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We develop a new estimation methodology for dynamic optimization models with unobserved
shocks and deterministic accumulation of the observed state variables. Investment models are an
important example of such models. Our pairwise-difference approach exploits two common features of
these models: (1) the monotonicity of the agent’s decision (policy) function in the shocks, conditional
on the observed state variables; and (2) the state-contingent nature of optimal decision making which
implies that, conditional on the observed state variables, the variation in observed choices across agents
must be due to randomness in the shocks across agents. We illustrate our procedure by estimating a
dynamic trading model for the milk production quota market in Ontario, Canada.

1. INTRODUCTION

In this paper, we propose a new estimation methodology for a dynamic optimization model with
preference and/or payoff shocks which are unobserved by the econometrician, but are observed
by agents when they make their dynamic choices. The two-step estimator we propose relies on
two common features of the dynamic optimization problem we consider. First, we exploit the
monotonicity of the agent’s decision (policy) function in the unobserved shocks, conditional on
the observed state variables. Second, we exploit the state-contingent nature of optimal decision
making which implies that, conditional on the observed state variables, the variation in observed
choices across agents must be due to randomness in the shocks across agents.

This paper makes two contributions. First, the two-step pairwise-difference estimator we
propose applies to the estimation of continuous–discrete choice dynamic models. To our
knowledge, our approach represents the first application of pairwise-differencing methods,
which have primarily been used in static cross-sectional and panel data contexts (cf. Honoré
and Powell, 1994), to forward-looking structural dynamic optimization problems.

Second, our two-step estimation approach has a practical benefit in reducing the computa-
tional burden associated with estimating dynamic models due to the need for numeric dynamic
programming. A number of model parameters can be estimated in the first step, which is com-
putationally simple and does not involve numeric dynamic programming. Since the second
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step may require numeric dynamic programming or forward simulation in order to recover the
value function, estimating a subset of the parameters in the first step significantly reduces the
number of times that the value function must be computed in the second step, thereby lowering
an important computational hurdle in estimating dynamic models.

Our approach is related to some recent work that exploits monotonicity assumptions to
identify and estimate structural equations. Earlier, Olley and Pakes (1996) exploited such an
assumption in order to invert out the unobservable shock and to derive a semi-parametric
estimator for production functions with serially correlated unobservables. Matzkin (2003)
exploited the quantile invariance implication of monotonicity to estimate non-parametrically
functions which are non-linear in the error term. Bajari and Benkard (2005) also used this
principle in their study of hedonic discrete-choice models of demand for differentiated products.

The model considered in this paper can be applied to any investment or consumption
problem where the accumulation equation of the asset variable is deterministic and does not
contain unobserved variables. The applications include the management of production quotas
(which is the empirical illustration presented later in this paper), hiring/firing of employees by
firms, and household consumption–savings problems. It does exclude cases where the evolution
of the asset variable is stochastic (such as human capital investment) or consumption/investment
cases when all variables in the asset accumulation equation are not observed.

This paper complements the existing literature on identification and estimation in discrete-
choice dynamic optimization models (cf. Pakes and Simpson, 1989; Hotz and Miller, 1993;
Taber, 2000; Magnac and Thesmar, 2002; Aguirregabiria, 2005). It is also related to recent
literature on the identification and estimation of dynamic game models (e.g. Pesendorfer and
Schmidt-Dengler, 2008; Aguirregabiria and Mira, 2007; Berry, Ostrovsky and Pakes, 2007;
Bajari, Benkard and Levin, 2007). While we do not focus on dynamic games here, one
contribution that we make is the consideration of situations where agents have both continuous
action spaces and continuous state spaces.

The plan of the paper is as follows. In the next section, we present a single-agent dynamic
optimization problem and state our model assumptions. We describe our two-step estimation
approach in Section 3. In Section 4, we illustrate our methodology by estimating a dynamic
model of trading behaviour in monthly exchanges operated by provincial regulatory agencies
in Ontario, Canada, to allocate milk production quotas across milk farmers. We conclude in
Section 5.

2. EMPIRICAL FRAMEWORK

Consider the following dynamic optimization problem of an agent i:

max
{qit }∞t=0

E

[ ∞∑
t=0

βtU(xit , sit , qit ; θ) | {qit }∞t=0

]
(1)

subject to the Markov transition probabilities for the state variables

F(xi,t+1, si,t+1|xit , sit , qit ). (2)

In this problem, xit and sit are the two state variables, with the distinction that xit is observed
by the econometrician, but sit is not. The agent’s choice variable is denoted by qit . An example
of such a model is an investment model where xit can be interpreted as a stock and the control
qit as investment, or incremental additions to the stock which can be purchased at some fixed
price. The unobserved variable sit would be a time-varying idiosyncratic shock which affects

© 2009 The Review of Economic Studies Limited



HONG AND SHUM PAIRWISE DIFFERENCE 275

agent i’s period-t investment decisions. For convenience, we will sometimes refer to xit as the
“stock” and qit as “investment” in this paper, in reference to this example.

U(xit , sit , qit ; θ) is a per-period utility function, parameterized by the parameter vector θ .
The per-period utility depends on the current stock xit and the idiosyncratic shock sit , which is
known to agent i before he makes his choice of qit . We assume that the shock sit is observed by
the optimizing agent at the time she makes her period t decision, but not by the econometrician.
This usage differs from a measurement error interpretation of a “shock”, where a “shock” is
often unobserved by both the econometrician as well as the optimizing agent when she makes
her decision. The presence of the unobserved shock sit induces, from the econometrician’s
point of view, randomness in the observed choices of the control qit . As in Rust (1996), we
also assume:

Assumption 1 (Conditional independence). The Markov transition probabilities for the state
variables can be factored as:

F(xi,t+1, si,t+1|xit , sit , qit ) = F(xi,t+1|xit , sit , qit ) · Fs(si,t+1; γ ). (3)

Note that, without any restrictions, the following factorization holds:

F(xi,t+1, si,t+1|xit , sit , qit ) = F(xi,t+1|xit , sit , qit ) · Fs(si,t+1|xi,t+1, xit , sit , qit ). (4)

Hence, Assumption 1 consists to two restrictions. First, the law of motion for the observed
state variable xi,t+1 implies that (xi,t+1, si,t+1) are independent, conditional on (xit , sit , qit ).
Second, it implies that Fs(si,t+1|xi,t+1, xit , sit , qit ) = F(si,t+1). The right-hand side is then
assumed to come from a parametric family denoted by γ . While this rules out the important
case of serial correlation in the unobserved shocks over time (arising perhaps from unobserved
agent-specific fixed effects), it is a common assumption made in the literature on estimation
of dynamic models. On the other hand, it is straightforward to extend the i.i.d. assumption to
one where heterogeneity in the distribution of the shock sit across agents and time is explicitly
parameterized to depend on observed conditioning covariates.

Assumption 2 (Deterministic accumulation). The stocks evolve in the following deterministic
manner:

xit+1 = xit + qit , ∀i, t. (5)

This assumption is quite specific, but it arises naturally in in investment models, and also in
our empirical illustration below. This assumption is important for the practical application of
our estimator.1

1. As we discuss in Section 3.1.2 below, we could relax this assumption to allow xit to evolve in a non-linear
deterministic manner. However, the resulting estimator would involve an additional differencing step, making it less
convenient and attractive.
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Given these assumptions, and assuming stationarity, the agent’s optimal policy function
can be expressed as the maximizer of Bellman’s equation: for each t ,

q(xit , sit ; θ, γ ) = argmaxq

{
U(xit , sit , q; θ) + βExit+1,sit+1|xit ,sit ,qV (xit+1, sit+1; θ, γ )

}
= argmaxq

{
U(xit , sit , q; θ) + βEsit+1|xit ,sit ,qV (xit + q, sit+1; θ, γ )

}
= argmaxq

{
U(xit , sit , q; θ) + β

∫
V (xit + q, sit+1; θ, γ )Fs(dsit+1; γ )

}
(6)

where

V (xi,t+1, si,t+1; θ, γ ) ≡ max
{qiτ }τ

E

[ ∞∑
τ=t+1

βτ−t−1U(xiτ , siτ , qτ ; θ) | {qiτ }τ , xi,t+1, si,t+1

]
. (7)

In equation (6), Assumption 2 is used to substitute xit + qit for xit+1 in the second line,
and Assumption 1 is used to get from the second to the third lines.

In what follows, we simplify notation by defining

V(xit + qit ; θ, γ ) ≡
∫

V (xit + qit , s; θ, γ )Fs(ds; γ ), (8)

the ex ante value function at time t , where the expectation is over si,t+1, the future realization
of the shock.

2.1. Monotonicity and quantile invariance

We assume that the policy functions are monotonic in the unobserved state variable, conditional
on a particular value for the observed state variable.

Assumption 3 (Monotonicity). The policy functions q(xit , sit ; θ, γ ) are non-decreasing in sit ,
conditional on xit .

Remark 1. Given Assumptions 1 and 2, a sufficient condition for Assumption 3 is that
U is supermodular in (q, s), for all x.

Proof. (Remark 1): The optimal policy q(x, s) is given by

argmaxqU(x, s, q) ≡ {U(x, s, q; θ) + βV(x + q; θ, γ )} . (9)

In order for q (s, x; θ, γ ) to be non-decreasing in s given x, we require U (x, s, q; θ) to be
supermodular in (q, s), for all x. This is equivalent to supermodularity of U (x, s, q; θ) in (q, s)

given x, because the expected continuation value function V (x + q; θ, γ ) does not depend on
s, from Assumption 1. ‖

An important implication of Assumption 3 is quantile invariance: conditional on xit , the
τ -th quantile of qit conditional on xit is q (xit , sτ ; θ, γ ), where sτ is the τ -th quantile of Fs (·).
This implication of monotonicity was also exploited by Matzkin (2003) in her non-parametric
estimation methodology for random functions that are non-additive in the error term.

The independence assumption that the distribution function Fs does not depend on x allows
us to accommodate situations (such as atoms in F(q|x)) where we only have weak monotonicity
of q in s, given x. This allows the investment decision to be a mixed discrete–continuous choice
variable, with a point mass at zero (indicating no investment). This accommodates models of
non-convex adjustment costs (cf. Eberly, 1994), and is appropriate for the empirical illustration
we consider below.

© 2009 The Review of Economic Studies Limited



HONG AND SHUM PAIRWISE DIFFERENCE 277

3. ESTIMATION APPROACH

The parameters we wish to estimate are θ and γ , which are, respectively, the utility function
and shock distribution parameters. To simplify notation, we assume that our data are a
balanced panel: {qit , xit } , i = 1, . . . , N, t = 1, . . . , T . This is not critical, as our estimator also
applies to cases where the number of cross-sectional observations differs across-time periods.
Furthermore, the choice variable q can have both discrete and continuous components. In the
discussion below, we assume for convenience that q has a mass point at zero, but also takes
continuous non-zero values.

From the data, we can estimate the empirical distribution of q given x for each x. Denote
each element of this family of distributions (indexed by x) by F̂ (q|x). Therefore, F̂ (qit |xit )

denotes the estimated conditional probability of q(xit , sit ) ≤ qit , conditional on the observed
state variable being equal to xit .

Since the conditioning variable x is continuous, a kernel estimator can be employed to
estimate these conditional cumulative distribution functions (CDFs):

F̂ (q|x) =
1
T

1
N

∑T
t=1

∑N
i=1 1 (qit ≤ q)K

(
x−xit

h

)
1
T

1
N

∑T
t=1

∑N
i=1 K

(
x−xit

h

) (10)

where K(·) is a kernel weighting function and h is a bandwidth sequence. In computing F̂ (q|x),
we employ all the observations, including those for which qit = 0 (i.e., for which the agent
remained at a corner solution and investment is zero).

We make the following assumptions on the kernel function:

Assumption 4. 1. K (·) is an r-th order kernel function, with r ≥ 2: (i)
∫

K (u) du = 1;
(ii)
∫

uξK (u) du = 0 for ξ = 1, . . . , r − 1; and (iii)
∫

urK (u) du < ∞.
2. As N → ∞, the bandwidth satisfies (i) h → 0; (ii) Nh

log N
→ ∞; and (iii)

√
Nhr → 0.

Furthermore, we also require smoothness assumptions on the shock distribution and the
per-period utility function:

Assumption 5. (i) The shock distribution Fs (s) has continuous derivatives up to order r that
are uniformly bounded. The shock density fs (s) is bounded away from 0 on any compact set
on its support. (ii) The function U(x, s, q; θ) has continuous partial derivatives in (x, s, q) of
order r + 1 (where r is the order of the kernel from the previous step). The expectations of
all derivatives with respect to x, s, q of order up to r + 1 exist. (iii) The density f (x) of the
observed state variable is uniformly bounded, continuous, and bounded away from 0 on any
compact set on its support.

Conditions 1.(iii) and 2.(iii) of Assumption 4 above are standard conditions for reducing
the asymptotic bias in the kernel estimates. Assumption 5 ensures that the asymptotic bias of
the limit pairwise-differencing estimating function (described below) can be approximated up
to the r-th order of the bandwidth parameter (as in Powell, Stock and Stoker, 1989). Next, we
describe our proposed two-step estimation approach.

3.1. First step: pairwise-differencing of first-order conditions

In the first step, we obtain estimates of γ , the parameters of the shock distribution, as well
as a subset of the parameters θ in the utility function, by exploiting the first-order condition
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of the maximization problem in equation (6).2 This step exploits the state-contingent nature of
optimal decision making, which implies that, conditional on the observed state variables, the
variation in observed choices across agents must be due to randomness in the unobserved state
variables across agents.

First, the deterministic accumulation nature of the stock evolution process implies that the
maximization problem for any agent i can be rewritten as

q (xit , sit ; θ, γ ) = argmaxq {U (xit , sit , q; θ) + βV (xit + q; θ, γ )} . (11)

For any agent i who invests a non-zero amount qit 
= 0, her choice of qit satisfies the first-order
condition

Uq (xit , sit , qit ; θ) + βV ′ (xit + qit ; θ, γ ) = 0 (12)

where Uq (xit , sit , qit ; θ) refers to the derivative of U (xit , sit , qit ; θ) with respect to its third
argument. For any pair of agents i and j in period t such that xit + qit = xjt + qjt ,

V ′ (xit + qit ; θ, γ ) = V ′ (xjt + qjt; θ, γ
)
. (13)

Hence we can condition on such pairs of agents in order to control for the unknown form of
the expected value function.

Second, from the quantile invariance Assumption 3 and the assumption that s is distributed
independently of x, we know that any individual i with a (qit , xit ) pair must have received

a shock sit equal to F−1
s

(
F̂ (qit |xit ); γ

)
, the F̂ (qit |xit )-th quantile of the shock distribution.

This suggests that the cross-sectional variation in q given x for a collection of quantiles allows
us to recover the corresponding quantiles of Fs , and hence estimate the γ parameters.

The considerations above suggest a pairwise-difference estimator for the first-stage
parameters. Consider a pair of individuals i and j in period t with the same xit + qit =
xjt + qjt . If we difference the first-order conditions for these two observations, we obtain{

Uq

(
xit , s

(
F̂ (qit |xit ); γ

)
, qit ; θ

)
− Uq

(
xjt , s

(
F̂ (qjt |xjt ); γ

)
, qjt ; θ

)}
= 0, (14)

where s (τ ; γ ) ≡ F−1
s (τ ; γ ), the τ -th quantile of Fs .

Let θ1 denote the subset of the parameters θ which enter equation (14). Precisely, θ1 is the
subset of the parameters θ which are not eliminated by either (i) taking the derivative of the
utility function U with respect to its third argument; or (ii) taking the difference of the utility
function derivative Uq between two individuals. The remaining parameters θ2 ≡ {θ \ θ1} will
be estimated in the second step of our procedure.

Let ψ ≡ (θ1, γ ), the parameters estimated in the first step, and define Iit to be the indicator
1(qit 
= 0). Furthermore, we use zit ≡ (xit , qit ) to denote the data variables observed for agent
i in period t . The pairwise-difference estimator of ψ takes the following form:

min
θ1,γ

1

(NT )2

T∑
t=1

N∑
i=1

T∑
t ′=1

N∑
j=1

{
1

h
K

(
(xit + qit ) − (xjt ′ + qjt ′

)
h

)
· Iit Ij t ′ · m̂

(
zit , zjt ′ ; ψ

)2}

(15)

2. Recently, Berry and Pakes (2000) also exploit the first-order condition to derive estimates of structural
parameters for models of multi-agent dynamic games. However, their model is different from ours because unobserved
state variables are not present in their model.
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where m̂
(
zit , zjt ′ ; ψ

)
denotes the differenced first-order condition:

m̂
(
zit , zjt ′, ψ

) ≡Uq

(
xit , F

−1
s

(
F̂ (qit |xit ) ; γ

)
, qit ; θ1

)
− Uq

(
xjt ′, F−1

s

(
F̂
(
qjt ′ |xjt ′

) ; γ
)

, qjt ′ ; θ1

)
.

(16)

In computing the objective function (15) above, we only include observations with non-
zero investment (q 
= 0) because only for these observations is the first-order condition (12)
satisfied.3

The first-stage estimate γ̂ of the parameters in the shock distribution function can be used
to derive an estimate of the optimal policy function

q̃ (x, s) ≡ F̂−1
q|x
(
Fs

(
s; γ̂

))
, ∀s. (17)

This estimate of the period t investment choice qt at a given state (x, s) is just the Fs(s; γ̂ )-th
quantile of F̂ (q|x), the empirical conditional distribution of q given x.

3.1.1. Asymptotic theory for first step. Ahn and Powell (1993) and Honoré and Powell
(1994) pioneered the use of pairwise-differencing methods in econometrics and developed the
techniques for deriving their asymptotic distributions. The objective function (15) resembles
weighted least squares, where each pair of observations is weighted by a kernel function which
takes on small values when certain features of the pair of observations are very far apart.

From equation (15), we can alternatively express the pairwise-difference estimate for ψ as
that which solves the following sample score function:

WNT (ψ̂) ≡ 1

(NT )2

∑
i

∑
t

∑
j

∑
t ′

r̂
(
zit , zjt ′, ψ̂

)
= 0 (18)

where

r̂
(
zit , zjt ′, ψ̂

)
≡ 1

h
K

(
xit+1 − xjt ′+1

h

)
m̂
(
zit , zjt ′, ψ̂

) ∂

∂ψ

[
m̂
(
zit , zjt ′ , ψ̂

)]
Iit Ij t ′ . (19)

The limit objective function of the first-step estimator is

G0 (ψ) ≡ Ex,qEx′,q ′

{
1
(
x + q = x ′ + q ′, q 
= 0, q ′ 
= 0

) ·
[
Uq

(
x, F−1

s (F (q|x); γ ) , q, θ1
)− Uq

(
x ′, F−1

s

(
F(q ′|x ′); γ

)
, q ′, θ1

)]2}
.

(20)

Also define m
(
zit , zjt ′, ψ

)
and r

(
zit , zjt ′, ψ

)
analogous to m̂

(
zit , zjt ′ , ψ

)
and r̂

(
zit , zjt ′, ψ

)
except that F̂ (qit |xit ) in equation (16) is replaced by the unknown true F (qit |xit ).

The regularity conditions required for the asymptotic results are collected in the following
assumption:

Assumption 6. Regularity conditions for first step:

3. Even though we only use observations where qit 
= 0, there is no selection issue here because, given the
monotonicity assumption, we control for the selection by substituting in estimates of the random shocks (the st ’s) in
the first-order conditions (which was a similar device used by Olley and Pakes (1996) in their productivity analysis).
We thank a referee for pointing this out.
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i. ψ ∈ 	, a compact subset of RP , and the true value ψ0 ∈ int(	).
ii. G0(ψ) is uniquely minimized at ψ0.

iii. m
(
zit , zjt ′ ; ψ

)
is three times continuously differentiable in ψ ∈ 	 with probability 1.

iv. supψ∈	 |r(zit , zjt ′ ; ψ)| < r(zit , zjt ′) for some function r(·) with E
[
r(zit , zjt ′)

]
< ∞.

v. Define ṽ(zit , ψ) ≡ E
[
r(zit , zjt ′ , ψ)|zit

]
, and λ(ψ) ≡ limNT →∞ Eṽ(zit , ψ).

v.i. λ(ψ0) = 0 and is differentiable at ψ0, with non-singular Jacobian matrix A.
v.ii. The expectation supN,T ,ψ∈	 E

[||r(zit , zjt ′ , ψ)||2] exists and is finite.

The conditions listed in Assumption 6 are standard identification, continuity, differentiabil-
ity, and boundedness conditions on the limiting objective function. They are analogous to the
conditions required for Theorem 2 in Honoré and Powell (1994).

The asymptotic normality of our first-step estimates of ψ is given in the following theorem,
the full proof of which is in Appendix A.1.

Theorem 1. Given Assumptions 1, 2, 3, 4, 5, and 6,

√
NT

(
ψ̂ − ψ0

)
d−→ N

(
0, A−1�A−1) (21)

as NT → ∞, where A and � are defined in equations (A4) and (A14) in the Appendix.

Note that, if we had a perfect estimate of the conditional distributions F(q|x), the
differenced first-order condition m̂(zit , zjt ′, ψ

0) (defined in equation (16)) would be identically
zero for all values of zit , zjt ′ such that xit + qit = xjt ′ + qjt ′ . Hence, the sampling variation
in the estimate of ψ will be determined completely from the sampling variation in the non-
parametric estimates of the conditional distributions F(q|x) using equation (10).

3.1.2. Remarks on first step. Next, we discuss several of the assumptions we made
previously, and how they may be relaxed. First, our econometric framework is parametric, in
the sense that both the utility function and shock distributions are assumed to be of known
parametric form. In principle, the shock distribution Fs can be given a very flexible parametric
form. In our empirical work below, we consider a flexible piecewise-linear specification for
Fs . We let sk ≡ F−1

s (τ k) denote the τ k-th quantile of the shock distribution Fs , and let κ

denote the total number of quantiles to be estimated (and the corresponding quantile values by
τ 1 < τ 2 < · · · < τκ ). For any fixed κ , we approximate the distribution of the shocks Fs via a
piecewise linear function tied down at the origin as well as the κ points {sk, τ k}κk=1. That is,
we approximate the inverse CDF of Fs as

F̂−1
s (τ ) ≡

⎧⎪⎨
⎪⎩

τ
s1
τ1

if τ ∈ [0, τ 1]

si−1 + (τ − τ i−1)
si−si−1
τ i−τ i−1

if τ ∈ (τ i−1, τ i], i = 2, . . . , κ − 1.

sκ−1 + (τ − τ κ−1)
sκ−sκ−1
τκ−τκ−1

if τ ∈ (τ κ−1, 1].
(22)

The parameters of this specification of the shock distribution which are to be estimated are
γ ≡ {s1, . . . , sκ }.

Second, the deterministic accumulation assumption 2 is crucial. Specifically, the linearity
of xt+1 in qt is critical to the applicability of the pairwise-differencing step. If, instead, the law
of motion for x were non-linear, such as xit+1 = l(xit , qit ) (and the non-linear functional form
of l were known), the derivative dl/dq would also appear in the second term of the first-order
condition (12), and we would also need to match on this quantity in the pairwise-differencing
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step, which reduces the attractiveness of our estimator. Similarly, if we wished to introduce
additional observable (and possibly time-varying) characteristics zit specific to individual i and
period t , these would be additional variables which we need to match upon. Therefore, the
simplicity of the law of motion is a restriction that could be relaxed at some cost, and the
development of those cases would be an interesting extension.

Given the deterministic accumulation equation, we could re-parameterize the problem so
that the per-period utility function is a function of xt and xt+1 (rather than xt and qt ), and we
take next period’s stock xt+1 as the choice variable in period t . In that case, in order for the
monotonicity assumption 2 to be obtained, it would suffice that the per-period utility function
be supermodular in st and xt+1, which has the intuitive economic interpretation that the shocks
increase the marginal utility of xt+1.

The independence assumption 1 is important for the feasibility of the procedure. For
example, if the distribution of the shock st+1 were dependent on xt (so that the conditional
distribution F(st+1|xt+1, xt , st ) = F(st+1|xt ) varies depending on xt ), then the expected value
function V = Est+1|xt V (xt+1, st+1) would also be a function of xt , and the pairwise-differencing
step would require matching individuals with the same xt+1 = xt + qt as well as xt . These
individuals would also have the same qt , leaving no degrees of freedom for the estimating
equation (14). On the other hand, if F(st+1|xt+1, xt , st ) = F(st+1|xt+1), then for a parametric
specification of F(st+1|xt+1; γ ), it may still be possible to use equation (14) in the first step
to estimate the first-step parameters ψ .

Finally, we note that because the shock s is unobserved, we could also follow Matzkin
(2003) to assume that the shock is uniformly distributed on [0,1]. Since the shock s is distributed
according to Fs(·; γ ), we could define ε = Fs(s; γ ) and re-parameterize the utility function so
that

U(x, s, q; θ) = U(x, Fs(ε; γ ), q; θ) ≡ Ũ(x, ε, q; θ, γ ). (23)

The monotonicity assumption 3 is a natural consequence of this re-parameterization: holding
x fixed, q is monotonic in ε.4 With this re-parameterization, ε = F(q|x), and

Ũq(xit , F (qit |xit ), qit ) = Ũq(xjt ′, F (qjt ′ |xjt ′), qjt ′) (24)

for xit + qit = xjt ′ + qjt ′ .

Discussion of identification. Before proceeding to the second step, we also present some
discussion of identification. Consider how the parameters γ of the shock distribution are pinned
down in the pairwise-differencing step when θ1 = {} (so that there are no θ1 parameters to
estimate). In order to do pairwise-differencing, we need pairs of observations (it, j t ′) such that

0 = Uq (xit , s(F (qit |xit ); γ ), qit ) − Uq

(
xjt ′, s(F (qjt ′ |xjt ′); γ ), qjt ′

)
. (25)

In order for equation (25) to be a non-trivial function, observations it and j t ′ must satisfy two
conditions: (i) xit + qit = xjt ′ + qjt ′ ; but (ii) xit 
= xjt ′ (and hence qit 
= qjt ′). The question of
identification then relies crucially on the existence of such pairs of individuals, which in turn
depends on the model.

For a specific example, consider the following dynamic firm investment problem where the
individual-specific subscript i is omitted:

max
{qt }

∞∑
t=0

βt (ptyt − qt st − 1

2
q2

t ) (26)

4. We thank a referee for pointing this out.
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subject to

pt = 1 − yt ; yt = 2xt ; xt+1 = xt + qt ; st ∼ iid N(0, σ 2). (27)

The interpretation here is that xt is capital, which is transformed into final goods yt via the
production technology F(xt ) = 2xt . The inverse demand curve for final goods is given by
pt = 1 − yt . The shock st affects the linear component of investment costs. For this shock
distribution, the CDF is given by Fs(s) = �(s/σ) and quantile function by F−1

s (τ ) = σ�−1(τ )

where �(·) denotes the standard normal CDF function. The standard deviation σ is the only
parameter to be estimated, in this example.

This is a linear-quadratic problem, and the optimal policy function (taking the discount rate
β = 0.95) is given in the Appendix by

qt =c1 − c2xt − c3st ,

c1 = 0.2235, c2 = 0.8942, c3 = 0.1058.
(28)

In the context of this example, we can discuss identification in more detail. We observe the
sequences (xit , qit ) across many agents i, where for each xit , the investment qit is generated
from the optimal policy function (28). From these observations, we can estimate the conditional
CDFs F̂q|x(·|·).

For a fixed value C, we consider the locus of points (x, q) such that x + q = C, or, for
each x, the corresponding investment is q = C − x. Along this locus, for every pair xit 
= xjt ′ ,
the corresponding pair of investments qit 
= qjt ′ . For every pair of distinct points (xit , qit ) and
(xjt ′, qjt ′) on this locus, equation (16) is

σ
[
�−1(F̂q|x(C − xit |xit )) − �−1(F̂q|x(C − xjt ′ |xjt ′))

]
+ (xit − xjt ′) = 0 (29)

which serves as the estimating equation for σ .
Let σ 0 denote the true value of σ . Now, note that

Fq|x(C − xit |xit ) = P
(
c1 − c2xit − c3sit ≤ C − xit |xit

)
= P

(
sit ≥ 1

c3

(
c1 + (1 − c2)xit − C

))
= �

(
− 1

σ 0c3

(
c1 + (1 − c2)xit − C

))
. (30)

Therefore equation (29) further simplifies into (using the relation 1 − c2 = c3):

(
xit − xjt ′

) = σ

σ 0

(
xit − xjt ′

)
, (31)

which holds if and only if σ = σ 0. This clearly shows that σ is identified.
Identification in our framework differs from those in other papers in the literature.

For example, Magnac and Thesmar (2002), Pesendorfer and Schmidt-Dengler (2008), and
Aguirregabiria (2005) all consider dynamic discrete-choice models, and focus on the non-
parametric identification of the utility functions using the observed choice probabilities. We
focus on the case where the agents’ choice variable (qt ) has a continuous component, and where
the utility function takes an assumed parametric form. Because of these features, identification
issues are different in our setting. The continuous component of agents’ choices allows us
to use pairwise-differencing methods to identify quantiles of the shock distribution, while the
identification of the utility function is facilitated by parametric assumptions.
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Alternative estimation methods. Our pairwise-difference-based estimation method is also
different from Euler equation-based methods, which are often used to estimate dynamic
optimization models. On the one hand, our approach accommodates dynamic optimization
models in which agents’ choices are both continuous and discrete (as in our empirical
example below), for which conventional Euler equation methods are either not applicable
or difficult. Furthermore, our approach also accommodates shocks that are observed by agents
at the time they make their decisions but unobserved to the econometrician. Conventional
Euler equation-based estimation methods generally have difficulties accommodating unobserved
shocks because the estimating moment conditions are derived from the rational expectations
implication that deviations between predicted and observed actions are orthogonal to any
information available at time t , which includes all state variables which affect an agent’s
period t choice. Therefore, to form the sample analogues of these orthogonality conditions,
the econometrician needs to know the value of all the state variables (including the shocks) at
times t and t + 1. Pakes (1994, pp. 188–189) provides a more thorough discussion.

On the other hand, our approach works best under Assumption 2, which represents a
restriction on the law of motion for the state variable xt which is not required for Euler
equation methods. Hence, for models where this assumption does not hold, Euler equation
methods may be a more attractive estimation option.

3.2. Second step

Not all model parameters can be identified from the first-step pairwise-differencing approach.
In the second step, we use the first-order condition again to derive moment restrictions to
estimate utility parameters in θ which were not in the subset θ1 estimated in the first step,
denoted as θ2 ≡ {θ \ θ1}.

Given γ̂ and θ̂1, respectively, the shock distribution parameters and the subset of the utility
function parameters which were estimated in the first step, define the first-order condition for
observation (i, t) with non-zero investment level as follows:

hit

(
xit , qit ; ψ̂, θ2, F̂q|x (·|·)

)
≡Uq

(
xit , s(F̂ (qit |xit ); γ̂ ), qit ; θ̂1, θ2

)
+ βV ′

(
xit + qit ; ψ̂, θ2, F̂q|x (·|·)

)
.

(32)

In what follows, we will use F̂s as shorthand for Fs(·; γ̂ ).
Assume that we are able to compute the expected value function V(xit ; ψ, θ2) for every set

of parameters ψ and θ2 (we delay discussion of how this can be done until later). Because of
the sampling error from estimating θ1, γ and F(q|x) in the first step, the first-order condition

hit

(
xit , qit ; ψ̂, θ2, F̂q|x (·|·)

)
need not be identically zero, even at the true parameter vector

θ0. Therefore, we estimate θ2 via a least squares procedure:

θ̂2 = argminθ2

1

NT

N∑
i=1

T∑
t=1

Iit ·
[
hit (xit , qit ; ψ̂, θ2, F̂q|x (·|·))

]2
. (33)

As in the first step, we can only include observations with non-zero investment (q 
= 0) in
the objective function. Both steps of our estimation procedure are based on agents’ first-order
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conditions, and thus only use the observations where qit 
= 0. The observations with qit = 0 are
employed only in the construction of the conditional distributions F̂ (q|x) [cf. equation (10)].5

3.2.1. Computing the expected value function by simulation. The expected value
function V(·;ψ, θ2) does not have a closed-form solution and needs to be evaluated numerically.
Standard numerical dynamic programming methods for problems with both discrete and
continuous controls, as described in Rust (1996) and Judd (1998), can be difficult since they
involve solving for the optimal policy function q(x, s) at every point (x, s) in the state space.

When the datasets available to the researcher are large (as in the dataset we consider
later), an attractive alternative in the spirit of Hotz and Miller (1993) is available to avoid
numerical computation of the dynamic programming problem, in which the value function is
computed by a forward integration procedure. This procedure exploits the representation of the
value function at time t as the expected discounted sum of future utilities [cf. equation (7)]
which underlies numeric dynamic programming algorithms. Hotz and Miller (1993) recognize
that, given enough data, and a particular parametric form of the per-period utility function
U(x, s, q; θ), the expectation over future states in equation (7) can be represented as forward
integration over the observed conditional probabilities F̂ (q|x) (cf. equation (17) in Hotz and
Miller, 1993).

Under the conditional independence assumption 1, this approach can be used in the case
where agent i’s control variable is continuous. More precisely, the agent’s expected value
function at a particular initial point x1 is approximated as

V
(
xt ; ψ̂, θ2, F̂q|x (·|·)

)
=
∫ ∫

· · ·
∫ {[ T∑

z=t

βz−tU
(
xz, sz, F̂−1

q|xz
(Fs(sz)); θ̂1, θ2

)]

+ βT CV (xT +1)

}
dF
(
st ; γ̂

)
dF
(
st+1; γ̂

) · · · dF
(
sT ; γ̂

)
.

(34)

Here, CV (xT +1) denotes the continuation value function, when the state after T periods is xT +1.
The sequence of stocks xz is given by the initial condition xt and xz = xz−1 + F̂−1

q|xz−1
(Fs(sz−1))

for z = t + 1, . . . , T .
More succinctly, let {τ } = {τ t , τ t+1, . . . , τ T } denote a sequence of i.i.d. U [0, 1] random

variables. The expected value function can be written as

V
(
xt ; ψ̂, θ2, F̂q|x (·|·)

)

=E{τ }
{ T∑

z=t

βz−tU
(
xz, s

(
τ z; γ̂

)
, F̂−1

q|xz
(τ z); θ̂1, θ2

)
+ βT CV (xT +1)

}
.

(35)

In the above expression, given the starting value xt , the subsequent sequence of stocks
xt+1, xt+2, . . . is related to the uniform random draws τ ’s by the relation xz = xz−1 +
F̂−1

q|xz−1
(τ z−1). In our implementation below, we treat the continuation value function CV (xT +1)

as a nuisance parameter, and assume that it is approximated by a flexible finite-order polynomial
in xT +1.

In practice, the multidimensional integration involved in computing the expected value
function [equations (34) or (35)] presents computational challenges, and so we simulate the

5. The square norm in (33) is chosen for convenience. Other norms, such as absolute deviation, may also be
used. Furthermore, weighting schemes could be introduced to improve the efficiency of the estimation procedure. We
have not considered these alternative possibilities.
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expected value function by following Hotz et al. (1994). Let S denote the number of simulation
draws. Using the parameters ψ̂ and the conditional distributions F̂q|x estimated from the first

step, V
(
x1; ψ̂, θ2, F̂q|x (·|·)

)
[using equation (35)] can be simulated by

VS
(
xt ; ψ̂, θ2, F̂q|x (·|·)

)

= 1

S

S∑
l=1

{[
T∑

z=t

βz−tU
(
xl

z, s(τ l
z; γ̂ ), F̂−1

q|xl
z
(τ l

z); θ̂1, θ2

)]
+ βT CV (xl

T +1)

}
(36)

where

• τ l
z, l = 1, . . . , S, z = t, . . . , T are i.i.d. U [0, 1].

• xl
z =

{
x1 for z = t

xl
z−1 + q

(
xl

z−1, s(τ
l
z; γ̂ )

)
for z = t + 1, . . . , T + 1.

In order to implement the second-step estimator, we must also compute the derivative of the
expected value function. This is approximated by a numeric finite-difference method:

VS′
(xit ; ψ̂, θ2, F̂q|x (·|·)) ≈ VS(xit + �; ψ̂, θ2, F̂q|x(·|·)) − VS(x; ψ̂, θ2, F̂q|x (·|·))

�
(37)

for � small. By plugging in equation (37) for V ′
(
xit + qit ; ψ̂, θ2, F̂q|x (·|·)

)
into equation (32),

we can estimate θ2 by minimizing the objective function (33).

3.2.2. Asymptotic theory for second step. In this section, we present the limit distribu-
tion for the second-step estimator θ̂2. In deriving the asymptotics, we ignore the approximation
error in simulating the expected value function (as well as its derivative), and treat the expected
function V(xit ; ψ̂, θ2, F̂q|x (·|·)) as a known function for all (ψ̂, θ2, F̂q|x (·|·)).6 The second-step
estimator θ̂2 solves the sample score function

JNT (θ̂2) ≡ 1

NT

N∑
i=1

T∑
t=1

h
(
xit , qit ; ψ̂, θ̂2, F̂q|x (·|·)

)
= 0 (38)

where

h
(
xit , qit ; ψ̂, θ2, F̂q|x (·|·)

)
≡Iit ∗

[
Uq

(
xit , s

(
F̂ (qit |xit ) ; γ̂

)
, qit ; θ̂1, θ2

)
+ βVS′ (

xit + qit ; ψ̂, θ2, F̂q|x (·)
)]

∗
∂

∂θ2

[
Uq

(
xit , s

(
F̂ (qit |xit ) ; γ̂

)
, qit ; θ̂1, θ2

)
+ βVS′ (

xit + qit ; ψ̂, θ2, F̂q|x (·)
)]

.

(39)

The notation F̂q|x (·) denotes the whole set of estimated conditional quota distributions,
estimated as in equation (10). By including the entire conditional distribution F̂q|x (·|·) as an
argument, we recognize that the expected value function V(xit+1) [cf. equation (35)] depends

6. For the simulation-based approximation of the expected value function, we require that the number of
simulation draws S increases quickly enough as N → ∞ so that variation due to the simulation itself is small enough
and does not affect the asymptotic variance. A sufficient condition for the asymptotic variance to be unaffected from
simulation error is that S/

√
N → ∞ (Gourieroux and Monfort, 1996).
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on the entire set of functions F̂−1
q|x (·), and not just on any one of these functions evaluated at

a particular quantile.
The asymptotics of the second step are complicated by dependence of the second-step

objective function on the entire estimated function Fq|x . In characterizing the asymptotic
distribution of θ̂2, we follow Newey (1994). The regularity conditions required for deriving the
asymptotic result of the second-step estimator are collected in the following assumption. Let
F be the shorthand for Fq|x(·|·), and F̂ and F 0 denote the estimated and true values for this
function, respectively. Also, let || · || denote a functional norm. Let P2 ≡ dim(θ2), and define

H0(θ2) ≡ E1(q 
= 0)
[
h(x, q;ψ0, θ2, Fq|x (·|·))]2 (40)

as the limit objective function of the second-step estimator.

Assumption 7. 1. θ2 ∈ �2, a compact subset of RP2 , and true value θ0
2 ∈ int(�2).

2. H0(θ2) is uniquely maximized at θ0
2.

3. h (x, q; ψ, θ2, F ) is twice continuously differentiable in θ2 and ψ with probability 1. Both
the function and its derivatives are uniformly bounded by an integrable function.

4. The Hessian A of H0 (θ2) with respect to θ2 is non-singular at θ0
2.

5. h(z, F ) ≡ h(x, q, ψ0, θ0
2, F ) is Fréchet-differentiable in F at F 0; that is, for all z, and

for all F with
||F − F 0|| small enough, there exists a linear operator D(z, F ) such that

|h(z, F ) − h(z, F 0) − D(z, F − F0)| ≤ b(z)||F − F 0||2.

Moreover,
√

NT · Eb(z)||F̂ − F 0||2 = op(1).
6. Stochastic equicontinuity:

1√
NT

∑
i

∑
t

[
D(zit , F̂ − F 0) − ED(z, F̂ − F 0)

]
= op(1). (41)

7. There exists a function α(z) satisfying E[a(zi)] = 0 and E[||α(zi)|2] < ∞ such that

√
NT

[
ED(z, F̂ − F 0) − 1

NT

∑
i

∑
i

α(zit )

]
= op(1). (42)

These assumptions are drawn from Newey (1994). Conditions 1–4 are standard conditions
for consistency and asymptotic normality. Conditions 5–7 are useful for characterizing the effect
of the estimated function F̂q|x on the estimates of θ2. Condition 5 assumes that the remainder
term from a first-order functional Taylor expansion of h(z, F ) around F 0 is asymptotically
negligible. Condition 7 requires that the expectation of the Fréchet derivative D(z, F̂ − F 0) at
F 0 can be approximated by a sample average of α(zit ), for some function α(·). The form of
this “influence function” α (·) is discussed below.

Theorem 2. Given Assumptions 1 to 7, the sample score function satisfies a central limit
theorem:

√
NT JNT (θ0

2)
d→ N(0, �). (43)
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In addition,
√

NT
(
θ̂2 − θ0

2

)
d−→ N

(
0, A

−1
� A

−1
)

(44)

as N → ∞, where A is the Hessian matrix defined in assumption 7.7, and

� = limV ar

⎛
⎝ 1√

NT

∑
i,t

α (zit ) + B ·
√

NT
(
ψ̂ − ψ0

)⎞⎠ . (45)

In the above, B = ∂
∂ψ

Eh
(
xit , qit ; ψ0, θ0

2, F 0
q|x (·|·)

)
.

A key element in the asymptotic distribution is the influence function α(z), which describes
the effect of the estimation of Fq|x on the estimates of θ2. The form of α(z) is model-specific and
follows Newey (1994). To summarize, under the above assumptions, if for any one-dimensional
parametric subpath Fη of the function Fq|x (·|·) estimated in the first stage, the “pathwise
derivative” of h(z, F ) with respect to F can be written as

∂

∂η
Eh
(
zit , Fη

) = Eα (zit ) Sη (zit ) , (46)

where Sη (zit ) is the score function of the joint density of the data zit = (xit , qit ), then α(·) is
the desired influence function. In the proof of Theorem 2, we use equation (46) to calculate α(z)

explicitly for a simpler two-period version of the model. We were not able to derive a general
analytic functional form of α(z) for the more general model because of the recursive way
the estimated F̂ enters the expected value function [cf. equation (35)]. However, the influence
function for the simpler model adequately illustrates the form that the influence function will
take for the full model. Moreover, since in practice we use the bootstrap to estimate the standard
errors for the two-step estimator, the characterization of the asymptotic distribution is mostly
useful for justifying the use of the bootstrap, so that the analysis of the simpler model suffices.

At the true values of ψ , θ2, and F(q|x), the first-order condition (32) is identically zero
for all values of (xit , qit ) which are optimally chosen. Hence, the second-step estimation
procedure introduces no source of sampling variation beyond that which arises from the first-
step estimation of ψ and the conditional distributions F(q|x).

In principle, given the parametric assumptions on Fs(·; γ ), the parameters θ and γ could
be jointly estimated in the second step, without requiring the pairwise-differencing first step.
However, by estimating θ1 and γ in the first step, we reduce the number of parameters that
must be estimated in the second step. Since the second step potentially involves numeric
dynamic programming in order to recover the value function, reducing the dimensionality of
the parameter space also reduces significantly the number of times that the value function must
be computed, thereby reducing the computational burden. Such a “two-step” approach was also
taken in Rust’s (1987) dynamic discrete-choice model of bus engine replacement, in which the
parameters describing the mileage Markov transition matrix were estimated in a first step to
reduce the computational burden in the second step, which involved computationally intensive
value function iteration (e.g. Rust et al. 2002).

4. EMPIRICAL ILLUSTRATION: MARKETS FOR MILK PRODUCTION QUOTA

As an illustration of our methodology, we estimate a dynamic trading model of the milk
production quota market. In Ontario, Canada, milk production is controlled via production
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quotas which grant holders the right to produce a certain quantity of milk per year. Since 1980,
in the province of Ontario these quotas have been traded among dairy farmers in monthly
double auctions administered by the Dairy Farmers of Ontario (DFO) (cf. Biggs, 1990). This
paper analyses data from the 11 auctions between September 1997 and July 1998. Our goal is
to estimate the parameters of agents’ utility functions, and the distribution of the unobserved
state variables, using the two-step pairwise-differencing methodology described earlier.

Each quota exchange is a double-auction market. All producers who wish to sell quota
submit offers to the exchange indicating that they have a certain volume of quota for sale
and at a certain minimum price per unit. Producers who wish to buy quota submit bids to
the exchange indicating that they would like to buy a certain volume of quota and that they
are willing to pay a specific maximum price per unit. Units are traded at a market clearing
price (MCP) at which the total quantity demanded (approximately) equals the total quantity
supplied.

In order to fit the milk-quota trading market into our dynamic framework, we consider
a dynamic, forward-looking model of the quota demand and supply process, in which each
individual trader faces a dynamic optimization problem. Timing is as follows. At the beginning
of month t , trader i owns xit units of production quota. She experiences a shock sit and must
decide the amount of quota qit to trade at any price pt . Generally, the optimal amount is
given by a function q (xit , sit , pt ) which takes values in (−∞,∞). For positive values of q,
this can be interpreted as a demand function, and when negative it can be interpreted as a
supply function. The amount actually transacted would be q

(
xit , sit , p∗

t

)
, where p∗

t denotes
the realized market-clearing price for period t .

An important simplifying assumption that we make is that the market-clearing price p∗
t

is taken as given and known by bidders when they are deciding how much quota qit to buy.
This assumption is consistent with the dynamic competitive equilibrium path of a continuum
market, on which agents will have perfect foresight about the sequence of market-clearing
prices, even though at the individual trader level there is uncertainty about the shocks received
by other traders. As a result, equilibrium strategies in this market can be characterized as optimal
policies of a non-stationary dynamic optimization problem solved by each trader individually.
Because agents’ quota decisions in period t will depend on p∗

t , the market-clearing price in
period t , which we model as a deterministic time-varying covariate, the empirical model is
non-stationary, which differs from the stationary problem used in the previous sections in
describing our estimation procedure.7

Specifically, we model each trader i as choosing a sequence {qit } to maximize the expected
discounted present value of its utility from its milk-quota trading operations:

max
{qit }t

E

∞∑
t=0

βtUt

(
xit , sit , qit , p∗

t ; θ
)

(47)

subject to

xit+1 = xit + qit ; sit ∼ Fs, i.i.d. over t; p∗
0, p∗

1 . . . known. (48)

Note the t subscript on the per-period utility function, which emphasizes that the dynamic
problem is non-stationary due to the presence of the market-clearing prices. The expectation

7. In principle, if we observed many more months of data, we could consider a stationary problem in which
the evolution of the monthly market-clearing prices could be estimated directly from the data. Estimation would be
more complicated, as we would also need to match on pt (in addition to xt + qt ) in the first stage, and then we also
need to take draws of the price process in simulating the value function for the second stage. We do not undertake
this extension in the empirical application because we only have 11 observations of the price process.
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is over the sequences of sit and xit induced by trader i’s chosen sequence {qit }. Each trader
i’s optimal policy in period t is given by a period-specific function qt (xit , sit ), which satisfies
Bellman’s equation:

qt (xit , sit ) = argmaxqU
(
xit , sit , q, p∗

t ; θ
)+ βVt+1 (xit + q;ψ, θ2) (49)

where
Vt+1 (xit + q;ψ, θ2) ≡ Esit+1Vt+1 (xit + q, sit+1;ψ, θ2) . (50)

Accommodating non-stationarity in our estimation procedure requires several changes from
the procedure presented in the first part of this paper. First, because agents’ policy functions
will be period-specific in a non-stationary problem, we estimate the conditional quota purchase
distributions Fq|x,t [cf. equation (10)] separately for each period t . Second, because the expected
value functions are no longer time-homogeneous in a non-stationary problem, we can no longer
match agents across periods in the pairwise-differencing step. As a result, the objective function
used in this step is

min
θ1,γ

1

(N)2T

T∑
t=1

[ N∑
i=1

N∑
j=1

{
1

h1
K

(
(xit + qit ) − (xjt + qjt

)
h1

)
· Iit Ij t ·

[
Uq

(
xit , s

(
F̂ (qit |xit ) ; γ

)
, qit ; θ1

)
− Uq

(
xjt , s

(
F̂
(
qjt |xjt

) ; γ
)

; θ1

)]2
}]
(51)

which differs from the objective function for the stationary case [equation (9)] because we do
not match across agents (i, j) in different periods.

Finally, given that we only observe 11 periods of data, we assume that agents solve a
finite-horizon model with T = 11 but allow the continuation value of the problem (after the
11th month) to depend on xT +1, the stock that a given trader has after the first 11 months.
More specifically, for months t = 1, . . . , T , we simulate the expected value function as

VS
t (xt ;ψ, θ2) = 1

S

S∑
l=1

{[
T∑

z=t

βz−tU
(
xl

z, s(τ
l
z; γ ), F̂−1

q|xl
z,z

(τ l
z); θ

)]
+ βT +1−tCV (xl

T +1)

}

(52)

where

• τ l
z, l = 1, . . . , S, z = t, . . . , T are i.i.d. U [0, 1].

• xl
z =

{
xt for z = t

xl
z−1 + q

(
xl

z−1, s(τ
l
z; γ )

)
for z = t + 1, . . . , T + 1.

• the continuation value function is a flexible (firth-order) polynomial in xT :

CV (xT +1) =
5∑

j=1

ηj · xj

T +1. (53)

We estimate the polynomial coefficients η1, . . . , η5 are jointly with θ2 in the second step of
our procedure.

4.1. Data: summary statistics

Summary statistics are presented in Table 1. The trading unit for quota is expressed in kilograms
of butterfat, and 1 kg of quota purchased on the exchange allows a producer to ship 1 kg of
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Figure 1
Empirical CDF of quantity traded per trader/month; x-axis: quantity traded q; y-axis: % of producer/month

observations where quantity traded ≤ q

butterfat per day, in perpetuity, for as long as the unit of quota is held.8 Over the 11 exchanges,
we observe the bids placed by 2574 distinct producers. For each trader, we have data on her total
quota stock in September 1997 (the first month in our sample), as well as her purchases/sales
of quota in each subsequent month, which we used to construct her total quota for each
month.

Column E in Table 1 shows that a large number of sellers and buyers participate in each
exchange, which suggests that there may not be much scope for strategic behaviour, which is
not accommodated in our empirical model.

Across all auctions, column J shows that about 90% of the producers submit zero bids. In
our empirical application, given the assumption that traders have perfect foresight about the
market-clearing prices, a zero bid is attributed to two events: (i) non-participation in an auction
(which, on average, is attributed to 2000 potential bidders in each auction); and (ii) submission
of a non-zero bid, but not consummating a sale because it was either a sell price higher than
the MCP, or a buy price lower than the MCP. In Figure 1, we present the empirical CDF of the

8. Prior to September 1997, a unit of quota conferred on its owner the right to produce milk containing 1 kg
of butterfat per year. In September 1997, however, the trading unit for quota was redefined in kilograms of butterfat
per day.
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quantity traded per month, across all the monthly auctions. This shows clearly that over 90%
of the observations are zero bids. Despite the large numbers of zero bids, however, columns
G and I of Table 1 also indicate that each bidder’s chance of getting their order filled (i.e.,
submitting selling bids below the MCP, or submitting buying bids above the MCP) is quite
high across most of the exchanges.

Conditional on trading, there is a wide dispersion of trade amounts, ranging from about
–150 to 100 units of quota. Given this large dispersion, we model a producer’s choice of q,
conditional on trade, as a continuous variable, even though trade is actually restricted to integer
units.

4.2. Utility function parameterization

We assume an exponential constant absolute risk aversion (CARA) form for the utility function:

U(wit ) = − exp (−rwit ) , (54)

and the following linear specification for trader i’s period t payoff:

wit = xit · sit − pt · qit − K · 1 (qit 
= 0) . (55)

The per-period payoffs for each trader are as follows. Each period, trader i receives some profits
xit · sit from producing and selling milk under its current stock of quota, but pays an amount
pt · q (xit , sit , pt ) to acquire additional quota. Furthermore, she incurs a fixed adjustment cost K

which is associated with any non-zero transaction of quota (and the magnitude of which is not
dependent on the amount of quota transacted): this would accommodate not only bidding costs
but also general fixed costs associated with expanding/contracting the scale of milk production
and is required to rationalize the large number of zero bids, as summarized in column J of
Table 1.9 Given this specification, sit can be interpreted as stochastic production shocks which
affect a trader’s profits from his milk production.

In this parameterization, the only parameters identified in the first pairwise-differencing step
are γ , the parameters of the shock distribution Fs . Too see this, note that Uq , the marginal utility,
is equal to −pr exp[−r(xs − pq − K)] for our exponential specification. When we difference
the marginal utilities for agents i and j , however, the pairwise-differencing estimating equation
(14) becomes

−perK
[
exp(−r (xisi(γ ) − pqi)) − exp(−r

(
xj sj (γ ) − pqj

)
)
]
, (56)

where si (γ ) ≡ s (F (qi |xi) ; γ ). The constant proportion perK does not have any sampling
variation, and hence is not identified in the first-stage estimation using equation (14).
Furthermore, from inspection of the above equation, we see that it holds if and only if

(xisi(γ ) − pqi) = (xj sj (γ ) − pqj ), ∀(i, j) : xi + qi = xj + qj (57)

which involves only the shock distribution parameters γ , and none of the utility parameters
(r, K). Hence, condition (56) provides no information to pin down r and K , which must be
estimated in the second step.

9. We may wish to allow the adjustment cost K to be a trader-specific fixed effect which varies across traders
but is fixed across time. This could help explain the large number of qit = 0 observations in the data. In principle,
our estimation procedure can accommodate this, as we would amend the pairwise-differencing step to only match on
xt + qt using the across-time observations for each trader. While this is feasible in applications where we observe a
long time series for each agent, it is not practical here, because we only observe 11 monthly observations for each
trader.
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Accordingly, in our empirical work, our first-stage estimator minimizes the following
objective function, which is a least squares version of equation (57):

min
θ1,γ

1

(N)2T

T∑
t=1

[ N∑
i=1

N∑
j=1

{
1

h1
K

(
(xit + qit ) − (xjt + qjt

)
h1

)
· Iit Ij t

[
(xit sit (γ̂ ) − ptqit ) − (xjt sj t (γ̂ ) − ptqjt )

]2}] (58)

with ŝit (γ ) ≡ s(F̂t,q|x(qit |xit ); γ ).
While we have derived the asymptotic covariance matrix for our estimator in Theorems

1 and 2 above, in practice it is fairly tedious and involved to compute. Therefore, in the
empirical implementation, we obtained standard errors for our estimates using a bootstrap
resampling procedure. The derivation of the asymptotic distribution in Theorems 1 and 2
serves to validate the use of bootstrap methods for our estimator.

For each specification, we used the bootstrap as follows: we resampled (with replacement)
sequences from the dataset, and re-estimated the model for each resampled dataset. The
reported bootstrap confidence intervals are therefore the empirical quantiles of the distribution
of parameter estimates obtained in this fashion.

4.3. Estimation results

Log-normal shock distribution parameterization. First, we present results from a tightly
parameterized model, assuming a log-normal specification for Fs , whereby log s ∼ N

(
μ, σ 2

)
.

The parameter estimates are shown in Tables 2 and 3.
These magnitudes imply that the mean (and median) shock is 6.928. Given the specification

of the agents’ payoffs [equation (55)], this can be interpreted as the monthly return from a unit
of quota (in 1986 thousands of Canadian dollars). At a price of about $11,000 (again in 1986
CAD) per unit of quota, these magnitudes imply that the median producer would “recoup” her
investment in less than 2 months: this seems quite an unrealistically small figure. The estimates
of K and r indicate, respectively, very small adjustment costs (around 30 cents) and a very
low level of risk aversion. In the top graph of Figure 2, we present our estimate of the implied
period 1 (September 1997) policy function q1(x, s) for the log-normal distribution results. The
policy function is estimated using equation (17).

Piecewise-linear shock distribution parameterization. Second, we present results using
a more flexible piecewise-linear form for the shock distribution Fs , as described in equation
(22) above. In the first step, we jointly estimated the 0.15, 0.25, 0.5, 0.75, and 0.85 quantiles
for Fs . The estimated CDF is graphed in Figure 3. The median shock is estimated to be about
1.24, implying (using the same reasoning as in the previous paragraph) that the median trader
recoups his investment in about nine months: this appears more realistic than the estimate
obtained from the log-normal parameterization.10

In the bottom graph of Figure 2, we present our estimate of the implied period 1 (September
1997) policy function q1(x, s) for the Fs with linear interpolation estimated in the first step and
plotted in Figure 3. The estimate of K implies that the magnitude of fixed adjustment costs are
$119.70, which is much higher than the estimates obtained using the log-normal specification.
The estimate of r , the coefficient of absolute risk aversion, remains very small (0.0072).

10. We also considered another specification allowing Fs to vary across periods. However, we found that the
covariates had little effect and left the results virtually unchanged. Therefore, we do not report those results.
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TABLE 2
Parameter estimates: log-normal

specification for Fs log s ∼ N
(
μ, σ 2

)
Estimate Standard error∗

K 0.0003 0.6750
r 0.0320 0.0101

μ −0.6706 0.0772
σ 2.2830 0.1268

∗Obtained via bootstrap resamples.

TABLE 3
Parameter estimates: flexible piecewise-linear

specification for Fs

Estimate Standard errors∗

Step 1 parameters

F−1
s (0.15) 0.0028 0.0064

F−1
s (0.25) 0.6994 0.2761

F−1
s (0.50) 1.2400 1.2014

F−1
s (0.75) 1.3344 0.5365

F−1
s (0.85) 1.6058 0.5010

Step 2 parameters∗∗

K 0.1197 0.0340∗∗∗

r 0.0072 0.0023

Notes: Fifth-order polynomial approximation
employed for terminal value (cf. end of
Section 4).
∗Standard deviation of parameter estimates
obtained from 99 bootstrap resamples.
∗∗Number of simulation draws used to evalu-
ate expected value function: L = 10.
∗∗∗These standard errors account for estima-
tion error in the first-step estimates.

5. CONCLUSIONS

In this paper, we proposed a two-step pairwise-differencing procedure for structural estimation
of a dynamic optimization model with unobserved state variables. Our estimator represents
an innovative application of pairwise-difference methods, which have primarily been used
in cross-sectional contexts (cf. Honoré and Powell, 1994) to structural dynamic optimization
problems.

The most restrictive assumption made in this paper is that the unobserved state variables
are independent across time. Accommodating serial correlation requires considering carefully
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Estimated policy function for September 1997. Lognormal specification: piecewise-linear specification: x-axis: log

value of shock s; y-axis: quota transaction amount qt
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Estimated CDF of shock s. Estimated using equation (15). x-axis: log value of shock s; y-axis: CDF of shock s.

Five quantiles were estimated: 0.15, 0.25, 0.5, 0.75, 0.85

the problem of initial conditions which, in turn, is very closely related to the issue of unobserved
individual-specific heterogeneity (cf. Heckman, 1981). Unobserved heterogeneity, which we do
not exploit, introduces substantial complexity in dynamic structural models and forms an active
area of ongoing current research.

The estimation procedure only accommodates univariate unobserved state variables in
agents’ policy functions. This rules out multi-agent models in which the unobserved state
variables of all the agents enter into each agent’s policy function, as in the dynamic oligopoly
model considered by Berry and Pakes (2000), where one firm’s optimal investment is affected
by the productivity state of every firm in the market, and all of these productivities are
unobservable by the econometrician. It will be interesting to investigate in future work whether
monotonicity and quantile invariance can be useful in these situations.

APPENDIX A. PROOFS

A.1. Proof of Theorem 1

For convenience, we sometimes use ψ in this proof to denote ψ0, the true value. Also, let m(zit , zjt ′ ;ψ) and
r(zit , zjt ′ ; ψ) denote, respectively, equations (16) and (19) evaluated at the actual (i.e. error-free) conditional
distributions Fq|x .
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Due to Assumption 5, the following approximation holds uniformly, up to op

(√
log N√
NT h

+ hr

)
:

F̂ (q|x) − F (s)

≈ 1

f (x)

[
1

NT h

N∑
l=1

T∑
t=1

1 (qlt < q) K

(
xlt − x

h

)
− f (x) F (s)

]

− F (s)

f (x)

[
1

NT h

N∑
l=1

T∑
t=1

K

(
xlt − x

h

)
− f (x)

]

= 1

f (x)

[
1

NT h

N∑
l=1

T∑
t=1

1 (qlt < q) K

(
xlt − x

h

)]
− F (s)

f (x)

[
1

NT h

N∑
l=1

T∑
t=1

K

(
xlt − x

h

)]
.

(A1)

Together with other smoothness conditions in Assumption 5, uniform consistency of F̂ (q|x) implies uniform
convergence of the estimand (15) to the population limit G0 (ψ), which in turn implies the consistency of ψ̂ due to
Assumption 6(ii).

To derive the asymptotic distribution, using a standard first-order Taylor expansion argument, we can approximate
the estimator by

√
NT

(
ψ̂ − ψ0

)
= −A−1

NT

(
1 + op (1)

) 1

(NT )3/2

N∑
i=1

T∑
t=1

N∑
j=1

T∑
t ′=1

r̂
(
zit , zjt ′ , ψ0) (A2)

where the Jacobian term is defined as (ψ∗ is a set of intermediate values between ψ and ψ̂):

ANT ≡ 1

(NT )2

∑
i,t,j,t ′

1

h
K

(
xit+1 − xjt ′+1

h

)
Iit Ij t ′

∂

∂ψ

(
m̂
(
zit , zjt ′ , ψ∗) ∂

∂ψ

[
m̂
(
zit , zjt ′ , ψ∗)]) . (A3)

The Jacobian term ANT can be approximated successively, each time up to op (1), by replacing ψ∗ with the true

ψ0, m̂ (·) with m (·), and the double summation with double expectations. As a consequence, ANT

p−→ A, where

A ≡ Ez
jt ′ Ezit

[
Iit Ij t ′

∂

∂ψ

[
m
(
zit , zjt ′ , ψ

)] ∂

∂ψ

[
m
(
zit , zjt ′ , ψ

)]
1xit+1=x

j t ′+1

]
(A4)

is the same matrix as stated in condition v.i of Assumption 6.
The form of A takes into account the fact that

Ez
jt ′ Ezit

[
Iit Ij t ′m

(
zit , zjt ′ , ψ

) ∂2

∂ψ∂ψ ′ m
(
zit , zjt ′ , ψ

)
1xit+1=x

j t ′+1

]
≡ 0, (A5)

which follows by assumption from the identity that m
(
zit , zjt ′ , ψ

) ≡ 0 when xit+1 = xjt ′+1.
Next, we address the terms that appear behind the quadruple summation in (A2). Define

ŵ
(
zit , zjt ′

) ≡m̂
(
zit , zjt ′ , ψ0) ∂

∂ψ

[
m̂
(
zit , zjt ′ , ψ0)] ,

w
(
zit , zjt ′

) ≡m
(
zit , zjt ′ , ψ0) ∂

∂ψ

[
m
(
zit , zjt ′ , ψ0)] . (A6)

Note that ŵ
(
zit , zjt ′

)
can be approximated up to op (1) by the first-order linearization

w
(
zit , zjt ′

)+ ∂w
(
zit , zjt ′

)
∂Fs (sit )

(
F̂ (qit |xit ) − Fs (sit )

)
+ ∂w

(
zit , zjt ′

)
∂Fs

(
sjt ′
) (

F̂
(
qjt ′ |xjt ′

)− Fs

(
sjt ′
))

≡ (
1 + op (1)

)⎡⎣w
(
zit , zjt ′

)+ 1

NT

N∑
l=1

T∑
t ′′=1

v
(
zit , zjt ′ , zlt ′′

)⎤⎦ ,

(A7)

where, substituting in equation (A1) above:

v
(
zit , zjt ′ , zlt ′′

) = ∂w
(
zit , zjt ′

)
∂Fs (sit )

1

h
K

(
xlt ′′ − xit

h

)
1

f (xit )

[
1
(
qlt ′′ < qit

)− Fs (sit )
]

+ ∂w
(
zit , zjt ′

)
∂Fs

(
sjt ′
) 1

h
K

(
xlt ′′ − xjt ′

h

)
1

f
(
xjt ′
) [1q

lt ′′ <q
jt ′ − Fs

(
sjt ′
)]

.

(A8)
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Hence, we can approximate the linear term in equation (A2) by a U-statistic representation:

1

(NT )3/2

N∑
i=1

T∑
t=1

N∑
j=1

T∑
t ′=1

1

h
K

(
xit+1 − xjt ′+1

h

)
w
(
zit , zjt ′

)
Iit Ij t ′

+ 1

(NT )5/2

N∑
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T∑
t=1

N∑
j=1

T∑
t ′=1

N∑
l=1
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1

h
K

(
xit+1 − xjt ′+1

h

)
v
(
zit , zjt ′ , zlt ′′

)
Iit Ij t ′ .

(A9)

Given Assumption 4 in the main text on the kernel and bandwidth sequence, the bias terms in the non-parametric
kernel estimation are asymptotically negligible and the conditions for Lemma 3.1 in Powell, Stock and Stoker (1989)
hold. Hence, we can invoke the projection representation of (A9). For the first term in equation (A9), we have

1
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f
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(A10)

Both terms in the above display vanish asymptotically for the same reasoning that leads to (A5). This makes
explicit the feature that the pairwise-differencing step introduces no additional variation to the parameter estimate ψ̂ .
The non-parametric estimates of Fq|x produce all the first-order variation, which is reflected in the non-negligible limit
for the second term of equation (A9):

1

(NT )5/2

N∑
i=1

T∑
t=1

N∑
j=1

T∑
t ′=1

N∑
l=1

T∑
t ′′=1

1

h
K

(
xit+1 − xjt ′+1

h

)
Iit Ij t ′v

(
zit , zjt ′ , zlt ′′

)

= 1√
NT

N∑
l=1

T∑
t ′′=1

E

(
1

h
K

(
xit+1 − xjt+1

h

)
Iit Ij t ′v

(
zit , zjt ′ , zlt ′′

) ∣∣∣∣zl

)
+ op (1)

≡ 1√
NT

N∑
l=1

T∑
t ′′=1

ṽt ′′ (zl) + op (1) .

(A11)

The first equality follows from Assumption 4, which implies that the other two projection terms vanish. After
tedious but straightforward calculations, we can write ṽt ′′ (zl) as

Ezi

[
Ezj

(
Iit Ij t ′

∂w
(
zit , zjt ′

)
∂Fs (sit )

1x
j t ′+1=xit+1

)
f (xit+1)

(
1
(
qlt ′′ < qit

)− Fs (sit )
)

1xit =x
lt ′′

]

+Ezj

[
Ezi

(
Iit Ij t ′

∂w
(
zit , zjt ′

)
∂Fs

(
sjt

) 1xit+1=x
j t ′+1

)
f
(
xjt ′+1

) (
1
(
qlt ′′ < qjt ′

)− Fs

(
sjt ′
))

1x
j t ′ =x

lt ′′

]
.

(A12)

Therefore, we conclude that
√

NT
(
ψ̂ − ψ

)
d−→ N

(
0, A−1�A−1) (A13)

where

� = 1

T
E

(
T∑

t=1

ṽt (zl )

)(
T∑

t=1

ṽt (zl )

)′
(A14)
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and A is defined in (A4) above. The asymptotic variance can be consistently estimated using resampling methods or
empirical analogues. ||

A.2. Proof of Theorem 2

Under the conditions of Assumption 7, it follows from a standard first-order Taylor expansion that
√

NT
(
θ̂2 − θ0

2

)
is asymptotically equivalent to

A
−1

(
1√
NT

∑
i

∑
t

h
(
xit , qit ; F̂q|x (·| :) , ψ̂, θ0

2

))
, (A15)

which is, in turn, asymptotically equivalent to

A
−1

⎛
⎝ 1√

NT

∑
i,t

(
h
(
xit , qit ; F̂q|x (·| :) , ψ0, θ

0
2

)
− h

(
xit , qit ;Fq|x (·| :) , ψ0, θ

0
2

))+ B
√

NT
(
ψ̂ − ψ0

)⎞⎠ . (A16)

The above is asymptotically equivalent to

A
−1
(√

NT Ex,q

(
h
(
x, q; F̂q|x (·| :) , ψ0, θ

0
2

)
− h

(
x, q; Fq|x (·| :) , ψ0, θ

0
2

))+ B
√

NT
(
ψ̂ − ψ0

))
. (A17)

It then follows from the powerful results of Newey (1994) and the other regularity conditions in Assumption 7 that,

√
NT Ex,q

(
h
(
x, q; F̂q|x (·| :) , ψ0, θ

0
2

)
− h

(
x, q; Fq|x (·| :) , ψ0, θ0

2

))
= 1√

NT

∑
i

∑
t

α (zit ) + op (1) .
(A18)

Hence, combining the above two equations (A17) and (A18), the asymptotic variance of
√

NT (θ̂2 − θ0
2) is equal

to the expression given in the statement of Theorem 2. Interestingly, Newey (1994) shows that as long as sufficient
regularity conditions are met, this asymptotic linear representation holds regardless of the non-parametric estimation
method used in the first stage to construct F̂q|x (·|·).

It remains to derive the expression for the influence function α(z). Recall that the second-stage estimation is
based on equating to zero the first-order condition (with respect to current choice q0) of a simulated version of the
following objective function:

Ex0,q0,{τ }

[
u
(
x0, q0, s

(
F̂q|x (q0|x0)

)
, ψ, θ2

)
+
∑

t

βt u (xt , qt , s (τ t ) , ψ, θ2)

]
(A19)

subject to x1 = x0 + q0 and for all periods t ≥ 1,

xt+1 = xt + qt ; qt = F̂−1
q|x (τ t |xt ) . (A20)

Because of this recursive structure, the influence function α (zi ) also has a recursive structure, α (zi ) =∑t αt (zi ),
and it is not possible to provide a complete analytical description. In the following, we will provide the derivation of
the first two terms α1 (zi ) and α2 (zi ), corresponding to a two-period version of the model. Higher order terms can be
derived using similar calculations, but are too tedious to describe analytically. We believe this derivation adequately
illustrates the form that the influence function will take in the general model. In any case, since in practice we use
bootstrap inference for the second-stage parameters, we only require the existence of the asymptotic influence function
and do not require explicit knowledge of its functional form.

We introduce the shorthand notation u(x, q, τ ) = u(x, q, s(τ),ψ, θ2), and let u1 and u2 denote, respectively,
the derivatives of u(x, q, τ ) with respect to the first and second arguments. In the two-period model, the limiting
first-order condition (corresponding to the h(· · ·) function above) satisfied by the parameters θ2 is

0 =E

[
A (x0, q0)

{
u2
(
x0, q0, s

(
Fq|x (q0|x0)

))+ β
∂

∂q0
u(x0 + q0, F

−1
q|x (τ 1|x0 + q0), s (τ 1))

}]
(A21)

where [cf. equation (38)]

A (x0, q0) = ∂

∂θ2

[
u2
(
x0, q0, s

(
Fq|x (q0|x0)

))+ β
∂

∂q0
u(x0 + q0, F

−1
q|x (τ 1|x0 + q0), s (τ 1))

]
. (A22)
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Let η index a one-parameter family (or “sub-path”) of parametric specifications for the conditional CDF F(q|x).
Members of this family are denoted Fη(q|x), with Fη=0(q|x) = F(q|x), the true value. (In the following, we omit
the subscript q|x from this distribution for convenience.) Following Newey (1994), the influence function for the
two-period model satisfies the “pathwise derivative” (i.e. derivative with respect to η), evaluated at η = 0, of the
first-order condition (A21). This influence function will be the sum of two terms, corresponding to the two terms
within the curly brackets of equation (A21).11

The first term α1(z) in the influence function satisfies the pathwise derivative of the first term of the first-order
condition; that is:

∂

∂η
E
[
A (x0, q0) u2 (x0, q0, s (F (q0|x0)))

] = Eα1(z)Sη(z). (A23)

To derive α1(z), start with

∂

∂η
E
[
A (x0, q0) u2 (x0, q0, s (F (q0|x0)))

] = E

[
uF (x0, q0) · ∂

∂η
Fη (q0|x0)

]
, (A24)

where uF (x0, q0) ≡ A (x0, q0)
∂
∂τ

u2 (x0, q0, s (τ )) |τ=F(q0|x0). The right-hand side can be in turn written as

E

[
uF (x, q) · ∂

∂η
Fη (q|x)

]
=
∫ ∫ ∫

uF (x, q) 1u≤q

∂

∂η
fη (u|x) duf (q, x) dqdx

=
∫ ∫

αF (x, u)
∂

∂η
fη (u|x) f (x) dudx

=
∫ ∫

αF (x, u)

[
∂

∂η
fη (u, x) − f (u|x)

∂

∂η
fη (x)

]
dudx

=
∫ ∫

αF (x, u)
∂

∂η
fη (u, x) dudx −

∫
E [αF (x, u) |x]

∂

∂η
fη (x) dx

(A25)

where αF (x, u) = ∫ uF (x, q) 1u≤qf (q|x) dq. In the above display, the second line exchanges the order of
differentiation, and the third line applies the chain rule. Hence, the first term in the influence function equals

α1 (z) = αF (x, q) − E
[
αF (x, q) |x] . (A26)

Similarly, the second term α2(z) satisfies

∂

∂η
E

[
A (x, q)

∂

∂q
u(x + q, F−1

η (τ 1|x + q), s (τ 1))

]
= Eα2(z)Sη(z). (A27)

Note that

∂

∂q
u(x + q, F−1

η (τ 1|x + q), s(τ 1))

=u1(x + q, F−1
η (τ 1|x + q), s(τ 1)) + u2(x + q, F−1

η (τ 1|x + q), s(τ 1)) · ∂

∂q
F−1

η (τ 1|x + q).

(A28)

Corresponding to the two terms on the right-hand side, we can further decompose α2 (z) = α21 (z) + α22 (z). For
the first subcomponent (defining q1 = F−1

0 (τ 1|x + q)),

∂

∂η
Ex,q,τ1

[
A (x, q) u1

(
x + q, F−1

η (τ 1|x + q) , s(τ 1)
)]

= − Ex,q,τ1

[
A (x, q) u12

(
x + q, F−1

η (τ 1|x + q) , s(τ 1)
)

f
(
F−1 (τ 1|x + q) |x + q

) ∂

∂η
Fη (q1|x + q)

]
.

(A29)

11. For completeness, A(x0, q0) also depends on F(q|x), and hence the pathwise derivative should also include
terms involving the pathwise derivative of A(x0, q0). However, because the term within curly brackets in equation
(A21) is identically equal to zero for all x0 and q0, these additional terms will all evaluate to zero, so that we can
treat A(x0, q0) as known (and hence not affecting the asymptotic variance of θ2) without loss of generality.
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For y = x + q and h (y, u) = ∫ 1
0 E (A (x, q) |y)

u12
(
y,F

−1
0 (τ1|y),τ1

)
f
(
F

−1
0 (τ1|y)|y

) 1
u≤F

−1
0 (τ1|y)dτ 1, the above can be written as

∫ ∫
h (y, u)

∂

∂η
fη (u|y) duf (y) dy

=
∫ ∫

h (y, u)
∂

∂η
fη (u, y) dudy −

∫ ∫
E
[
h (y, u) |y] ∂

∂η
fη (y) dy.

(A30)

Therefore α21 (z) = h (q, x + q) − E
[
h (q, x + q) |x + q

]
.

Finally, consider the second subcomponent α22 (z) for

∂

∂η
Ex,q,τ1

{
A (x, q)

[
u2
(
x + q, F−1

η (τ 1|x + q) , s(τ 1)
) ∂

∂q
F−1

η (τ 1|x + q)

]}
. (A31)

From the chain rule, the above pathwise derivative has two components, which correspond to two subcomponents of
α22 (z), denoted α221 (z) and α222 (z). The first subcomponent α221 (z) comes from

∂

∂η
Ex,q,τ1

{
A (x, q)

[
u2
(
x + q, F−1

η (τ 1|x + q) , s(τ 1)
) ∂

∂q
F−1 (τ 1|x + q)

]}
. (A32)

Its derivation is similar to that of α21 (z), except that the definition of h (y, u) in α21 (z) is now replaced by

h (y, u) =
∫

E
[
A (x, q) |y] u22

(
y, F−1

0 (τ 1|y) , τ 1

) ∂

∂q
F−1

0 (τ 1|x + q)

1
u≤F

−1
0 (τ1|y)

−f
(
F−1

0 (τ 1|y) |y
) dτ 1. (A33)

The last subcomponent is more complex and requires the use of integration by parts. Consider, for y = x + q,

∂

∂η
Ey,τ1

[
E
[
A (x, q) |y] u2

(
y, F−1

0 (τ 1|y) , τ 1

) ∂

∂y
F−1

η (τ 1|y)

]

=Ey,τ1E
[
A (x, q) |y]

⎡
⎣u2

(
y, F−1

0 (τ 1|y) , τ 1

)
−f

(
F−1

0 (τ 1|y)
) ∂2

∂η∂y′ Fη

(
F−1

0 (τ 1|y) |y′
) ∣∣∣∣

y′=y

⎤
⎦ .

(A34)

If we define

h (y, u) =
∫ 1

0
E
[
A (x, q) |y] u2

(
y, F−1

0 (τ 1|y) , τ 1

)
f
(
F−1

0 (τ 1|y)
) 1

u<F
−1
0 (τ1|y)dτ 1. (A35)

Then the pathwise derivative can be written as

∫ ∫
h (y, u)

∂2

∂η∂y
fη (u|y) duf (y) dy. (A36)

Through a sequence of integration by parts, this can be further written as

− ∂

∂η

∫ ∫
∂h (y, u) f (y)

∂y

1

f (y)
fη (u|y) f (y) dudy. (A37)

Careful inspection shows that the corresponding asymptotic influence function is given by

α222 (z) = h̃ (x + q, q) − E
[
h̃ (x + q, q) |x + q

]
, (A38)

where h̃ (y, u) = − ∂h(y,u)f (y)

∂y
1

f (y)
. This completes the derivation of the influence function for the two-period model

(A21). ||
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APPENDIX B. DERIVATION OF OPTIMAL POLICY FUNCTION IN EXAMPLE

Here we derive the optimal policy function (28) for the example problem we introduced in Section 3.1.2. The
dynamic problem (26) falls into the framework of the “general” LQ problem in (Sargent, 1987, p. 51):

max
{qt }

∞∑
t=0

βt

{
(z′

t , qt )

(
R W

W
′

Q

)(
zt

qt

)}
(B1)

subject to
zt+1 = Azt + Bqt + st+1

where

zt =
⎛
⎝ xt

st

1

⎞
⎠ (B2)

R =
⎛
⎝ 4 0 1

0 0 0
1 0 0

⎞
⎠ W =

⎛
⎝ 0

− 1
2

0

⎞
⎠ Q = − 1

2

A =
⎛
⎝ 1 0 0

0 0 0
0 0 1

⎞
⎠ B =

⎛
⎝ 1

0
0

⎞
⎠ . (B3)

Following Sargent (1987), we re-parameterize the model. Define

R = R − WQ
−1

W
′

Q = Q

A = A − BQ
−1

W
′

B = B.

(B4)

Then re-parameterized problem is

max
{vt }

E

∞∑
t=0

βt
{
z′
tRzt + v′

tQvt

}
(B5)

subject to

zt+1 + Azt + Bvt + st+1 (B6)

where

vt = Q
−1

W
′
zt + ut . (B7)

The optimal policy function for the re-parameterized problem is vt = −Fzt where

Ft = β
(
Q + βB ′PB

)−1
B ′PA (B8)

and P satisfies the Ricatti equation

P = R + βA′PA − β2A′PB
(
Q + βB ′PB

)−1
B ′PA. (B9)

Then, correspondingly, the optimal policy function for the original problem is

Q
−1

W
′
zt + ut = −Fzt

⇔ ut = −(F + Q
−1

W
′
)zt

(B10)

which evaluates to the optimal policy function given in equation (28).
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APPENDIX C. REMARKS ON EMPIRICAL ILLUSTRATION

In our empirical application, we make the assumption that the price pt is taken as given and known by bidders
when they are deciding how much quota qt to buy. Here, we show that this assumption is consistent with a perfect
foresight equilibrium in a dynamic competitive market composed of individually atomistic traders, similar to Jovanovic
(1982) and Hopenhayn (1992). Prices for each period are determined by a market-clearing condition: given policies
q (xit , sit , pt ), ∀i,

pt :
∫ ∫

q (x, s, pt )Jt (dx)Ht (ds) = 0 , ∀t (C1)

where Jt (·) and Ht (·) denote, respectively, the distribution of quota stocks and shocks in the cross-section of traders
during period t . Given our i.i.d. assumption on the shock distribution, it is immediately clear that

Ht (s) = Fs (s) , ∀t . (C2)

Similarly, the cross-sectional distribution of stocks Jt (x) evolves according to

Jt (x) =
∫ ∫

1 (z + q(z, s, pt−1) ≤ x)Ht−1(ds)Jt−1(dz). (C3)

Given any initial stock distribution J0, the sequences {Jt } and {Ht } are both deterministic, and evolve according

to (C2) and (C3). Therefore, by the market-clearing conditions (C1), the sequence {pt }t is also deterministic. Hence,

in competitive equilibrium in this market, all traders will have perfect foresight about the evolution of prices.
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