

In the next section, we show that our identification argument relies on a spectral decomposition of a linear operator generated from $L_{W_{t+1},W_t|W_{t-1},W_{t-2}}$, which corresponds to the observed density $f_{W_{t+1},W_t|W_{t-1},W_{t-2}}$. (A spectral decomposition is the operator analog of the eigenvalue-eigenvector decomposition for matrices, in the finite-dimensional case.)

The next two assumptions ensure the validity and uniqueness of this decomposition.

Assumption 2. Invertibility: There exists variable(s) $V \subseteq W$ such that for any $(w_t, w_{t-1}) \in W_t \times W_{t-1}$:

(i) $L_{V_{t-2},w_{t-1},w_{t-1}+1}$ is one-to-one; (ii) $L_{V_{t+1}|w_t,X_t^*}$ is one-to-one; (iii) L_{V_{t-2},w_{t-1},V_t} is one-to-one.

7 A discrete distribution for X_t^*, which is assumed in many applied settings (eg. Arcidiacono and Miller (2006)) is a special case, which we will consider as an example in Section 4 below.

8 Here, capital letters denote random variables, while lower-case letters denote realizations.

9 For $1 \leq p < \infty$, $L^p(X)$ is the space of measurable real functions $h(\cdot)$ integrable in the L^p-norm, i.e. $\int_X |h(x)|^p d\mu(x) < \infty$, where μ is a measure on a σ-field in X. One may also consider other classes of functions, such as bounded functions in L^1, in the definition of an operator.

10 Specifically, when W_t, X_t^* are both scalar and discrete with $J (< \infty)$ points of support, the operator $L_{W_{t+1},w|w_{t-1},W_{t-2}}$ is a $J \times J$ matrix, and spectral decomposition reduces to diagonalization of this matrix. This discrete case is discussed in detail in Section 4, example 1.
Assumption 2 enables us to take inverses of certain operators, and is analogous to assumptions made in the nonclassical measurement error literature. Specifically, treating V_{t-2} and V_{t+1} as noisy “measurements” of the latent X_t^*, Assumption 2(i,ii) imposes the same restrictions between the measurements and the latent variable as Hu and Schennach (2008, Assumption 3) and Carroll, Chen, and Hu (2009, Assumption 2.4). Compared with these two papers, Assumption 2(iii) is an extra assumption we need because, in our dynamic setting, there is a second latent variable, X_{t-1}^*, in the Markov law of motion $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$. Below, we show that Assumption 2(ii) implies that pre-multiplication by the inverse operator $L_{V_{t+1}|W_t,X_t^*}^{-1}$ is valid, while 2(i,iii) imply that post-multiplication by, respectively, $L_{V_{t+1}|W_t,X_t^*}^{-1}$ and $L_{V_t|W_{t-1},V_{t-2}}^{-1}$ is valid.\[11] The statements in Assumption 2 are equivalent to completeness conditions which have recently been employed in the nonparametric IV literature: namely, an operator $L_{R_1|R_2,R_3}$ is one-to-one if the corresponding density function $f_{R_1|R_2,R_3}$ satisfies a “completeness” condition: for any r_2,\[12]

\[
(L_{R_1|R_2,R_3}h) (r_1) = \int f(r_1|r_2,r_3)h(r_3)dr_3 = 0 \text{ for all } r_1 \text{ implies } h(r_3) = 0 \text{ for all } r_3. \tag{2}
\]

Completeness is a high-level condition, and special cases of it have been considered in, eg. Newey and Powell (2003), Blundell, Chen, and Kristensen (2007), d’Haultfoeuille (2009). However, sufficient conditions are not available for more general settings. Below, in Section 4, we will construct examples which satisfy the completeness requirements, and also consider necessary conditions for completeness.

The variable(s) $V_t \subseteq W_t$ defined in Assumption 2 may be scalar, multidimensional, or W_t itself. Intuitively, by Assumption 2(ii), the variable(s) V_{t+1} are components of W_{t+1} which “transmit” information on the latent X_t^* conditional on W_t, the observables in the previous period. We consider suitable choices of V for specific examples in Section 4.\[12]

Assumption 2(ii) rules out models where X_t^* has a continuous support, but W_{t+1} contains only discrete components. In this case, there is no subset $V_{t+1} \subseteq W_{t+1}$ for which $L_{V_{t+1}|W_t,X_t^*}$ can be one-to-one. Hence, dynamic discrete-choice models with a continuous unobserved state variable X_t^*, but only discrete observed state variables M_t, fail this assumption, and may be nonparametrically underidentified without further assumptions. Moreover, models where the W_t and X_t^* processes evolve independently will also fail this assumption.\[11]
Assumption 3. Uniqueness of spectral decomposition:

(i) For any \((w_t, w_{t-1}, x^*_t) \in \mathcal{W}_t \times \mathcal{W}_{t-1} \times \mathcal{X}^*_t\), the density \(f_{W_t|W_{t-1},X^*_t}(w_t|w_{t-1}, x^*_t)\) is bounded away from zero and infinity.

(ii) For any \(w_t \in \mathcal{W}_t\) and any \(x^*_t \neq \overline{x}^*_t \in \mathcal{X}^*_t\), there exists \(w_{t-1} \in \mathcal{W}_{t-1}\) such that the density \(f_{W_t|W_{t-1},X^*_t}\) satisfies

\[
\frac{\partial^2}{\partial z_t \partial z_{t-1}} \ln f_{W_t|W_{t-1},X^*_t}(w_t|w_{t-1}, x^*_t) \neq \frac{\partial^2}{\partial z_t \partial z_{t-1}} \ln f_{W_t|W_{t-1},X^*_t}(w_t|w_{t-1}, \overline{x}^*_t),
\]

where \(z_t\) (resp. \(z_{t-1}\)) denotes a continuous-valued component of \(w_t\) (resp. \(w_{t-1}\)).

Assumption 3 ensures the uniqueness of the spectral decomposition of a linear operator generated from \(L_{V_{t+1},w_t|w_{t-1},V_{t-2}}\). As Eq. (13) below shows, the eigenvalues in this decomposition involve the density \(f_{W_t|W_{t-1},X^*_t}\), and conditions (i) and (ii) are restrictions on this density which guarantee that these eigenvalues are, respectively, bounded and distinct across all values of \(x^*_t\). In turn, this ensures that the corresponding eigenfunctions are linearly independent, so that the spectral decomposition is unique.

Assumption 4. Monotonicity and normalization: For any \(w_t \in \mathcal{W}_t\), there exists a known functional \(G\) such that \(G \left[f_{V_{t+1}|W_t,X^*_t} (\cdot|w_t, x^*_t) \right] \) is monotonic in \(x^*_t\). We normalize \(x^*_t = G \left[f_{V_{t+1}|W_t,X^*_t} (\cdot|w_t, x^*_t) \right] \).

The eigenfunctions in the aforementioned spectral decomposition correspond to the densities \(f_{V_{t+1}|W_t,X^*_t} (\cdot|w_t, x^*_t)\), for all values of \(x^*_t\). Since \(X^*_t\) is unobserved, the eigenfunctions are only identified up to an arbitrary one-to-one transformation of \(X^*_t\). To resolve this issue, we need additional restrictions deriving from the economic or stochastic structure of the model, which “pin down” the values of the unobserved \(X^*_t\) relative to the observed variables. In Assumption 4, this additional structure comes in the form of the functional \(G\) which, when applied to the family of densities \(f_{V_{t+1}|W_t,X^*_t} (\cdot|w_t, x^*_t)\) is monotonic in \(x^*_t\), given \(w_t\). Given the monotonicity restriction, we can normalize \(X^*_t\) by setting, \(x^*_t = G \left[f_{V_{t+1}|W_t,X^*_t} (\cdot|w_t, x^*_t) \right] \) without loss of generality. The functional \(G\), which may depend on the value of \(w_t\), could be the mean, mode, median, or another quantile of \(f_{V_{t+1}|W_t,X^*_t}\).

13 Assumptions 2 and 3 as stated here, are stronger than necessary. An earlier version of the paper (Hu and Shum (2008)) contained less restrictive, but also less intuitive, versions of these assumptions.

14 To be clear, the monotonicity assumption here is a model restriction, and not without loss of generality; if it were false, our identification argument would not recover the correct CCP’s and laws of motion for the underlying model. See Matzkin (2003) and Hu and Schennach (2008) for similar uses of monotonicity restrictions in the context of nonparametric identification problems.
Assumptions 1-4 are the four main assumptions underlying our identification arguments. Of these four assumptions, all except Assumption 2(i,iii) involve densities not directly observed in the data, and are not directly testable.

3 Main nonparametric identification results

We present our argument for the nonparametric identification of the Markov law of motion $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$ by way of several intermediate lemmas. The first two lemmas present convenient representations of the operators corresponding to the observed density $f_{V_{t+1},w_t|w_{t-1},V_{t-2}}$ and the Markov law of motion $f_{w_t,X_t^*|w_{t-1},X_{t-1}^*}$, for given values of $(w_t, w_{t-1}) \in W_t \times W_{t-1}$:

Lemma 1. (Representation of the observed density $f_{V_{t+1},w_t|w_{t-1},V_{t-2}}$): For any $t \in \{3, \ldots, T-1\}$, Assumption 1 implies that for any $(w_t, w_{t-1}) \in W_t \times W_{t-1}$,

$$L_{V_{t+1},w_t|w_{t-1},V_{t-2}} = L_{V_{t+1}|w_t,X_t^*} D_{w_t|w_{t-1},X_t^*} L_{X_t^*|w_{t-1},V_{t-2}}. \tag{4}$$

Lemma 2. (Representation of Markov law of motion): For any $t \in \{3, \ldots, T-1\}$, Assumptions 1 and 2 imply that, for any $(w_t, w_{t-1}) \in W_t \times W_{t-1},$

$$L_{w_t,X_t^*|w_{t-1},X_{t-1}^*} = L_{V_{t+1}|w_t,X_t^*} L_{V_{t+1},w_t|w_{t-1},V_{t-2}} L_{V_{t}|w_{t-1},X_{t-1}^*} L_{V_{t}|w_{t-1},X_{t-1}^*}. \tag{5}$$

Proofs: in Appendix.

Since $L_{V_{t+1},w_t|w_{t-1},V_{t-2}}$ and $L_{V_{t}|w_{t-1},V_{t-2}}$ are observed, Lemma 2 implies that the identification of the operators $L_{V_{t+1}|w_t,X_t^*}$ and $L_{V_{t}|w_{t-1},X_{t-1}^*}$ implies the identification of $L_{w_t,X_t^*|w_{t-1},X_{t-1}^*}$, the operator corresponding to the Markov law of motion. The next lemma postulates that $L_{V_{t+1}|w_t,X_t^*}$ is identified just from observed data.

Lemma 3. (Identification of $f_{V_{t+1}|W_t,X_t^*}$): For any $t \in \{3, \ldots, T-1\}$, Assumptions 1 and 2 imply that the density $f_{V_{t+1},W_t|W_{t-1},V_{t-2}}$ uniquely identifies the density $f_{V_{t+1}|W_t,X_t^*}$.

This lemma encapsulates the heart of the identification argument, which is the identification of $f_{V_{t+1}|W_t,X_t^*}$ via a spectral decomposition of an operator generated from the observed density $f_{V_{t+1},W_t|W_{t-1},V_{t-2}}$. Once this is established, re-applying Lemma 3 to the operator corresponding to the observed density $f_{V_{t}|W_{t-1}|W_{t-2},V_{t-3}}$ yields the identification of $f_{V_{t}|W_{t-1},X_{t-1}^*}$. Once $f_{V_{t+1}|W_t,X_t^*}$ and $f_{V_{t}|W_{t-1},X_{t-1}^*}$ are identified, then so is the Markov law of motion $f_{w_t,X_t^*|w_{t-1},X_{t-1}^*}$, from Lemma 2.

Proof: (Lemma 3) By Lemma 1, $L_{V_{t+1},w_t|w_{t-1},V_{t-2}} = L_{V_{t+1}|w_t,X_t^*} D_{w_t|w_{t-1},X_t^*} L_{X_t^*|w_{t-1},V_{t-2}}$. The first term on the RHS, $L_{V_{t+1}|w_t,X_t^*}$, does not depend on w_{t-1}, and the last term
$L_{X_t^*|\omega_{t-1},V_{t-2}}$ does not depend on w_t. This feature suggests that, by evaluating Eq. (4) at the four pairs of points (w_t, ω_{t-1}), (ω_t, ω_{t-1}), $(w_t, \bar{\omega}_{t-1})$, $(\bar{\omega}_t, \bar{\omega}_{t-1})$, such that $w_t \neq \bar{w}_t$ and $w_{t-1} \neq \bar{w}_{t-1}$, each pair of equations will share one operator in common. Specifically:

for (w_t, ω_{t-1}):

$$L_{V_{t+1}|w_t, \omega_{t-1}} = L_{V_{t+1}|w_t, X_t^* D_{w_t}|w_{t-1}, X_t^* L_{X_t^*|w_{t-1}, V_{t-2}},}$$ \hspace{1cm} (6)

for (ω_t, ω_{t-1}):

$$L_{V_{t+1}|\omega_t, \omega_{t-1}} = L_{V_{t+1}|\omega_t, X_t^* D_{\omega_t}|\omega_{t-1}, X_t^* L_{X_t^*|\omega_{t-1}, V_{t-2}}},$$ \hspace{1cm} (7)

for $(w_t, \bar{\omega}_{t-1})$:

$$L_{V_{t+1}|w_t, \bar{\omega}_{t-1}} = L_{V_{t+1}|w_t, X_t^* D_{w_t}|\omega_{t-1}, X_t^* L_{X_t^*|\omega_{t-1}, V_{t-2}}},$$ \hspace{1cm} (8)

for $(\bar{\omega}_t, \bar{\omega}_{t-1})$:

$$L_{V_{t+1}|\bar{\omega}_t, \bar{\omega}_{t-1}} = L_{V_{t+1}|\bar{\omega}_t, X_t^* D_{\bar{\omega}_t}|\omega_{t-1}, X_t^* L_{X_t^*|\omega_{t-1}, V_{t-2}}}. $$ \hspace{1cm} (9)

Assumptions (ii) and (iii) imply that we can solve for $L_{X_t^*|\omega_{t-1}, V_{t-2}}$ from Eq. (7) as

$$D_{\omega_t}^{-1} L_{V_{t+1}|w_t, X_t^*} L_{V_{t+1}|w_t, \omega_{t-1}} = L_{X_t^*|\omega_{t-1}, V_{t-2}}.$$

Plugging in this expression to Eq. (6) leads to

$$L_{V_{t+1}|w_t, \omega_{t-1}} = L_{V_{t+1}|w_t, X_t^* D_{w_t}|w_{t-1}, X_t^* D_{\omega_t}^{-1} L_{V_{t+1}|w_t, X_t^*} D_{\omega_t}^{-1} L_{X_t^*|w_{t-1}, V_{t-2}}.$$ \hspace{1cm} (11)

Lemma 1 of Hu and Schennach (2008) shows that, given Assumption (iii), $L_{V_{t+1}, \omega_t|w_{t-1}, V_{t-2}}$ is invertible, and we can postmultiply by $L_{V_{t+1}, \omega_t|w_{t-1}, V_{t-2}}$, to obtain:

$$A \equiv L_{V_{t+1}|w_t, X_t^* D_{w_t}|w_{t-1}, X_t^* D_{\omega_t}^{-1} L_{V_{t+1}|w_t, X_t^*} D_{\omega_t}^{-1} L_{X_t^*|w_{t-1}, V_{t-2}}.$$ \hspace{1cm} (10)

Similar manipulations of Eqs. (8) and Eq. (9) lead to

$$B \equiv L_{V_{t+1}|\omega_t, X_t^* D_{\omega_t}|\omega_{t-1}, X_t^* D_{\omega_t}^{-1} L_{\omega_t, X_t^*|\omega_{t-1}, V_{t-2}}.$$ \hspace{1cm} (11)

Finally, we postmultiply Eq. (10) by Eq. (11) to obtain

$$AB = L_{V_{t+1}|w_t, X_t^* D_{w_t}|w_{t-1}, X_t^* D_{\omega_t}^{-1} L_{w_t, X_t^*|w_{t-1}, V_{t-2}} \times L_{V_{t+1}|w_t, X_t^* D_{\omega_t}^{-1} L_{\omega_t, X_t^*|w_{t-1}, V_{t-2}}$$ \hspace{1cm} (12)

where
\[
(D_{w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, X_t^*} h) (x_t^*) = \left(D_{w_t|_{w_{t-1}, X_t^*}} \frac{D_{w_t|_{w_{t-1}, X_{t-1}^*}}}{D_{w_t|_{w_{t-1}, X_t^*}}} D_{w_t|_{w_{t-1}, X_t^*}} D_{w_t|_{w_{t-1}, X_t^*}} h \right) (x_t^*) \\
= \frac{f_{W_t|_{w_{t-1}, X_t^*}} (w_t|_{w_{t-1}, x_t^*}) f_{W_{t-1, x_t^*}} (w_{t-1}|_{w_{t-1}, x_t^*})}{f_{W_t|_{w_{t-1}, X_t^*}} (w_t|_{w_{t-1}, x_t^*}) f_{W_{t-1, x_t^*}} (w_{t-1}|_{w_{t-1}, x_t^*})} h(x_t^*)
\]

This equation implies that the observed operator \(AB \) on the left hand side of Eq. (12) has an inherent eigenvalue-eigenfunction decomposition, with the eigenvalues corresponding to the function \(k(w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, x_t^*) \) and the eigenfunctions corresponding to the density \(f_{W_t|_{w_{t-1}, X_t^*}} (w_t, x_t^*) \). The decomposition in Eq. (12) is similar to the decomposition in Hu and Schenmann (2008) or Carroll, Chen, and Hu (2009).

Assumption 3 ensures that this decomposition is unique. Specifically, Eq. (12) implies that the operator \(AB \) on the LHS has the same spectrum as the diagonal operator \(D_{w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, X_t^*} \). Assumption 3(i) guarantees that the spectrum of the diagonal operator \(D_{w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, X_t^*} \) is bounded. Since an operator is bounded by the largest element of its spectrum, Assumption 3(i) also implies that the operator \(AB \) is bounded, whence we can apply Theorem XV.4.3.5 from Dunford and Schwartz (1971) to show the uniqueness of the spectral decomposition of bounded linear operators.

Several ambiguities remain in the spectral decomposition. First, Eq. (12) itself does not imply that the eigenvalues \(k(w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, x_t^*) \) are distinctive for different values \(x_t^* \). When the eigenvalues are the same for multiple values of \(x_t^* \), the corresponding eigenfunctions are only determined up to an arbitrary linear combination, implying that they are not identified. Assumption 3(ii) rules out this possibility. When \(w_t \) (resp. \(w_{t-1} \)) is close to \(\overline{w}_t \) (resp. \(\overline{w}_{t-1} \)), Eq. (13) implies that the logarithm of the eigenvalues in this decomposition can be represented as a second-order derivative of the log-density \(f_{W_t|_{w_{t-1}, X_t^*}} \) as in Assumption 3(ii). Therefore, Assumption 3(ii) implies that for each \(w_t \), we can find values \(w_t, w_{t-1}, \) and \(w_{t-1} \) such that the eigenvalues are distinct across all \(x_t^* \). A sufficient condition for 3(ii) is that \(\frac{\partial^2}{\partial x_t^* \partial w_t} \ln f_{W_t|_{w_{t-1}, X_t^*}} \) is continuous and nonzero, which implies that \(\frac{\partial^2}{\partial x_t^* \partial w_t} \ln f_{W_t|_{w_{t-1}, X_t^*}} \) is monotonic in \(x_t^* \) for any \((w_t, w_{t-1}) \).

Second, the eigenfunctions \(f_{V_{t+1}|_{w_t, X_t^*}} (w_t, x_t^*) \) in the spectral decomposition (12) are unique up to multiplication by a scalar constant. However, these are density functions, so their scale is pinned down because they must integrate to one. Finally, both the eigenvalues and eigenfunctions are indexed by \(X_t^* \). Since our arguments are nonparametric, and \(X_t^* \) is

15 Specifically, the operators \(AB \) corresponding to different values of \((\overline{w}_t, w_{t-1}, \overline{w}_{t-1}) \) share the same eigenfunctions \(f_{V_{t+1}|_{w_t, X_t^*}} (w_t, x_t^*) \). Assumption 3(ii) implies that, for any two different eigenfunctions \(f_{V_{t+1}|_{w_t, X_t^*}} (w_t, x_t^*) \) and \(f_{V_{t+1}|_{w_t, X_t^*}} (w_t, \overline{x}_t^*) \), one can always find values of \((\overline{w}_t, w_{t-1}, \overline{w}_{t-1}) \) such that the two different eigenfunctions correspond to two different eigenvalues, i.e., \(k(w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, x_t^*) \neq k(w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, \overline{x}_t^*) \).
unobserved, we need an additional monotonicity condition, in Assumption 4, to pin down the value of X_t^* relative of the observed variables. This was discussed earlier, in the remarks following Assumption 4.

Therefore, altogether the density $f_{V_{t+1}|W_t, X_t^*}$ or $L_{V_{t+1}|w_t, X_t^*}$ is nonparametrically identified for any given $w_t \in W_t$ via the spectral decomposition in Eq. (12). Q.E.D.

By re-applying Lemma 3 to the observed density $f_{V_t, W_{t-1}|W_{t-2}, V_{t-3}}$, it follows that the density $f_{V_t|W_{t-1}, X_{t-1}^*}$ is identified. Hence, by Lemma 2, we have shown the following result:

Theorem 1. (Identification of Markov law of motion, non-stationary case):

Under the Assumptions 1, 2, 3, and 4, the density $f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}}$ for any $t \in \{4, \ldots, T-1\}$ uniquely determines the density $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$.

3.1 Initial conditions

Some CCP-based estimation methodologies for dynamic optimization models (eg. Hotz, Miller, Sanders, and Smith (1994), Bajari, Benkard, and Levin (2007)) require simulation of the Markov process $(W_t, X_t^*, W_{t+1}, X_{t+1}^*, W_{t+2}, X_{t+2}^*, \ldots)$ starting from some initial values W_{t-1}, X_{t-1}^*. When there are unobserved state variables, this raises difficulties because X_{t-1}^* is not observed. However, it turns out that, as a by-product of the main identification results, we are also able to identify the marginal densities f_{W_{t-1}, X_{t-1}^*}. For any given initial value of the observed variables w_{t-1}, knowledge of f_{W_{t-1}, X_{t-1}^*} allows us to draw an initial value of X_{t-1}^* consistent with w_{t-1}.

Corollary 1. (Identification of initial conditions, non-stationary case): Under the Assumptions 1, 2, 3, and 4, the density $f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}}$ for any $t \in \{4, \ldots, T-1\}$ uniquely determines the density f_{W_{t-1}, X_{t-1}^*}.

Proof: in Appendix.

3.2 Stationarity

In the proof of Theorem 1 from the previous section, we only use the fifth period of data W_{t-3} for the identification of $L_{V_t|w_t, X_t^*}$. Given that we identify $L_{V_{t+1}|w_t, X_t^*}$ using four periods of data, i.e., $\{W_{t+1}, W_t, W_{t-1}, W_{t-2}\}$, the fifth period W_{t-3} is not needed when $L_{V_t|w_{t-1}, X_{t-1}^*} = L_{V_{t+1}|w_t, X_t^*}$. This is true when the Markov kernel density $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$ is time-invariant.

Thus, in the stationary case, only four periods of data, $\{W_{t+1}, W_t, W_{t-1}, W_{t-2}\}$, are required to identify $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$. Formally, we make the additional assumption:

16 Recall that Assumptions 1-4 are assumed to hold for all periods t. Hence, applying Lemma 3 to the observed density $f_{V_t, W_{t-1}|W_{t-2}, V_{t-3}}$ does not require any additional assumptions.
Assumption 5. Stationarity: the Markov law of motion of \((W_t, X_t^*)\) is time-invariant:
\[
f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} = f_{W_2, X_2^* \mid W_1, X_1^*}, \quad \forall \ 2 \leq t \leq T.
\]

Stationarity is usually maintained in infinite-horizon dynamic programming models. Given the foregoing discussion, we present the next corollary without proof.

Corollary 2. (Identification of Markov law of motion, stationary case): Under assumptions 1, 2, 3, 4, and 5, the observed density \(f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}}\) for any \(t \in \{3, \ldots, T-1\}\) uniquely determines the density \(f_{W_2, X_2^* \mid W_1, X_1^*}\).

In the stationary case, initial conditions are still a concern. The following corollary, analogous to Corollary 1 for the non-stationary case, postulates the identification of the marginal density \(f_{W_t, X_t^*}\), for periods \(t \in \{1, \ldots, T-3\}\). For any of these periods, \(f_{W_t, X_t^*}\) can be used as a sampling density for the initial conditions.

Corollary 3. (Identification of initial conditions, stationary case): Under assumptions 1, 2, 3, 4, and 5 the observed density \(f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}}\) for any \(t \in \{3, \ldots, T-1\}\) uniquely determines the density \(f_{W_{t-2}, X_{t-2}^*}\).

Proof: in Appendix.

4 Comments on Assumptions in Specific Examples

Even though we focus on nonparametric identification, we believe that our results can be valuable for applied researchers working in a parametric setting, because they provide a guide for specifying models such that they are nonparametrically identified. As part of a pre-estimation check, our identification assumptions could be verified for a prospective model via either direct calculation, or Monte Carlo simulation using specific parameter values. If the prospective model satisfies the assumptions, then the researcher could proceed to estimation, with the confidence that underlying variation in the data, rather than the particular functional forms chosen, is identifying the model parameters, and not just the particular functional forms chosen. If some assumptions are violated, then our results suggest ways that the model could be adjusted in order to be nonparametrically identified.

To this end, we present two examples of dynamic models here. Because some of the assumptions that we made for our identification argument are quite abstract, we discuss these assumptions in the context of these examples.

\[17\] Even in the stationary case, where \(f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*}\) is invariant over time, the marginal density of \(f_{W_{t-1}, X_{t-1}^*}\) may still vary over time (unless the Markov process \((W_t, X_t^*)\) starts from the steady-state). For this reason, it is useful to identify \(f_{W_t, X_t^*}\) across a range of periods.

\[18\] A third example, based on Rust (1987), is in the supplemental material (Hu and Shum (2009)).
4.1 Example 1: A discrete model

As a first example, let \((W_t, X_t^*)\) denote a bivariate discrete first-order Markov process where \(W_t\) and \(X_t^*\) are both binary scalars: \(\forall t, \text{supp}X_t^* = \text{supp}W_t \equiv \{0, 1\}\). This is the simplest example of the models considered in our framework. One example of such a model is a binary version of Abbring, Chiappori, and Zavadil’s (2008) “dynamic moral hazard” model of auto insurance. In that model, \(W_t\) is a binary indicator of claims occurrence, and \(X_t^*\) is a binary effort indicator, with \(X_t^* = 1\) denoting higher effort. In this model, moral hazard in driving behavior and experience rating in insurance pricing imply that the laws of motion for both \(W_t\) and \(X_t^*\) should exhibit state dependence:

\[
\Pr(W_t = 1|w_{t-1}, x_t^*, x_{t-1}^*) = p(w_{t-1}, x_t^*); \quad \Pr(X_t^* = 1|x_{t-1}^*, w_{t-1}) = q(x_{t-1}^*, w_{t-1}). \tag{14}
\]

These laws of motion satisfy Assumption 1.

Relative to the continuous case presented beforehand, some simplifications obtain in this finite-dimensional example. Notationally, the linear operators in the previous section reduce to matrices, with the \(L\) operators in the main proof corresponding to \(2 \times 2\) square matrices, and the \(D\) operators are \(2 \times 2\) diagonal matrices. Specifically, for binary random variables \(R_1, R_2, R_3\), the \((i + 1, j + 1)\)-th element of the matrix \(L_{R_1,R_2,R_3}\) contains the joint probability that \((R_1 = i, R_2 = r_2, R_3 = j)\), for \(i, j \in \{0, 1\}\).

Assumptions 2, 3, and 4 are quite transparent to interpret in the matrix setting. Assumption 2 implies the invertibility of certain matrices. From Lemma 1, the following matrix equality holds, for all values of \((w_t, w_{t-1})\):

\[
L_{W_{t+1},w_t|w_{t-1},W_{t-2}} = L_{W_{t+1},w_t|w_{t-1}}X_t^*D_{w_t|w_{t-1}}X_t^*L_{X_t^*|w_{t-1},W_{t-2}}. \tag{15}
\]

Assumption 2(i) implies that the matrix \(L_{W_{t-2},w_{t-1},W_{t+1}} = (L_{W_{t+1},w_t|w_{t-1},W_{t-2}}D_{w_t|w_{t-1}})\) is invertible, which implies that \(L_{W_{t+1},w_t|w_{t-1},W_{t-2}}\) is also invertible. Hence, by Eq. 15, \(L_{W_{t+1}|w_t,X_t^*}\) and \(L_{X_t^*|w_{t-1},W_{t-2}}\) are both invertible, and that all the elements in the diagonal matrix \(D_{w_t|w_{t-1},X_t^*}\) are nonzero. Hence, in this discrete model, Assumption 2(ii) is redundant, because it is implied by 2(i).

Furthermore, Assumption 2(iii) is also implied by 2(i). Specifically, \(L_{W_{t-2},w_{t-1},w_t} = (L_{W_t|w_{t-1},W_{t-2}}D_{w_t|w_{t-1},W_{t-2}})^T\) with \(L_{W_t|w_{t-1},W_{t-2}} = L_{W_t|w_{t-1}}X_t^*L_{X_t^*|w_{t-1},W_{t-2}}\). By Assumption 2(i), \(L_{W_t|w_{t-1},X_t^*}\) is invertible. Since \(L_{X_t^*|w_{t-1},W_{t-2}} = L_{X_t^*|w_{t-1}}X_t^*L_{X_t^*|w_{t-1},W_{t-2}}\) was shown above to be invertible, the matrix \(L_{X_t^*|w_{t-1},W_{t-2}}\) is invertible, and hence so is \(L_{W_t|w_{t-1},W_{t-2}}\). Since Assumption 2(i) also implies \(D_{w_t|w_{t-1},W_{t-2}}\) is invertible, the matrix \(L_{W_{t-2},w_{t-1},W_t}\) is invertible.
Assumption 3 puts restrictions on the eigenvalues in the spectral decomposition of the AB operator. In the discrete case, AB is an observed 2×2 matrix, and the spectral decomposition reduces to the usual matrix diagonalization. Assumption 3(i) implies that the eigenvalues are nonzero and finite, and 3(ii) implies that the eigenvalues are distinctive. For all (w_t, w_{t-1}), these assumptions can be verified, by directly diagonalizing the AB matrix.

In this discrete case, Assumption 4 is to an “ordering” assumption on the columns of the $L_{W_{t+1}|w_t, X_t^*}$ matrix, which are the eigenvectors of AB. This is because, for a matrix diagonalization $T = SDS^{-1}$, where D is diagonal, and T and S are square matrices, any permutation of the eigenvalues (the diagonal elements in D) and their corresponding eigenvectors (the columns in S) results in the same diagonal representation of T.

If the goal is only to identify $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$ for a single period t, then we could dispense with Assumption 4 altogether, and pick two arbitrary orderings in recovering $L_{W_{t+1}|w_t, X_t^*}$ and $L_{W_t|w_{t-1}, X_{t-1}^*}$. By doing this, we cannot pin down the exact value of X_t^* or X_{t-1}^*, but the recovered density of $W_t, X_t^*|W_{t-1}, X_{t-1}^*$ is still consistent with the two arbitrary orderings for X_t^* and X_{t-1}^*, in the sense that the implied transition matrix $X_t^*|X_{t-1}^*, w_{t-1}$ for every $w_{t-1} \in W_{t-1}$ is consistent with the true, but unknown ordering of X_t^* and X_{t-1}^*.

But this will not suffice if we wish to recover the transition density $f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*}$ in two periods $t = t_1, t_2$, with $t_1 \neq t_2$. If we want to compare values of X_t^* across these two periods, then we must invoke Assumption 4 to pin down values of X_t^* which are consistent across the two periods. For this example, one reasonable monotonicity restriction is

$$\text{for } w_t = \{0, 1\} : \quad \mathbb{E}[W_{t+1}|w_t, X_t^* = 1] < \mathbb{E}[W_{t+1}|w_t, X_t^* = 0] \quad (16)$$

The restriction (16) implies that future claims W_{t+1} occur less frequently with higher effort today, and imposes additional restrictions on the the $p(\cdot \cdot \cdot)$ and $q(\cdot \cdot \cdot)$ functions in (14)

To see how this restriction orders the eigenvectors, and pins down the value of X_t^*, note that $\mathbb{E}[W_{t+1}|w_t, X_t^*] = f(W_{t+1} = 1|w_t, X_t^*)$, which is the second component of each eigenvector. Therefore, the monotonicity restriction (16) implies that the eigenvectors (and their corresponding eigenvalues) should be ordered such that their second components are decreasing, from left to right. Given this ordering, we assign a value of $X_t^* = 0$ to the eigenvector in the first column, and $X_t^* = 1$ to the eigenvector in the second column.

19 We thank Thierry Magnac for this insight.

20 See Hu (2008) for a number of other alternative ordering assumptions for the discrete case.
4.2 Example 2: generalized investment model

For the second example, we consider a dynamic model of firm R&D and product quality in the “generalized dynamic investment” framework described in Doraszelski and Pakes (2007)\(^{21}\) In this model, \(W_t = (Y_t, M_t)\), where \(Y_t\) is a firm’s R&D in year \(t\), and \(M_t\) is the product’s installed base. The unobserved state variable \(X^*_t\) is the firm’s product quality.

Product quality \(X^*_t\) is restricted to a bounded support:

\[
X^*_t = 0.8X^*_{t-1} + 0.1\psi(Y_{t-1}) + 0.1\nu_t; \quad \psi(Y_{t-1}) = \frac{e^{Y_{t-1}} - 1}{e^{Y_{t-1}} + 1}; \quad 0 < U < +\infty. \tag{17}
\]

In the above, \(\nu_t\) is a standard normal shock truncated to the interval \([0, U]\), distributed independently over \(t\). We assume \(X^*_0 \in [0, U]\), which ensures that \(X^*_t \in [0, U]\) for all \(t\).

Installed base evolves as:

\[
M_{t+1} - M_t = \exp(\eta_{t+1} + k(X^*_t)) \quad k'(\cdot) > 0 \tag{18}
\]

where \(\eta_{t+1}\) is a standard normal shock, truncated to \([0, 1]\), independently across \(t\). Eq. (18) implies that, \textit{ceteris paribus}, product quality raises installed base.

Each period, a firm chooses its R&D to maximize its discounted future profits:

\[
Y_t = Y^*(M_t, X^*_t, \gamma_t) = \arg\max_{y \geq 0} \left[\Pi(M_t, X^*_t) - \gamma_t \cdot 1_{Y_t \geq 0} \cdot (\kappa + Y_t^2) + \beta \mathbb{E} V(M_{t+1}, X^*_t, \gamma_{t+1}) \right] \tag{19}
\]

\(\kappa > 0\) is a fixed cost of R&D, and \(\gamma_t\) is a shock to R&D costs. We assume that the \(\gamma_t\)’s are distributed \(U[0.5, 1]\) independently across \(t\). Therefore, the RHS of Eq. (19) is supermodular in \(Y_t\) and \(-\gamma_t\), for all \((M_t, X^*_t)\). Accordingly, the firm’s optimal R&D investment \(Y_t\) is monotonically decreasing in \(\gamma_t\), holding \((M_t, X^*_t)\) fixed.

Assumption 1 is satisfied for this model.

Assumption 2 contains three invertibility assumptions. For the \(V_t\) variables in Assumption 2, we use \(V_t = M_t\), for all periods \(t\).\(^{22}\) We begin by presenting a necessary condition for an operator to be one-to-one, which is useful to determine when one-to-one is not satisfied. Later, we will consider conditions which ensure that one-to-one is satisfied.

\(^{21}\)See Hu and Shum (2009, Section 1.2) for additional discussion of dynamic investment models.

\(^{22}\)Levinsohn and Petrin (2003) and Ackerberg, Benkard, Berry, and Pakes (2007) note that, with fixed costs to R&D, \(Y_t = 0\) for many values of \((M_t, X^*_t)\), and hence may not provide enough information on \(X^*_t\).
Lemma 4. (Necessary conditions for one-to-one): If \(L_{R_1,R_3} \) is one-to-one, then for any set \(S_3 \subseteq R_3 \) with \(\Pr (S_3) > 0 \), there exists a set \(S_1 \subseteq R_1 \) such that \(\Pr (S_1) > 0 \) and

\[
\frac{\partial}{\partial r_3} f_{R_1,R_3}(r_1,r_3) \neq 0 \quad \text{almost surely for } \forall r_1 \in S_1, \forall r_3 \in S_3.
\]

Proof: in Appendix. ■

Intuitively, the condition ensures enough variation in \(R_1 \) for different values of \(R_3 \).

Consider Assumption 2(i). Because product quality directly affects contemporaneous installed base, the distribution of \(M_{t+1} \) depends on \(X_{t+1}^* \). Similarly, the distribution of \(M_{t-2} \) depends on \(X_{t-2}^* \). Since \((X_{t+1}^*,X_{t-2}^*)\) are correlated, the density of \((M_{t+1},w_t,w_{t-1},M_{t-2})\) varies in \(M_{t-2} \), for different values of \((M_{t+1},w_t,w_{t-1})\). For Assumption 2(ii), note that because we are not conditioning on \(Y_t \), the conditional distribution of \(M_{t+1}|w_t,X_t^* \) depends on \(X_t^* \). Similarly, for Assumption 2(iii), \(M_t \) depends on \(X_t^* \), which is correlated with \(M_{t-2} \), so that the density of \((M_t,w_{t-1},M_{t-2})\) varies in \(M_{t-2} \) for different \((w_{t-1},M_t)\).

Hence, so far, we have shown that our model specification satisfies necessary conditions for Assumption 2. In the appendix, we discuss sufficient conditions for Assumption 2.

Assumption 3 contains two restrictions on the density \(f_{W_t|W_{t-1},X_t^*} \), which factors as

\[
f_{W_t|W_{t-1},X_t^*} = f_{Y_t|M_t,X_t^*} \cdot f_{M_t|Y_{t-1},M_{t-1},X_t^*}.
\]

Assumption 3(i) requires that, for any \((w_t,w_{t-1})\), this density is bounded between 0 and \(+\infty\). The first term is the density of R&D \(Y_t \). From the preceding discussion, we know that, conditional on \((M_t,X_t^*)\), the randomness in \(Y_t \) results from, and is monotonically decreasing in, the shock \(\gamma_t \). Since, by assumption, the density of \(\gamma_t \) is bounded away from 0 and \(+\infty\) along its support, so will the conditional density \(f_{Y_t|M_t,X_t^*} \).

The second term \(f_{M_t|M_{t-1},X_t^*} \) is the law of motion for installed base which, by assumption, is a truncated normal distribution, so it is also bounded away from zero and \(+\infty\). The bounded support assumptions on \(M_t \) may appear artificial but, in practice, imply little loss in generality, because typically in estimating these models, one will take the upper and lower bounds on \(M_t \) from the observed data.

For 3(ii), we derive that

\[
\frac{\partial^2}{\partial m_t \partial m_{t-1}} \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},x_t^*) = \frac{\partial^2}{\partial m_t \partial m_{t-1}} [\ln f(y_t|m_t,x_t^*) + \ln f(m_t|w_{t-1},x_t^*)].
\]

The conditional density of \(m_t|m_{t-1},x_t^* \sim \tilde{\phi} (\log(m_t - m_{t-1}) - k(x_t^*)) / [m_t - m_{t-1}] \), where
\(\phi \) denotes a truncated standard normal density. This is decreasing in \(x_t^* \) for every \((m_t, m_{t-1})\), and implies the condition in Assumption 3(ii).

For Assumption 4, note \(\mathbb{E}[M_{t+1}|m_t, y_t, x_t^*] = m_t + \mathbb{E}[\exp(\eta_{t+1})] \cdot \mathbb{E}[\exp(k(X_t^*+1))|x_t^*, y_t] \). Because the function \(k(\cdot) \) is monotonic, the law of motion for product quality implies that \(\mathbb{E}[\exp(k(X_t^*+1))|x_t^*, y_t] \) is monotonic in \(x_t^* \). Hence, taking \(G \) to be the expectation functional, we pin down \(x_t^* = \int m_{t+1} f_{M_{t+1}|M_t, Y_t, X_t^*} (m_{t+1}|m_t, y_t, x_t^*) dm_{t+1} \).

5 Concluding remarks

We have considered the identification of a first-order Markov process \(\{W_t, X_t^*\} \) when only \(\{W_t\} \) is observed. Under non-stationarity, the Markov law of motion \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) is identified from the distribution of the five observations \(W_{t+1}, \ldots, W_{t-3} \). Under stationarity, identification of \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) obtains with only four observations \(W_{t+1}, \ldots, W_{t-2} \). Once \(f_{W_t, X_t^*|W_{t-1}, X_{t-1}^*} \) is identified, nonparametric identification of the remaining parts of the models – particularly, the per-period utility functions – can proceed by applying the results in Magnac and Thesmar (2002) and Bajari, Chernozhukov, Hong, and Nekipelov (2007), who considered dynamic models without persistent latent variables \(X_t^* \).

For a general \(k \)-th order Markov process \((k < \infty)\), it can be shown that the \(3k+2 \) observations \(W_{t+k}, \ldots, W_{t-2k-1} \) can identify the Markov law of motion \(f_{W_t, X_t^*|W_{t-1}, \ldots, W_{t-k}, X_{t-1}^*, \ldots, X_{t-k}^*} \) under appropriate extensions of the assumptions in this paper.

We have only considered the case where the unobserved state variable \(X_t^* \) is scalar-valued. The case where \(X_t^* \) is a multivariate process, which may apply to dynamic game settings, presents some serious challenges. Specifically, when \(X_t^* \) is multi-dimensional, Assumption 2(ii), which requires that \(L_{t+1|W_t, X_t^*} \) be one-to-one, can be quite restrictive. Ackerberg, Benkard, Berry, and Pakes (2007, Section 2.4.3) discuss the difficulties with multivariate unobserved state variables in the context of dynamic investment models.

Finally, this paper has focused on identification, but not estimation. In ongoing work, we are using our identification results to guide the estimation of dynamic models with unobserved state variables. This would complement recent papers on the estimation of parametric dynamic models with unobserved state variables, using non-CCP-based approaches.\(^{23}\)

APPENDIX A: Proofs

Proof: (Lemma 1) By Assumption (1i), the observed density \(f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}} \) equals

\[
\int \int f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, X_t^*, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1} \mid W_t, W_{t-1}, W_{t-2}, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, W_{t-2}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

\[
= \int \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*
\]

(We omit all the arguments in the density functions.) Assumption (1ii) then implies

\[
f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}} = \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, W_{t-2}} \left(\int f_{X_{t-1}^* \mid W_{t-1}, W_{t-2}} \, dx_{t-1}^* \right) \, dx_t^*
\]

\[
= \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*.
\]

Hence, by combining the above two displays, we obtain

\[
f_{W_{t+1}, W_t \mid W_{t-1}, W_{t-2}} = \int f_{W_{t+1} \mid W_t, X_t^*} f_{W_t, X_t^* \mid W_{t-1}, X_{t-1}^*} \, dx_t^* \, dx_{t-1}^*.
\]

(22)

In operator notation, given values of \((w_t, w_{t-1}) \in W_t \times W_{t-1}\), this is

\[
L_{W_{t+1} \mid w_{t+1}, w_t, w_{t-1}, w_{t-2}} = L_{W_{t+1} \mid w_t, X_t^*} D_{w_t \mid w_{t-1}, X_t^*} L_{X_t^* \mid w_{t-1}, w_{t-2}}.
\]

(23)

For the variable(s) \(V_t \subseteq W_t \), for all periods \(t \), introduced in Assumption (2) Eq. (23) implies that the joint density of \(\{V_{t+1}, W_t, W_{t-1}, V_{t-2}\} \) is expressed in operator notation as

\[
L_{V_{t+1} \mid w_{t+1}, w_t, w_{t-1}, v_{t-2}} = L_{V_{t+1} \mid w_t, X_t^*} D_{w_t \mid w_{t-1}, X_t^*} L_{X_t^* \mid w_{t-1}, v_{t-2}},
\]

as postulated by Lemma 1. \(Q.E.D. \)
In operator notation, for fixed \(w_t \) above. Again using Assumption 1, we have

\[
L_{w_t} = \int f_{V_{t+1}, W_t} |w_t, V_{t-2}, V_{t-1} \frac{dx_t^*}{W_t, X_t^*} f_{W_t, X_t^*} |w_t, X_t^* |w_t, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} \tag{24}
\]

Substituting the second line into the first, we get

\[
L_{w_t, X_t^*} |w_t, X_t^* |w_t-1, X_t^* |w_t-1, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} f_{W_t, X_t^*} |w_t, X_t^* |w_t-1, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} \equiv L_{w_t, X_t^*} |w_t-1, X_t^* |w_t-1, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} \tag{25}
\]

where the second line uses Assumption 2(ii). Next, we eliminate \(L_{X_t^*} |w_t-1, V_{t-2} \) from the above. Again using Assumption 1, we have

\[
f_{V_t} |w_t-1, V_{t-2} = \int f_{V_t} |w_t-1, X_t^* |w_t-1, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} \tag{26}
\]

which, in operator notation (for fixed \(w_{t-1} \)), is

\[
L_{V_t} |w_{t-1}, V_{t-2} = L_{V_t} |w_{t-1}, X_t^* |w_{t-1}, V_{t-2} \Rightarrow L_{X_t^*} |w_{t-1}, V_{t-2} = L_{V_t} |w_{t-1}, X_t^* |w_{t-1}, V_{t-2} \tag{27}
\]

where the right-hand side applies Assumption 2(ii). Hence, substituting the above into Eq. (25), we obtain the desired representation

\[
L_{w_t, X_t^*} |w_{t-1}, X_t^* |w_{t-1}, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} f_{W_t, X_t^*} |w_t, X_t^* |w_{t-1}, V_{t-2} \frac{dx_t^*}{W_t, X_t^*} = L_{V_t} |w_{t-1}, X_t^* |w_{t-1}, V_{t-2} \tag{28}
\]

The second line applies Assumption 2(iii) to postmultiply by \(L_{V_t} |w_{t-1}, V_{t-2} \), while in the third line, we postmultiply both sides by \(L_{V_t} |w_{t-1}, X_t^* |w_{t-1}, V_{t-2} \).

Proof: (Lemma 3) For a contradiction, suppose Eq. (20) fails, so there exists an interval \(S_3 \equiv [r, \tilde{r}] \) such that, for all \(r_3 \in S_3 \) and all \(r_1 \in R_1 \),

\[
\frac{\partial}{\partial r_3} f_{R_1, R_3} (r_1, r_3) = 0. \tag{29}
\]
\(h_0(r_3) = I_{S_3}(r_3)g(r_3)\), where \(I_{S_3}(r_3)\) denotes the indicator function for \(r_3 \in S_3\). Then

\[
(L_{R_1,R_3}h_0)(r_1) = \int f_{R_1,R_3}(r_1,r_3)h_0(r_3)dr_3 = \int_{S_3} f_{R_1,R_3}(r_1,r_3)g(r_3)dr_3
\]

\[
\equiv \int_{S_3} f_{R_1,R_3}(r_1,r_3)dG(r_3)
\]

\[
= f_{R_1,R_3}(r_1,r_3)G(r_3)\left| \frac{\partial}{\partial r_3} f_{R_1,R_3}(r_1,r_3) \right| dr_3
\]

\[
= f_{R_1,R_3}(r_1,\bar{r})G(\bar{r}) - f_{R_1,R_3}(r_1,\underline{r})G(\underline{r})
\]

Notice that \(f_{R_1,R_3}(r_1,\bar{r}) = f_{R_1,R_3}(r_1,\underline{r})\). Thus, for \(\forall r_1 \in R_1\)

\[
(L_{R_1,R_3}h_0)(r_1) = f_{R_1,R_3}(r_1,\bar{r})|G(\bar{r}) - G(\underline{r})|.
\]

Then, pick any function \(g\) for which \(G(\bar{r}) - G(\underline{r}) = f_{\underline{r}}^\bar{r} g(r)dr = 0\), but \(g(r) \neq 0\) for any \(r\) in a nontrivial subset of \([\underline{r}, \bar{r}]\). We have \(L_{R_1,R_3}h_0 = 0\), but \(h_0 \neq 0\). Therefore, Eq. (2) fails, and \(L_{R_1,R_3}\) is not one-to-one.

Proof: (Corollary 1)

From Lemma 3, \(f_{V_t|W_{t-1}}\) is identified from density \(f_{V_t,W_{t-1}|W_{t-2},V_{t-3}}\). The equality \(f_{V_t,W_{t-1}} = \int f_{V_t|W_{t-1}}f_{W_{t-1}}dx_t^{*} = \int f_{V_t|W_{t-1}}f_{W_{t-1}}dx_t^{*}\) implies that, for any \(w_{t-1} \in W_t\),

\[
f_{V_t,w_{t-1}=w_{t-1}} = L_{V_t|w_{t-1}}f_{W_{t-1}}dx_t^{*}
\]

\[
\Leftrightarrow f_{W_{t-1}=w_{t-1}} = L_{V_t|w_{t-1}}f_{V_t,w_{t-1}=w_{t-1}}
\]

where the second line applies Assumption 2(ii). Hence, \(f_{W_{t-1}}\) is identified. Q.E.D.

Proof: (Corollary 3)

Under stationarity, the operator \(L_{V_{t-1}|w_{t-2}}\) is the same as \(L_{V_{t+1}}\), which is identified from the observed density \(f_{V_{t+1}|W_t}dV_{t+1-2}\) (by Lemma 3). Because \(f_{V_{t-1},W_{t-2}} = \int f_{V_{t-1}}f_{W_{t-2}}dx_t^{*} = \int f_{V_{t-1}}f_{W_{t-2}}dx_t^{*}\), the same argument as in the proof of Corollary 1 then implies that \(f_{W_{t-1}}\) is identified from the observed density \(f_{V_{t-1},W_{t-2}}\). Q.E.D.

APPENDIX B: Additional Details for Example 2

Here, we discuss sufficient conditions for Assumption 2, in the context of Example 2. We use the fact that the laws of motion for this model (cf. Eqs. (17) and (18)) are either linear or log-linear to apply results from the convolution literature, for which operator invertibility has been studied in detail.
We proceed by establishing the invertibility of $L_{M_{t+1},w_t|w_{t-1},M_{t-2}}$, $L_{M_{t+1}|w_t,X_t^*$, and $L_{M_t|w_{t-1},M_{t-2}}$. Subsequently, the fact that the components of these operators are all convolutions immediately implies that $L_{M_{t-2},w_{t-1},w_t,M_{t+1}}$ and $L_{M_{t-2},w_{t-1},M_{t+1}}$ are also invertible, as required by Assumption 2(i,iii)

As shown in the proof of Lemma 2, Assumption 1 implies that

$$L_{M_{t+1},w_t|w_{t-1},M_{t-2}} = L_{M_{t+1}|w_t,X_t^*} L_{X_t^*|w_{t-1},M_{t-2}}$$

and

$$L_{M_t|w_{t-1},M_{t-2}} = L_{M_t|w_{t-1},X_{t-1}^*} L_{X_{t-1}^*|w_{t-1},M_{t-2}}$$ (30)

Furthermore, we have $L_{M_{t+1}|w_t,X_t^*} = L_{M_{t+1}|w_t,X_{t+1}^*} L_{X_{t+1}^*|w_t,X_t^*}$.

Hence, the invertibility of $L_{M_{t+1},w_t|w_{t-1},M_{t-2}}$, $L_{M_{t+1}|w_t,X_t^*$, and $L_{M_t|w_{t-1},M_{t-2}}$ is implied by the invertibility of $L_{M_{t+1}|w_t,X_{t+1}^*, D_{w_t|w_{t-1},X_t^*, L_{X_t^*|w_{t-1},X_{t-1}^*}, and L_{X_{t-1}^*|w_{t-1},M_{t-2}}$.

It turns out that assumptions we have made already for this example ensure that three of these operators are invertible. We discuss each case in turn.

(i) For the diagonal operator $D_{w_t|w_{t-1},X_t^*}$, the inverse has a kernel function which is equal to $1/f_{w_t|w_{t-1},X_t^*}$. Hence, by Assumption 3(i), which guarantees that $f_{w_t|w_{t-1},X_t^*}$ is bounded away from 0 and ∞, the inverse exists.

(ii) For $L_{M_{t+1}|w_t,X_{t+1}^*$, we use Eq. (18) whereby, for every (y_t, m_t), M_{t+1} is a convolution of X_{t+1}^*, i.e. log $[M_{t+1} - M_t] = k(X_{t+1}^*) + \eta_{t+1}$. As is well-known, as long as the characteristic function of η_{t+1} has no real zeros, which is satisfied by the assumed truncated normal distribution, the corresponding operator is invertible.

(iii) Similarly, for fixed w_{t-1}, X_t^* is a convolution of X_{t-1}^*, i.e. $X_t^* = 0.8X_{t-1}^* + 0.1\psi(Y_{t-1}) + 0.1\nu_t$ (cf. Eq. (17)). Hence, $L_{X_t^*|w_{t-1},X_{t-1}^*}$ is invertible if the characteristic function of ν_t has no real zeros, which is satisfied by the assumed normal distribution truncated to $[0, U]$.

(iv) For the last operator, corresponding to the density $f_{X_{t-1}^*|w_{t-1},M_{t-2}}$, the assumptions made so far do not ensure that this operator is invertible. Following cases (ii) and (iii) immediately above, a sufficient condition for invertibility is that X_{t-1}^* is a convolution of M_{t-2}: i.e, $X_{t-1}^* = h_1(W_{t-1}) + h_2(M_{t-2}) + \xi_{t-1}$, with h_2 an increasing function and ξ_{t-1} a random variable with a characteristic function without any real zeros (which is satisfied by the assumption that ξ_{t-1} is standard normal, truncated to $[0, 1]$).

24 For additional details, see Sakhnovich (1996, chapter 2).
25 By stationarity, we do not need to consider $L_{X_{t+1}^*|w_t,X_t^*}$ and $L_{M_t|w_{t-1},X_{t-1}^*}$ separately.
References

23

