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Abstract

We develop econometric models of ascending (English) auctions which allow for both bid-
der asymmetries as well as common and/or private value components in bidders’ underlying
valuations. We show that the equilibrium inverse bid functions in each round of the auction
are implicitly de,ned (pointwise) by a system of nonlinear equations, so that conditions for
the existence and uniqueness of an increasing-strategy equilibrium are essentially identical to
those which ensure a unique and increasing solution to the system of equations. We exploit the
computational tractability of this characterization in order to develop an econometric model, thus
extending the literature on structural estimation of auction models. Finally, an empirical example
illustrates how equilibrium learning a0ects bidding during the course of the auction.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We develop a framework for estimating structural models of asymmetric ascending
(English) auctions. In these auctions, the bidding process is modeled as a multi-stage
game in which bidders obtain more and more information during the course of the
auctions as rivals drop out of the bidding. Equilibrium learning is a feature of these
dynamic games, in contrast to static (,rst- or second-price) sealed-bid auctions which
o0er participants no opportunity to gain information during the course of the auction.
In a common-value setting, information revelation during the auction reduces the e0ects
of the winner’s curse, thereby encouraging participants to bid more aggressively and
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raising expected seller revenue relative to a sealed-bid auction. Many real-world auction
mechanisms—from art and collectible auctions to the Japanese “button” auction cited
by Milgrom and Weber (1982, p. 1104)—resemble the auctions we study, and perhaps
these mechanisms arose to allow for the possibility of information revelation.
The theoretical literature on ascending auctions (including the paradigmatic model

presented in Milgrom and Weber (1982)) has focused primarily on symmetric models,
in which the bidders’ signals about the value of the object are assumed to be generated
from identical distributions. However, recent applied research in auctions (e.g. work by
Hendricks and Porter (1988) on o0shore gas auctions, and by Klemperer (1998) on the
PCS spectrum auctions) suggests that symmetry may not be a realistic assumption for
many real-world situations. For these reasons, we develop an econometric framework
for asymmetric ascending auctions which can be used in applied analyses.
We begin with a brief characterization of Bayesian–Nash equilibrium bidding be-

havior in asymmetric ascending auctions. This complements recent work (Maskin and
Riley, 2000; Bulow et al., 1999; Bajari, 1998; Campo et al., 1998; Froeb et al., 2000)
on asymmetric ,rst-price auctions, and by Wilson (1998) and Maskin and Riley (2000)
on asymmetric ascending auctions. We ,nd that the increasing-strategy equilibrium bid
functions in each round of an ascending auction exhibit an attractive analytic property:
speci,cally, the inverse bid functions are implicitly de,ned by a system of nonlin-
ear equations, pointwise in the bids. Therefore, conditions for the existence of an
increasing-strategy equilibrium are essentially identical to those which ensure an in-
creasing solution to the system of equations, given primitive model assumptions about
the joint distribution of the bidders’ underlying valuations and private signals.
This attractive analytic property also facilitates numerical calculation of the equilib-

rium bidding strategies, which makes the econometric implementation of these models
feasible. This was recognized by Wilson (1998), who analytically derives the equilib-
rium bid functions for a log-additive log-normal asymmetric ascending auction model
given a di0use prior assumption on the distribution of the common value component.
Following this cue, we develop an econometric model of the asymmetric ascending
auction for this log-additive case which di0ers from Wilson’s model in that we do
not assume a di0use prior for the common value distribution. 1 This extends the scope
of the literature on the structural estimation of auction models (e.g. Paarsch, 1992;
La0ont et al., 1995; Li et al., 2000) to asymmetric ascending auctions within the CV
paradigm. Perhaps the closest antecedents of our work are papers by Donald et al.
(1997) on bidding in simultaneous ascending auctions within the symmetric indepen-
dent private values paradigm, and by Bajari and Hortacsu (1999) on bidding in sym-
metric common-value ascending auctions.
We provide an empirical illustration of this model by estimating it using data from

the PCS spectrum auctions run by the U.S. Federal Communications Commission
(FCC). While our model accommodates the multiple-round aspect of these auctions,
it does not include other essential details, such as the simultaneous selling of multiple
licenses, and the Kexible eligibility rules. Therefore, we view the main purpose of this

1 Furthermore, we show that the log-additive log-normal information structure satis,es a diagonal domi-
nance condition which ensures the existence of an equilibrium in monotonic bidding strategies.
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example as illustrating the econometric model and suggesting solutions to problems
which arise in implementing the estimation method in practice, rather than providing
robust empirical ,ndings concerning the FCC auctions. 2 We present estimated bid
functions which illustrate how equilibrium learning a0ects bidding behavior during the
course of an ascending auction.
We start, in Section 2, by a brief description of equilibrium bidding behavior in the

asymmetric ascending auction. In Section 3 we develop an econometric model based
on a log-normal speci,cation of the auction model, and discuss estimation issues in
Section 4. Section 5 contains the empirical example, and Section 6 concludes.

2. Asymmetric ascending auctions

Consider an auction in which N bidders compete for the possession of a single object.
The ascending auction proceeds in “rounds”, with a new round beginning whenever
another bidder drops out. At this point, we introduce the indexing convention we will
follow in this paper. With N bidders participating in the auction, there will be N − 1
rounds, indexed k = 0; : : : ; N − 2. In round 0, all N bidders are active, and in round
k, only N − k bidders are active: each round ends when a bidder drops out. Bidders
are indexed by i = 1; : : : ; N where, without loss of generality, the ordering 1; : : : ; N
indicates the order of dropout, so that bidder N drops out in round 0, and bidder 1
wins the auction. The dropout prices are indexed by rounds, i.e., P0; : : : ; PN−2. To sum
up, bidder N − k drops out at the end of round k, at the price Pk .
Each bidder i values the object at Vi, but does not observe his valuation directly.

Rather, before the auction begins, each bidder i observes a private and noisy signal
Xi of his valuation Vi. The auction format which we focus on in this paper is an
asymmetric version of the “irrevocable dropout” auction described in Milgrom and
Weber (1982, p. 1104). In this auction bidders drop out one by one irrevocably as
the auctioneer raises the price. By observing the dropout prices in previous rounds,
remaining bidders can infer the private information possessed by the bidders who have
dropped out. In a common value setting, bidder j’s signal Xj is useful to bidder i
in estimating Vi, his valuation of the object. 3 This equilibrium learning (i.e., losing
bidders revealing their private information to remaining bidders in equilibrium) is a
distinctive feature of irrevocable dropout common value English auctions.

2.1. Equilibrium bidding in the ascending auction

A Bayesian–Nash equilibrium in the ascending auction game consists of bid functions

ki (Xi;�k) for each bidder i, and for each round k, k=0; : : : ; N−2, i.e., {
0i (Xi;�0); : : : ;

2 Recent empirical work on these auctions has been done by, among others, Cramton (1997), Ausubel
et al. (1997), Moreton and Spiller (1998). The focus in most of these papers has been on detecting the
presence of cross-license complementarities.

3 In the private values (PV) paradigm, in contrast, where each bidder has a private value for the object
(which he knows), the (undominated) equilibrium bidding strategy is independent of others’ valuations: a
bidder will bid (up to, in the ascending case) his private valuation of the object.
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N−2
i (Xi;�N−2)}, where Xi denotes bidder i’s private signal and �k the public infor-

mation set at the beginning of round k. The contents of �k will be described later, but
in what follows we sometimes suppress the dependence of the bid functions 
ki (· · ·)
on �k , for notational simplicity. 
ki (Xi) tells bidder i at which price he should drop
out during round k. The collections of bid functions 
0i (·); : : : ; 
N−2

i (·) for bidders
i = 1; : : : ; N are common knowledge.
Up to the beginning of round k, bidders N − k +1; : : : ; N have already dropped out,

at prices Pk−1; : : : ; P0, respectively. Since the equilibrium bid functions are common
knowledge, an active bidder i can use this information to infer the private signals
XN−k+1; : : : ; XN observed by these bidders by inverting their bid functions: i.e., Xj =
(
N−jj )−1(PN−j), for j = N − k + 1; : : : ; N .
In what follows, we focus on equilibria in increasing bidding strategies (i.e., 
ki (Xi)

is increasing in Xi, for k = 0; : : : ; N − 2). 4 The structure of the equilibrium strategies
extends the construction of the symmetric equilibrium strategies described in Milgrom
and Weber (1982, p. 11040), to the asymmetric case. 5

Next we state three assumptions which are suMcient to ensure the existence of
an equilibrium in monotonic bidding strategies. As before, let i = 1; : : : ; N denote the
dropout order. 6 For any round k (06 k6N−2) ,x the realizations of XN ; : : : ; XN−k+1

(the private signals corresponding to the bidders who have already dropped out prior
to round k). The N − k conditional expectations for the N − k bidders active in round
k constitute a system of N − k equations with N − k unknowns

E[V1|X1; : : : ; XN−k ;XN−k+1; : : : ; XN ] = P;

...

E[VN−k |X1; : : : ; XN−k ;XN−k+1; : : : ; XN ] = P; (1)

where X1; : : : ; XN−k are the unknown variables and P is taken as a parameter.

(A1) The conditional expectation E[Vi |X1; : : : ; XN ] is strictly increasing in Xi, for each
bidder i = 1; : : : ; N .

(A2) (Monotonic solution) The solution of the N−k unknown variables in Eqs. (1) are
unique and strictly increasing in P, for all possible realizations of XN ; : : : ; XN−k+1.

4 This rules out implausible Nash equilibria involving bidding rules such as “stay in no matter what”, in
which case 
i(Xi) = +∞ regardless of the value of Xi .

5 Bikhchandani et al. (2000) point out that, in fact, a continuum of symmetric equilibria exist in these
symmetric auctions. In this paper, we focus on one equilibrium for asymmetric auctions which is very similar
in structure to the equilibrium described in Milgrom and Weber’s paper for symmetric auctions.

6 Strictly speaking, the assumptions in this section apply to any permutation (i1; : : : ; iN ) of the bidder
indices (1; : : : ; N ). This is because, although we observe only one particular dropout order in the dataset, the
equilibrium bidding strategies are constructed ex ante from the information structure of the bidding game,
before the signals are realized and the realized dropout order is known. However, for notational clarity, we
state the equilibrium conditions only for the observed (inverse) dropout order (1; : : : ; N ).
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Assumption A1 is implied by strict aMliation but may also hold in the absence
of aMliation. This assumption rules out “garbling” 7 scenarios where (for example)
E[V1|X1; : : : ; XN ] = E[V1|X2; : : : ; XN ], in which case bidder 1 is less informed than the
other bidders. Assumption A2 relates the existence of a monotonic equilibrium to the
existence of a monotonic (in the parameter P) solution to the nonlinear system of
equations (1).
These conditions lead to an equilibrium proposition for the English auction:

Proposition 1. Given assumptions A1 and A2, there exists an increasing-strategy
Bayesian–Nash Equilibrium of the asymmetric English auction for which the strate-
gies are de%ned recursively. In round k:


ki (Xi) = E[Vi|Xi;Xj = (
kj )
−1(
ki (Xi)); j = 1; : : : ; N − k; j �= i;�k ] (2)

for the bidders i=1; : : : ; N −k remaining in round k, and where �k denotes the public
information set consisting of the signals observed by the bidders N −k+1; : : : ; N who
have dropped out prior to round k, i.e.,

�k = {Xj = (
N−jj )−1(PN−j); j = N − k + 1; : : : ; N}:
In other words, at each round k, we can solve for the set of inverse bid function for
all remaining bidders pointwise in P by solving the (N − k)-dimensional system of
equations

P = E[Vi |Xi = (
ki )
−1(P);Xj = (
kj )

−1(P); j = 1; : : : ; N − k; j �= i;�k ]: (3)

for the N − k unknowns (
ki )
−1(P); i = 1; : : : ; N − k.

Proof. In the appendix.

3. Log-normal asymmetric ascending auction model

A structural econometric model of the ascending auction would use the equilib-
rium mapping between unobserved signals and bids (2) as the basis for obtaining
estimates of the underlying joint distribution of unobserved valuations and signals
F(V1; : : : ; VN ; X1; : : : ; XN ). In this paper, we take a parametric approach by restricting
attention to a family of joint distribution F(V1; : : : ; VN ; X1; : : : ; XN ; 
) parameterized by
a ,nite-dimensional vector 
, and use the equilibrium mapping (2) to derive the like-
lihood function for the observed dropout prices, which can subsequently be maximized
with respect to 
 to obtain parameter estimates.
DiMculties arise in doing this because the updating process in the common-value

ascending auction introduces a large amount of recursivity into the de,nition of the
bid function. For example, assume four bidders (A,B,C,D) and assume the ,rst three
drop out in rounds 0,1, and 2, respectively. After bidder A drops out, the remaining
bidders (B,C,D) invert the equilibrium bid function for bidder A, in order to obtain his

7 See Milgrom and Weber (1982, Theorem 7), Engelbrechet-Wiggans et al. (1983), and Hendricks and
Porter (1988) for additional discussion and applications of these scenarios.
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private signal XA. In round two, bidder C and D must invert bidder B’s bid function
during round one, which is her expected value of the object in round one, conditional
not only on her private signal, but also on XA which she inferred by inverting bidder
A’s conditional expectation function from round zero. The recursive structure which
results (involving conditional expectations functions which have as arguments inver-
sions of other conditional expectation functions which are themselves inversions of
other conditional expectation functions) quickly becomes intractable if the conditional
expectations derived during the updating process do not have analytic solutions.
Therefore, the feasibility of structural estimation lies in choosing a parametric family

of joint distributions F(V1; : : : ; VN ; X1; : : : ; XN ; 
) for the latent valuations and signals
such that the resulting conditional expectation functions have closed-form expressions
which are easy to invert. Among the limited choice of parameterizations which sat-
isfy this criterion, we assume that the bidders’ valuations are log-normally distributed.
Previously, Wilson (1998) has derived closed-form equilibrium bid functions for a
log-additive log-normal information structure, but in this paper we di0er from Wilson
in not assuming a di0use prior for the common value distribution. 8 In the rest of this
section, we discuss the derivation of the likelihood function for the sequence of dropout
prices observed in an ascending auction, under a log-additive log-normal information
structure. 9

Vi, the value of the object to bidder i is assumed to take a multiplicative form
Vi = Ai × V , where Ai is a bidder-speci,c private value for bidder i, and V is a
common value component unknown to all bidders. In other words, Vi is the product
of a common value part and a private value part.
We assume that V and the Ai’s are independently log normally distributed. Letting

v ≡ ln V , and ai ≡ ln Ai: 10

v= m+ �v∼ N(m; r20);

ai = Pai + �ai ∼ N( Pai; t2i ):

Each bidder is assumed to have a single noisy signal of the value of the object, Xi,
which has the form Xi=Ai×Ei where Ei=V exp{si�i} and �i is an (unobserved) error
term that has a normal distribution with mean 0 and variance 1. If we let vi ≡ ln Vi
and xi ≡ ln Xi, then conditional on vi, xi = vi + si�i ∼ N(vi; s2i ). Note that bidder i
observes Xi which, in equilibrium, is revealed to other bidders after bidder i drops out.
Finally, de,ne ri ≡

√
t2i + s

2
i and denote the variance for �v by r20 .

8 The di0use prior assumption was needed by Wilson (1998) because he allowed each bidder i to observe
two distinct signals: his private component Ai as well as his noisy estimate of the common component Ei .
In contrast, we only allow bidder i to observe a single signal Xi ≡ Ai×Ei . Under a di0use prior assumption,
observing Xi and observing Ei and Ai separately are informationally equivalent; this is not true without the
di0use prior assumption.

9 As pointed out by a referee, the assumptions of log-normality help to avoid the high dimensional
integration problem of computing bidders’ expected valuations conditional on other bidder’s drop out prices.
However, this approach does not generalize easily to other functional forms. The log-normality assumption
plays an important simplifying role, but also represents a limitation of the analysis.
10 Here r20 represents the variance in bidders’ prior distributions on v. Wilson (1998) makes the di0use

prior assumption that r20 =∞.
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The joint distribution of (Vi; Xi; i=1; : : : ; N )=exp(vi; xi; i=1; : : : ; N ) is fully character-
ized by {m; Pa; t; s; r0} where Pa denotes the collection of Pai’s, t denotes the collection of
ti’s, and s denotes the collection of si’s. These parameters are all common knowledge
among the bidders.

3.1. Deriving the equilibrium bid functions

We show in this section that the log-normality assumption implies that the system
of equations (3) de,ning the inverse bidding strategies in each round of the auction
is log-linear in the signals, allowing us to derive the equilibrium bid functions for
each round in closed form. We begin with the system of equations which, following
Proposition 1, de,nes the equilibrium inverse bidding strategies for the N − k bidder
active in round k, for any value of the bid P:

P =E[V1 |X1 = (
k1)
−1(P); X2 = (
k2)

−1(P); : : : ; XN−k = (
kN−k)
−1(P);

XN−k+1; : : : ; XN ];

P =E[V2 |X1 = (
k1)
−1(P); X2 = (
k2)

−1(P); : : : ; XN−k = (
kN−k)
−1(P);

XN−k+1; : : : ; XN ];

...

P =E[VN−k |X1 = (
k1)
−1(P); X2 = (
k2)

−1(P); : : : ; XN−k = (
kN−k)
−1(P);

XN−k+1; : : : ; XN ]: (4)

Given the log-normality assumption, the conditional expectation functions for Vi take
the form:

E[Vi |X1; : : : ; XN ] = exp(E(vi | x1; : : : ; xN ) + 1
2Var(vi | x1; : : : ; xN )); i = 1; : : : ; N: (5)

Furthermore, we denote the marginal mean-vector and variance–covariance matrix of
(vi; x1; : : : ; xN ) by �i ≡ (ui; �∗) and �i ≡ ( �

2
i
�∗i

�∗i
′

�∗ ) 11 . Then, using the conditional mean

and variance of jointly normal random variables: 12

E(vi | x ≡ (x1; : : : ; xN )′) = (ui − �∗′�∗−1�∗i ) + x
′�∗−1�∗i

and

V (vi | x) = �2i − �∗i ′�∗−1�∗i : (6)

By plugging (6) into Eq. (5) above, and noting that the conditional variance expression
is not a function of x, we see that the conditional expectation function in (5) are
log-linear in xi.

11 Explicit formulas for the elements of the vector �i and the matrix �i can be derived from the distributional
assumptions made in the previous section.
12 See, for example, Amemiya (1985, p. 3).
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At round k, let xkd ≡ (xN−k+1; : : : ; xN )′ denote the vector of k valuations for the
bidders who have dropped out prior to round k, and xkr ≡ (x1; : : : ; xN−k)′ denote the
vector of (N − k) valuations for the bidders who have not yet dropped out as of round
k. Analogously, partition �∗−1 into (�∗−1

k;1
′; �∗−1

k;2
′)′ where �∗−1

k;1 is a ((N − k) × N )
matrix and �∗−1

k;2 is a (k × N ) matrix. Then the conditional mean function can be
re-written as

E(vi | x) = (ui − �∗′�∗−1�∗i ) + x
k
r
′�∗−1
k;1 �

∗
i + x

k
d
′�∗−1
k;2 �

∗
i : (7)

After substituting the conditional mean and variance formulas (7) and (6) into the
equations in (5) and taking the log of both sides, we get the following set of (N − k)
linear equations for the N − k bidders active in round k, for p= ln P:

p= (ui − �∗′�∗−1�∗i ) + �
∗
i
′�∗−1
k;2

′xkd + �
∗
i
′�∗−1
k;1

′xkr +
1
2(�

2
i − �∗i ′�∗−1�∗i ) (8)

for i = 1; 2; · · · ; N − k. This is analogous to the system of equations in (4) above for
the log-normal distribution.
If we let lk be the (N−k)×1 vector of 1’s, �k=(u1; : : : ; uN−k)′, �k=(�21 ; : : : ; �

2
N−k)

′,
 k = (�∗1 ; : : : ; �

∗
N−k)

′, then we could rewrite the above system of linear equations
(8) as

p× lk = 1
2(�k − diag( k�∗−1 ′

k)) +  k�
∗−1
k;2

′xkd + �k

− k�∗−1�∗ +  k�∗−1
k;1

′xkr : (9)

Next, let us de,ne

Ak ≡ ( k�∗−1
k;1

′)−1lk ;

Ck ≡ 1
2 ( k�

∗−1
k;1

′)−1(�k − diag( k�∗−1 ′
k) + 2�k − 2 k�∗−1�∗);

Dk ≡ ( k�∗−1
k;1

′)−1( k�∗−1
k;2

′):

Solving out for the xkr , we obtain the set of (N − k) log-inverse bid functions at
round k:

xkr =Ak p−Dkxkd − Ck (10)

or, each equation singly:

xkri =Ak
i p−Dk

i x
k
d − Cki (11)

for i= 1; : : : ; N − k, where Ak
i and Cki denote the ith elements of the vectors Ak and

Ck , and Dk
i denotes the ith row of Dk . The system of equations (11) can be inverted

to obtain the (N − k)-dimensional system of (log-)bidding strategies for the bidders
active in round k, as a function of each bidder’s signal and the public information set
�k ≡ xkd:

bki (xi; x
k
d) ≡ ln 
ki (e

xi ;�k) =
1
Ak
i
(xi +Dk

i x
k
d + Cki ); i = 1; : : : ; N − k: (12)

Existence of monotonic equilibrium in log-additive model: We end this section by
verifying assumptions A1 and A2 for the log-normal model. For the log-additive in-
formation structure, the joint distribution of (V1; : : : ; VN ; X1; : : : ; XN ) is strictly aMliated,
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thereby satisfying assumption A1 using the same argument as in Milgrom and Weber
(1982, Theorem 5). The following lemma directly veri,es Assumptions A1 and A2.

Lemma 1. Aki ¿ 0 ∀k ∈ [0; N − 2]; ∀i∈ [1; N − k].

Proof. In the appendix.

By Proposition 1, therefore, an increasing-strategy equilibrium exists for the log-
additive log-normal information structure.

3.2. Deriving the likelihood function of the dropout price vector

The system of equations (12) describes the monotonic mapping from bidders’ un-
observed signals to their equilibrium dropout prices in round k. However, in round k,
we only observe the dropout price for bidder N − k, so that only the equation corre-
sponding to this bidder will be used in constructing the likelihood function. Although
likelihood-based estimation procedures are not used in the empirical illustration pre-
sented later in this paper, we derive the likelihood function in this section to understand
the data generating process of the sequence of dropout prices.
Looping over all rounds 06 k6N − 2, the equations relating the sequence of ob-

served bids to the latent signals in a given auction are, similar to Eq. (12) above,
given by

bkN−k(xN−k ; x
k
d) =

1
Ak
N−k

(xN−k +Dk
N−kx

k
d + CkN−k) ∀k = 0; : : : ; N − 2: (13)

If we introduce more shorthand notation:

F=
(
C0
N

A0
N
; : : : ;

CN−2
2

AN−2
2

)′
; Gi =


0; : : : ; 0︸ ︷︷ ︸

N−i−2

;
1

Ai
N−i

;
Di
N−i

Ai
N−i


 :

Let G ≡ (G′
0; : : : ;G

′
N−2)

′. Then the system of equations describing the sequence of
observed dropout prices (13) can be very succinctly written as:

P= G (x2; : : : ; xN )′ +F: (14)

This describes the mapping from the unobserved log-signals x ≡ (x2; : : : ; xN )′ to the
observed log-bids P = (p0; : : : ; pN−2)′. We denote the model parameters by 
. Note
that both F and G will be explicit functions of 
.
Conditioning on the observed dropout order: In each auction we observe (1) the

vector P of dropout prices for bidders 2; : : : ; N ; and (2) the order in which the partici-
pating bidders drop out, and their identities. In deriving the likelihood function for the
set of bids (equivalently, dropout prices) observed in an asymmetric ascending auction,
the researcher must condition on the observed dropout order. More precisely, in order
to specify the likelihood contribution of (say) the dropout price observed in round k in
a manner consistent with the equilibrium bidding strategies (2), one must condition on
both the order as well as the identities of the bidders who dropped out prior to round
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k. 13 The observed dropout order restricts the support of the log-signals x1; : : : ; xN to
a region T1(
) ⊂ RN , for a ,xed parameter vector 
. Let Pr(T1(
); 
) denote the
probability that x1; : : : ; xN ∈T1(
).
Censoring of winning bid: Furthermore, for a given realization of x1; : : : ; xN , the

researcher never observes pN−1, the winning bidder’s log-dropout price, since it is
censored by pN−2, the log-dropout price of bidder 2. 14 Therefore, all one knows
about the winning bidder’s log-signal x1 is that it lies within some region of its sup-
port which is consistent with bidder 1’s winning the auction, again ,xing 
. We let
T2(x2; : : : ; xN ; 
) ⊂ R1 denote this region of the support of the winner’s log-signal x1.
Both of these sets will be described in more detail below.
The likelihood function: Given the distributional assumption that the log-signals

x2; : : : ; xN are unconditionally multivariate normal, the mapping (14) implies that with-
out conditioning on the event T1(
) ⊂ RN , the distribution of a log-bid vector P is also
multivariate normal via a standard change of variables formula, with (unconditional)
mean and variance given by:

�p(
) =F(
) + G(
) �∗2 (
);

�p(
) = G(
)�∗
2 (
)G(
)

′; (15)

where �∗2 is the N − 1 subvector of �∗ and �∗
2 is the (N − 1) (N − 1) submatrix of

�∗ corresponding to bidders 2; : : : ; N . Let f(·; 
) denote the (N − 1)-variate normal
distribution with mean and variance given in (15) above:

f(P; 
)≡ (2')−(N−1)=2|�p(
)|−1=2 exp[− 1
2 (P− �p(
))′�p(
)−1

×(P− �p(
))]: (16)

We can then write the likelihood function for a given auction as

L(P | 
) = f(P; 
)Pr(T2(G−1(P−F); 
); 
)
Pr(T1(
); 
)

; (17)

where G−1(P −F) denotes the realization of x2; : : : ; xN consistent with the observed
dropout prices P and the observed dropout order, and Pr(T2(G−1(P −F); 
); 
) is
the probability of x1 ∈T2 conditional on P. The likelihood function (17) resembles
a truncated multivariate normal likelihood, where the numerator is the likelihood for
the observed log-dropout prices p0; : : : ; pN−2 and the conditional probability associated
with the censored winning log-bid pN−1. 15 The denominator is the truncation proba-
bility, which is required since we are deriving the likelihood of the observed log-bids

13 In an asymmetric model, we cannot derive the joint density of the bids without conditioning explicitly on
the orders and identities of the dropout bidders, since each bidder employs nonidentical bidding strategies in
equilibrium. For more details, see our discussion in Hong and Shum (1999, pp. 135–137). As we also point
out there, conditioning on the observed dropout order is not required to derive the likelihood in symmetric
models, or sealed-bid auctions.
14 Censoring of the winning bid also occurs in empirical models of second-price sealed-bid auctions; see,

for example, Paarsch (1997).
15 For symmetric independent private value models, Eq. (17) reduces to the joint density of the N − 1

lowest order statistics shown in Donald and Paarsch (1996).
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conditional on the observed dropout order. In what follows, we refer to Pr(T1(
); 
)
as the truncation probability, and we completely characterize the regions T1 and
T2(G−1(P−F); 
) in the next section.

3.3. Truncation probability and equilibrium consistency conditions

3.3.1. Characterization of T1(
)
As discussed in the previous section, for a ,xed value of the parameter vector 
,

the observed dropout order restricts the log-signals x1; : : : ; xN to a region T1(
) ⊂ RN

within which the log-signals imply, in equilibrium, a dropout order corresponding to
the observed order. For a ,xed value of 
, this region is de,ned by inequalities involv-
ing the log-signals x1; : : : ; xN which we refer to as equilibrium consistency conditions.
These consistency considerations ensure that, in each round of the auction, given the
parameters 
, the targeted dropout prices of the remaining bidders for that round are
higher than the dropout price at that round.
More precisely, to ensure that the “correct” dropout order occurs, we need to impose

that, at the given parameter values, all remaining bidders i = 1; : : : ; N − k − 1 have
expected valuations greater than bkN−k(xN−k ; x

k
d; 
), the equilibrium dropout price for

bidder N − k in round k suppress

bki (xi; x
k
d; 
)¿ bkN−k(xN−k ; x

k
d; 
) = pk (18)

for all rounds k and all i = 1; : : : ; N − k − 1, the bidders who remain in the auction
after round k. We can now de,ne the truncation region:

T1(
) = {x1; : : : ; xN : (18) is satis,ed; 
}: (19)

At ,rst glance, (18) consists of 1
2N (N −1) inequalities; however, we will show that

all of these inequalities are implied by the smaller set of N − 1 inequalities:

bkN−k−1(xN−k−1; xkd; 
)¿ bkN−k(xN−k ; x
k
d; 
); k = 0; : : : ; N − 2: (20)

In order to show this, we ,rst introduce the following important lemma, which holds
in the context of the general model in Proposition 1.

Lemma 2. Let *ki (p; x
k
d; 
) denote the inverse function of bki (xi; x

k
d; 
) with respect to

the xi argument. For all j¿ 0; j6N−2, and for all i6N−j, at xjd ≡ (*j−1
N−j+1(pj−1;

xj−1
d ; 
); xj−1

d ):

*ji (pj−1; x
j
d; 
) = *

j−1
i (pj−1; x

j−1
d ; 
): (21)

In other words, the log-bid functions for rounds j and j − 1, for each bidder

i = 1; : : : ; N − j, intersect at the point (*j−1
i (pj−1; x

j−1
d ; 
); pj−1), since an equivalent

statement of the above lemma is

bji (*
j−1
i (pj−1; x

j−1
d ; 
); xjd; 
) = b

j−1
i (*j−1

i (pj−1; x
j−1
d ; 
); xj−1

d ; 
) = pj−1:
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Proof (sketch): Let (*j−1
i (pj−1; x

j−1
d ; 
); i=1; : : : ; N−j+1) denote the vector of signals

which solves system (4) for round j−1 at pj−1. Since x
j
d=(*j−1

N−j+1(pj−1; x
j−1
d ; 
); xj−1

d ),
by careful inspection of (4) and (8), the ,rst N − j elements of the same vector

(*j−1
i (pj−1; x

j−1
d ; 
); i = 1; : : : ; N − j)

also solves system (4) for round j at pj−1. A detailed proof is given in the appendix.

Corollary 1. (20) ⇒ (18).

Proof. In the appendix.

3.3.2. Characterization of T2(G−1(P−F); 
)
Unlike T1(
), the set T2(G−1(P−F); 
) describes equilibrium restrictions on x1,

the log-signal for the winning bidder, as a function of the observed price vector P as
well as the parameter vector 
.
Let eNi be the (i − 1)th column of a (N − 1) (N − 1) identity matrix, and let

ENk = (eNN−k+1; : : : ; e
N
N )

′. Using this notation, the log-signals x2; : : : ; xN of the losing
bidders can be denoted Pxi = eNi

′G−1(P − F) and Pxkd = ENk
′G−1(P − F), where the

bars emphasize that these log-signals are explicitly functions of the observed prices P
and 
.
Then the set T2(G−1(P−F); 
) consists of the following conditions:

{x1 : bl1(x1; Pxld; 
)¿pl; l= 0; : : : ; N − 2}: (22)

At ,rst look, (22) also involves N − 1 inequality constraints. However, we now show
that the only binding constraint will always be

bN−2
1 (x1; PxN−2

d ; 
)¿pN−2: (23)

Before proving this, we introduce another preliminary lemma which summarizes some
important restrictions on bidders’ log-signals induced by the observed price vector P. 16

Lemma 3. For any two rounds k; l∈{0; : : : ; N−2}; l¡ k; and for all bidders i¿N−k;
for all nondecreasing sequences p0; : : : ; pN−2 and the corresponding signals ( Px2; : : : ; PxN )
solved at 
,

*ki (pk ; Px
k
d; 
)¿*li (pl; Px

l
d; 
):

Proof. In the appendix.

The desired result is a direct corollary of the above lemma.

16 This lemma is also interesting in its own right from a theoretical point of view, since it is related to a
generalization of the “no regret” property in Milgrom (1981), for the symmetric ascending auction, to the
asymmetric case covered in this paper. It states that, for any dropout order, the bidder dropping out in round
k will never “regret” staying in the auction in any round l prior to round k and, analogously, will never
“regret” having dropped out in any round subsequent to round k. It also ensures a monotonic equilibrium
price path.
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Corollary 2. (23) ⇒ (22).

Proof. Note that (23) is a special case of Lemma 3 for k = N − 2 and i = 1, since

(23)⇔ x1¿*N−2
1 (pN−2; PxN−2

d ; 
)¿*l1(pl; Px
l
d; 
)

⇒ bl1(x1; Px
l
d; 
)¿ bl1(*

l
1(pl; Px

l
d; 
); Px

l
d; 
) = pl

where the last inequality in the ,rst line uses Lemma 3. 17

3.3.3. The likelihood function: log-normal speci%cation
For the log-normal information structure, the regions T1 and T2 can be character-

ized by sets of linear inequalities, using (12). Speci,cally, T1(
) is described by this
set of linear inequalities regarding (20), for all k ∈{0; : : : ; N − 2}

1
Ak
N−k−1

(xN−k−1 +Dk
N−k−1x

k
d + CkN−k−1)¿

1
Ak
N−k

(xN−k +Dk
N−kx

k
d + CkN−k):

For T2(G−1(P−F); 
), condition (23) can be written as

x1¿ [AN−2
1 eNN

′ − DN−2
1 EN

′
N−2G

−1]P− CN−2
1 + DN−2

1 ENN−2
′G−1F: (24)

Using (20) and (24), the likelihood function (17) can be written as

L(P; 
) =
f(P; 
)

Pr(T1(
); 
)

×.

m+ Pa1 − [AN−2

1 eN
′

N − DN−2
1 �N

′
N−2G

−1]P+ CN−2
1 − DN−2

1 �N
′

N−2G
−1F√

r20 + t
2
1 + s

2
1


 :

In the next section, we discuss MLE, as well as alternative estimation methods, which
may be preferable from a computational perspective.

4. Estimation issues

4.1. Maximum likelihood estimation

Since T1(
), the support of the log-signals x1; : : : ; xN consistent with the observed
dropout order, depends explicitly on the parameter vector 
, one may be concerned

17 Note that if we substituted in pN−2 = b
N−2
2 (x2; Px

N−2
d ; 
) and pl= blN−l(xN−l; Px

l
d; 
) into the right-hand

sides of the inequalities in (23) and (22), respectively, then Corollary 2 states that the condition in (20)
corresponding to round k=N−2 implies the conditions in (18) that pertain to bidder 1. While the corollaries
are similar in this way, the statement of Corollary 2 is not explicitly implied by that of Corollary 1.
Furthermore, the probability associated with the censored x1 is conditional on the observed log-dropout
prices p0; : : : ; pN−2, rather than the unobserved log-signals x2; : : : ; xN . We prove Corollary 1 using Lemma
3, which may be of independent interest. Alternatively, we could have proven Corollary 2 by retracing a
subset of the arguments used in proving Corollary 1.
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that the set of dropout prices generated from T1(
), i.e.,

P(
) ≡ {bkN−k(xN−k ; xkd; 
); k = 0; : : : ; N − 2 : x1; : : : ; xN ∈T1(
)}
also depends explicitly on 
. Any dependence of P(
), the support of the dropout
prices, on 
 would violate regularity conditions which are required to derive the usual
asymptotic normality for the MLE. However, an interesting corollary of Lemma 2
suggests that this will not be a problem. In what follows, sometimes we suppress the
explicit dependence of bki (·) and *ki (·) on Pxkd for notational convenience.

Corollary 3. For every 
, and every increasing sequence p0¡p1¡ · · ·¡pN−2 of
log-dropout prices,

[x1; *N−2
2 (pN−2; PxN−2

d ; 
); : : : ; *0
N (p0; 
)]∈T1(
)

for all x1 ∈T2(*N−2
2 (pN−2; PxN−2

d ; 
); : : : ; *0
N (p0; 
); 
).

Proof. We must show that the vector of signals [x1; *N−2
2 (pN−2; 
); : : : ; *0

N (p0; 
)], for
all x1 ∈T2(· · · ; 
), satis,es conditions (20). Note that, for all rounds k =0; : : : ; N − 3,

bkN−k−1(*
k+1
N−k−1(pk+1; 
))¿ bkN−k−1(*

k+1
N−k−1(pk ; 
))

= pk = bkN−k(*
k
N−k(pk ; 
));

thus satisfying (20), where the ,rst equality follows from Lemma 2. Therefore, by
Corollary 1, the statement holds.

This corollary implies that, for every 
, every vector of nondecreasing dropout prices
P has strictly positive likelihood: the support of P does not depend on 
. Alternatively,
even though T1(
) depends on 
, the set P(
) is just the set of nondecreasing dropout
price vectors:

∀
 : P(
) = {p ≡ (p0; : : : ; pN−2)′ ∈RN−1 : p0¡p1¡ · · ·¡pN−2};
which is just a “rectangular” region in RN−1 which does not depend on 
. Therefore
the standard asymptotics for MLE obtain. The derivation of the likelihood function
for our model complements the results of Donald and Paarsch (1996) for independent
private value models.
The major diMculty in implementing the likelihood function is calculating the multi-

variate integral P(T1(
); 
). These diMculties can be overcome using simulation tech-
niques. Given the necessity of evaluating this integral, estimation methods based on
simulated moments of the underlying distribution are also attractive alternatives to max-
imum likelihood estimation. We discuss these alternatives in the following sections.

4.2. Simulated nonlinear least-squares estimation

We consider next a simulated nonlinear least-squares (SNLS) estimator, based on
the methodology of La0ont et al. (1995). This estimator minimizes the usual nonlinear
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least-squares (NLS) objective function

QT (
) =
1
T

T∑
t=1

Nt−2∑
k=0

(ptk − mtk(
))2; (25)

where ptk is the kth observed log dropout price for auction t, and mtk(
) is its cor-
responding expectation conditional on the covariates zt , taken with respect to its data
generating process as given in Eq. (17). Note that, generally speaking, the data gen-
erating process depends not only on the parameters 
, but also on covariates zt which
describe auction- as well as bidder-speci,c characteristics. Therefore the expected bids
mtk(
) should also depend on zt , but for notational clarity we usually suppress this
dependence on z in what follows. 18

Because mtk(
), the mean of a multivariate truncated distribution, is diMcult to com-
pute analytically, we replace mtk(
) in Eq. (25) by a simulation estimator m̃tk(
) that is
consistent as S, the number of simulation draws, goes to in,nity. The ensuing SNLS
objective function

QS;T (
) =
1
T

T∑
t=1

Nt−2∑
k=0

(ptk − m̃tk(
))2 (26)

yields a consistent estimate of 
 when S → ∞. In the rest of this section, we give
complete details on the simulation of the expected value of each bid m̃tk(
).
Simulating mtk(
): To be speci,c, we can write the ,rst moment mtk(
) of the kth

dropout price ptk , for k = 0; : : : ; Nt − 2, as

mtk(
) =
∫
x̃

ptk (̃x; 
)1(̃x∈T1t(
))
ft (̃x; 
)

Pr(T1t(
))
dx̃ (27)

where x̃ ≡ {x1; : : : ; xNt} denotes the vector of the signals of bidders in the order of
dropping out, ptk (̃x; 
) speci,es the kth dropout price as a function of the parameters
and realized vector of bidder signals in (12), ft (̃x; 
) denotes the multivariate normal
density of x̃ parameterized by 
. T1t(
) denotes the event that the observed order of
dropping out is realized for the tth auction. The integration is over the Nt-dimensional
vector of bidder signals.
An “acceptance/rejection” algorithm can be used to simulate mkt (
). Using this al-

gorithm, for each ,xed value of the parameter vector, we draw a multivariate normal
random vector of the bidders’ private signals (the x̃’s) for each auction, and calculate
all the targeted dropout prices at all rounds. 19 Then we check all of the truncation

18 In principle, eMciency considerations may lead to other weighted least squares or other method of
moments-based estimators. In addition, one could also exploit other conditional moments of ptk in the

nonlinear least-squares estimation, by adding summations of terms of the form (*(ptk)− Pmt;*k (
))2 to (25),

where *(·) is some transformation of ptk and Pmt;*k (
) denotes the conditional expectation of *(ptk) given z
under (17).
19 In practice, we draw a vector of i.i.d. N[0; 1] random variables (which are held ,xed across all iterations

of the estimation procedure), and transform them into the desired multivariate normal vector by premulti-
plying by the Cholesky factorization of the estimated variance–covariance matrix and adding the estimated
mean of the log-signals.
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inequalities in T1t(
), and we average the targeted dropout prices over the subset of
simulations for which the truncation conditions in T1t(
) are all satis,ed. In short,
mtk(
) can be simulated by

1
S

S∑
s=1

[ptk (̃xs; 
)1(̃xs ∈T1t(
))]

/[
1
S

S∑
s=1

1(̃xs ∈T1t(
))

]
; (28)

where the denominator is a simulated approximation of the truncation probability
Pr(T1t(
)).
Bias correction in SNLS estimation: The SNLS procedure we have described so

far requires the number of simulations S → ∞ to obtain consistency, due to the bias
introduced by simulating the denominator probability Pr(T1t(
)). We could remove this
denominator bias by multiplying each summand in (25) by the truncation probability
Pr(T1t(
)): 20

PQT (
) =
1
T

T∑
t=1

Nt−2∑
k=0

[Pr(T1t(
)) (ptk − mtk(
))]2: (29)

A simulated version of this would be

PQS;T (
) =
1
T

T∑
t=1

Nt−2∑
k=0

( PPT1t (
)p
t
k − P4k

t (
))
2; (30)

where

PPT1t (
) ≡
1
S

S∑
s=1

[1(̃xs ∈T1t(
))];

P4k
t (
) ≡

1
S

S∑
s=1

[ptk (̃xs; 
)1(̃xs ∈T1t(
))] (31)

are unbiased acceptance/rejection simulators for Pr(T1t(
)) and mtk(
)Pr(T1t(
)), re-
spectively. As shown in La0ont et al. (1995), pg. 959, for every ,nite S, as T → ∞,

plim PQS;T (
) = E PQT (
) + plim
1
T

T∑
t=1

Nt−2∑
k=0

VarS( PPT1t (
)p
t
k − P4k

t (
))

�=E PQT (
): (32)

The second term in the probability limit of PQS;T (
) is a bias term consisting of condi-
tional variances (across simulation draws) of the simulated di0erence PPT1t (
)p

t
k− P4k

t (
)
for the round k dropout price in auction t. The bias term in this probability limit can
be corrected, however, using an unbiased estimate of VarS(· · ·), yielding a modi,ed

20 We are grateful to the associate editor for pointing this out to us.
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NLS objective function

Q̃S;T (
)≡ PQS;T (
)− 1
T

T∑
t=1

Nt−2∑
k=0

1
S(S − 1)

S∑
s=1

(1(̃xs ∈T1t(
))ptk

−[ptk (̃xs; 
)1(̃xs ∈T1t(
))]− ( PPT1t (
)p
t
k − P4k

t (
)))
2: (33)

Then for ,nite S, 
̃ ≡ argmin Q̃S;T (
)
p→ 
0, because Q̃S;T (
)

p→E PQT (
). 21

In principle, therefore, minimization of the modi,ed objective function (33) yields
an estimate of the parameter vector 
 which is consistent even when the number of
simulation draws S remains ,xed while the number of auctions T → ∞. In practice,
however, this modi,ed objective function is ill-behaved due to the nonsmoothness in

 (for any ,xed S) of the indicator functions in the simulators PPT1t (
) and P4k

t (
).
We overcome this problem by employing an independent probit kernel-smoother 22

for these indicator functions. In particular, we estimate mtk(
) by

m̃tk(
) =

[
1
S

S∑
s=1
ptk (̃xs; 
)

Nt−2∏
k′=0

Nt−k′−1∏
j=1

.

(
ptk′ ; j (̃xs; 
)− ptk′ (̃xs; 
)

h

)]
[
1
S

S∑
s=1

Nt−2∏
k′=0

Nt−k′−1∏
j=1

.

(
ptk′ ; j (̃xs; 
)− ptk′ ;Nt−k′ (̃xs; 
)

h

)] (34)

where ptk; j is the targeted dropout price for bidder j in round k, for auction t, as a
function of x̃s and 
, .(·) is the standard normal CDF, and h is a bandwidth. Therefore
in the empirical illustration we use the following SNLS objective function:

˜̃QS;T (
) ≡ 1
T

T∑
t=1

Nt−2∑
k=0

[P̃T1t (
)p
t
k − 4̃t

k(
)] (35)

where 4̃t
k(
) = m̃

t
k(
)P̃T1t (
) and P̃T1t (
) denotes the denominator in (34). 23

Asymptotic distribution: While Pmtk(
) is smooth in 
, it is a biased estimator for
mtk(
), for ,xed h and S. While it may be possible to extend the bias correction to
maintain consistency as S is ,xed but h shrinks to zero, we do not pursue this here.
Instead, we derive the asymptotic distribution for the minimizer of ˜̃QS;T (
) assuming
that S diverges to in,nity.
Following standard arguments in the literature on simulation estimation (cf. Pakes

and Pollard, 1989; Gourieroux and Monfort, 1996) as T → ∞, S → ∞, and S=T → ∞,
h→ 0, the asymptotic distribution of 
̂ ≡ argmin ˜̃QS;T (
) is given by

�̂−1=2
√
T (
̂− 
0) d→N(0; I) (36)

21 Unlike La0ont et al. (1995), the objective function Q̃S;T (
) is not smooth and di0erentiable; however,
the tools in Pakes and Pollard (1989) could be used to derive the asymptotic distribution of 
̃.
22 See, for example, McFadden (1996) for more details.
23 Alternatively, one could estimate 
 via the Simulated Method of Moments, As noted in McFadden (1996),

the SMM estimator also achieves consistency with ,xed S, as T → ∞. However, as with the bias-corrected
SNLS estimator, if we employ smooth simulators to make the objective function better-bahaved in 
, the
,xed-S consistency result may not obtain without additional assumptions.
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where �̂= Ĵ−1ĤĴ−1, and for �̃kt (
) ≡ [P̃T1t (
)p
t
k − 4̃t

k(
)]:

Ĵ=
1
T

T∑
t=1

Nt−2∑
k=0

@
@


(
[P̃T1t (
̂)p

t
k − 4̃t

k(
̂)]

[
@P̃T1t (
̂)
@


ptk −
@4̃t

k(
̂)
@


])

Ĥ=
1
T

T∑
t=1

([
Nt−2∑
k=0

�̃kt (
̂)

(
@P̃T1t (
̂)
@


ptk −
@4̃t

k(
̂)
@


)]

×
[
Nt−2∑
k=0

�̃kt (
̂)

(
@P̃T1t (
̂)
@


ptk −
@4̃t

k(
̂)
@


)]′)

where T denotes the total number of auctions in the dataset, and Nt the number of
bidders in auction t. Both �̂ and Ĥ can be evaluated using numerical derivatives.
For our empirical illustration below, however, we compute standard errors using a

parametric bootstrap resampling method.

4.3. Identi%cation

While we pursue a parametric approach in this paper, nonparametric identi,cation
of the joint distribution (V1; : : : ; VN ; X1; : : : ; XN ) in common value (or, more generally,
aMliated values) models have been an important issue in the structural auction litera-
ture ever since the insightful result of La0ont and Vuong (1996) that, most generally,
bids from a dataset of ,rst-price auctions could be equally well rationalized by a com-
mon value as well as an aMliated private values model. While an ascending auction
is a strategically richer model than the ,rst-price auction in the presence of com-
mon values, and therefore imposes more restrictions on the data-generating process
for the bids, it appears diMcult to derive a direct proof that the joint distribution of
(V1; : : : ; VN ; X1; : : : ; XN ) is nonparametrically identi,ed.
On the other hand, it is possible to formulate nonparametric tests for the presence of

common value components by exploiting exogenous variation in the number of bidders
(see, for example, Haile et al., 2000; Athey and Haile, 2000). Under the hypothesis
of no common value components (and even allowing for aMliation between bidders’
private values), bidders should drop out at their private value regardless of the number
of competitors. In the symmetric framework of the Milgrom–Weber irrevocable dropout
auction, one could formulate nonparametric tests of the private value hypothesis by
testing whether the empirical marginal distributions of dropout prices are identical
across auctions with di0erent number of bidders. Furthermore, this testing approach
could accommodate asymmetries if we observed the identities of the bidders and a given
bidder participating in a large number of auctions. If we strengthen the assumption of
exogeneity in the number of bidders to an assumption that a given bidder’s marginal
PV distribution remains constant across all auctions in which he participates, then the
PV hypothesis would imply that a given bidder’s empirical marginal distribution of
dropout prices is identical across auctions with di0erent numbers as well as identities
of participants.
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Obviously the ability to test nonparametrically for the existence of common value
elements does not imply nonparametric identi,cation of the entire joint distribution. In
this paper, we restrict ourselves to the log-normal parametric speci,cation. It appears
that the parameters of this speci,cation are (globally) parametrically identi,able from
variation in our dataset. 24 The coeMcients on bidder-speci,c covariates are identi,ed
o0 of across-bidder variation. The coeMcients on auction-speci,c covariates are iden-
ti,ed o0 across-auction variation. Both the distribution of bids and the distribution of
the covariates, as well as the parametric assumptions, are useful for identifying the
variance parameters of the information structure (s; t; r0).

5. Empirical illustration

In this section, we illustrate the use of the econometric model and estimator described
above using data from the FCC’s recent auctions of licenses for Personal Communi-
cations Services (PCS) spectra. PCS spectra are suitable for transmitting signals for
digital wireless communications services, including paging and cellular telephony. This
digital technology was considered a marked improvement over the older analog wireless
technology, most notably in terms of sound quality. Indeed, digital wireless services—
many of them provided by the winners in these spectrum auctions—have become the
dominant wireless medium across most of the United States today.
The licenses were allocated using a simultaneous multiple round auction. The main

features of this auction format are multiple rounds and simultaneity. The multiple-round
format, as explained above, “allows the bidders to react to information revealed in
prior rounds, [thus] enabling the bidders to bid more aggressively” (Cramton, 1997,
p. 497). Simultaneous auctioning of many objects allows bidders to realize cross license
synergies, if any exist.
While the econometric model accommodates the multiple-round aspect of the FCC

auctions, it does not include the simultaneity aspect. Furthermore, the eligibility rules
in these auctions were more Kexible than the irrevocable dropout assumptions made
in the ascending auction model above. For these reasons, we would like to emphasize
here that the main purpose of this example is to illustrate and suggest solutions to
problems which arise in estimating this model in practice, rather than to provide robust
empirical ,ndings concerning equilibrium bidding behavior in the FCC auctions.
Each license covers a particular slice of the radio spectrum over a particular ge-

ographic area. Licenses were o0ered both at the MTA and BTA level (respectively,
major trading area and basic trading area; the designations are from Rand McNally).
The data used in this paper comes from the most important spectrum auction, the
MTA broadband PCS auction, which began on December 5, 1994 and ended on
March 13, 1995, after 112 rounds of bidding. 99 MTA licenses were o0ered—two
30 MHz licenses in most of the 51 MTAs which comprise the US and its territories

24 Local identi,cation in nonlinear parametric models typically obtains when the Jacobian matrix of
the estimating equations is nonsingular at the true parameter values, which is veri,ed in our application
by the numerical convergence of the optimization algorithm and the nonsingular Jacobian matrix calculated
at the estimated parameter values.
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Table 1
Maximum likelihood estimation: results from Monte Carlo experiments

CoeMcienta Exp. 1: Exp. 2: Exp. 3: Exp. 4:
S = 100, h = 0:01 S = 100, h = 0:1 S = 50, h = 0:01 S = 50, h = 0:1

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Components of log s
Constant 0.0179 0.1717 0.2374 0.0108 0.1419 0.2715 0.0128 0.1694 0.2562 0.0111 0.1939 0.2552

Components of log t
Constant 0.0373 0.1756 0.2605 0.0379 0.1752 0.2690 0.0265 0.1575 0.2520 0.0470 0.1889 0.2656

Components of m
Constant 0.0507 0.1576 0.2451 0.0308 0.1991 0.3029 0.0186 0.1454 0.2590 0.0397 0.1784 0.2510
POP (mills) 0.0896 0.2334 0.2824 0.0746 0.2114 0.3007 0.0211 0.1773 0.2544 0.0493 0.1947 0.2705
POP CHANGE 0.0037 0.0153 0.0237 0.0028 0.0166 0.0279 0.0029 0.0145 0.0258 0.0063 0.0180 0.0255
(%)

Components of Pa
Constantb

CEL PRES 0.0125 0.1617 0.2536 0.0107 0.1743 0.2660 0.0147 0.1528 0.2463 0.0126 0.1831 0.2569

Note: Each column contains the empirical median, 25th percentile, and 75th percentile absolute deviation
for an experiment. Each of the four experiments consisted of 100 re-estimations on bids simulated for a
91-auction sample of auctions.

aThe true values underlying the simulated were, respectively: 0.1, 0.2, 1.0, 1.5, 0.05, 0.1.
bNot separately identi,ed from constant in m.

abroad. In this paper, we analyze the auctions of 91 of these licenses. 25 Thirty ,rms
participated in this auction, and 19 of them eventually won licenses, yielding over $7
billion in government revenue. See Appendix B for details on data sources and variable
de,nitions.

5.1. Monte Carlo experiments

Before presenting our estimation results, we consider ,ndings from a series of Monte
Carlo experiments which gauge the sensitivity of the estimation results to S (the number
of draws used in simulating the truncation probability Pr(T1t(
))) and h (the band-
width which we employ in the kernel-smoother for the indicator functions 1(̃x∈T1t(
))
which characterize the truncation region). Summary results for these Monte Carlo ex-
periments are given in Tables 1 and 2.
For each experiment, we simulated 100 datasets of bids from 91 auctions, which

is the same number of observations contained in our actual estimation dataset. Fur-
thermore, in constructing the simulated datasets, we maintained the same ,rm iden-
tities and covariates as in our estimation dataset. The four experiments reported in
Tables 1 and 2 di0er in the values of S and h used to estimate the parameter values.

25 We did not analyze the auctions for the licenses for Samoa, Guam, Puerto Rico, and Alaska.
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Table 2
Simulated nonlinear least-squares estimator: results from Monte Carlo experiments

CoeMcienta Exp. 1: Exp. 2: Exp. 3: Exp. 4:
S = 100, h = 0:01 S = 100, h = 0:1 S = 50, h = 0:01 S = 50, h = 0:1

25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

Components of log s
Constant 0.0164 0.0588 0.1194 0.0127 0.0628 0.1398 0.0098 0.0340 0.1127 0.0161 0.0465 0.1194

Components of log t
Constant 0.0102 0.0474 0.1746 0.0112 0.0627 0.1660 0.0062 0.0312 0.1198 0.00083 0.0446 0.1343

Components of m
Constant 0.0040 0.0174 0.1465 0.0054 0.0281 0.1247 0.0028 0.0258 0.1403 0.0023 0.0155 0.1204
POP (mills) 0.0023 0.0289 0.1350 0.0032 0.0255 0.1300 0.0019 0.0133 0.1500 0.0021 0.0149 0.1284
POP CHANGE 0.0006 0.0051 0.0195 0.0011 0.0057 0.0181 0.0003 0.0024 0.0116 0.0005 0.0040 0.0113
(%)

Components of Pa
Constantb

CEL PRES 0.0180 0.0786 0.1928 0.0246 0.0926 0.1636 0.0134 0.0463 0.1278 0.0260 0.0637 0.1300

Note: Each column contains the empirical median, 25th percentile, and 75th percentile absolute deviation
for an experiment. Each of the four experiments consisted of 100 re-estimations on bids simulated for a
91-auction sample of auctions.

aThe true values underlying the simulated were, respectively: 0.1, 0.2, 1.0, 1.5, 0.05, 0.1.
bNot separately identi,ed from constant in m.

Each entry in the table reports the 25th, 50th (median), and 75th quantile of the
empirical distribution (across the 100 replications of each experiment) of the absolute
deviation ADi ≡ |
̂i − 
0| of each estimated parameter from its true value, where 
̂i
denotes the estimated parameter for the ith simulated dataset, and 
0 denotes the true
value of the parameter.
Encouragingly, the AD’s are small for both the MLE as well as SNLS experiments,

which indicate that the parameter estimates are quite stable, and not very sensitive
to changes in the number of simulation draws and the smoothing bandwidth. How-
ever, notice that the AD’s are uniformly smaller for the NLS experiments (in Table
2) than the MLE experiments (in Table 1). For this reason, we employ the sim-
ulated NLS estimator in our empirical illustration using actual data from the FCC
auctions.

5.2. Estimation results

Table 3 shows the results for two speci,cations of the full model, estimated using
the SNLS methodology described above. Section B.2 in the appendix discusses the
parameterization choices that we made. Models A and B in Table 3 di0er in the extent
to which log s—the log of the variance on the bidders’ priors about the common value
component—is parameterized.



348 H. Hong, M. Shum / Journal of Econometrics 112 (2003) 327–358

Table 3
Simulated nonlinear least-squares estimates

Model A Model B

CoeMcient Estimate Std. errora Estimate Std. error

Components of log s
Constant 0.0665 0.0380 0.0643 0.0147
POP (mills) −0.0023 0.0016
INCOME (per cap.,$’000) −0.0228 0.0146

Components of log t
Constant 0.1627 0.3686 0.2146 0.1720

Log r0b

Constant −0.0136 0.0248 −0.0189 0.0150

Components of m
Constant 0.9676 0.3652 0.9557 0.1468
POP (mills) 1.4942 0.4015 1.4856 0.1757
POP CHANGE (%) 0.0475 0.0359 0.0449 0.0147

Components of Pa
Constantc

CEL PRES 0.0707 0.0201 0.0693 0.0128

# auctions (T ) 91 91

Note: S (number of simulation draws): 100; h (bandwidth) = 0:01.
aBootstrapped standard error, computed from empirical distribution of parameter estimates from 100 para-

metric bootstrap resamples.
bVariance of the prior distribution on common value component.
cNot separately identi,ed from constant in m.

The bootstrapped standard errors indicate that the estimates are generally statistically
signi,cant from zero. The coeMcients on POP and POP CHANGE are positive (1.4942
and 0.0475 for the Model A results): as expected, a larger population and higher growth
rates increase a license’s value. The magnitudes of the estimates for log s, log t and
log r0 indicate that the largest source of variation in bidders’ signals is in their private
value components.
Finally, the coeMcient on CEL PRES (0.0707, with standard error 0.0201, for Model

A), while small in magnitude, indicates some weak complementarities between o0er-
ing PCS service in a given region, and existing cellular presence in another nearby
region. 26 Note that, in these speci,cations, asymmetries across the bidders are cap-
tured only by the CEL PRES covariate in Pa, the mean of the distribution from which
bidders’ private values are drawn. The small estimated coeMcient indicates that bid-
ders are largely symmetric given this speci,cations and our results. This ,nding has

26 This con,rms previous results in Moreton and Spiller (1998), which also detected the existence of
PCS-Cellular complementarities in these auctions in reduced-form bid regressions.
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implications on how the equilibrium bid functions for a given bidder changed during
the course of the auction. Next, we explore the implications of our estimates on the
equilibrium bidding strategies.

5.3. Estimated bid functions

Fig. 1 shows plots of the estimated (log) bid functions for the winning bidder (“bid-
der 1”, using the indexing scheme employed earlier), in each of the rounds of four
selected auctions. Here log-signal x1 is plotted on the x-axis, while bk1(x1), her log bid
functions for rounds k=0; : : : ; N −2, are plotted on the y-axis. The units on the y-axis
are log($mills).
First note that the log-bid functions are linear in the signals; this results from the

log-normality assumption (cf. Eq. (3.12) above). Second, note that the bid functions
decrease in slope as the auction progresses, implying that for any given valuation x1
in the range in which bidder 1 would have won the auction, the targeted dropout price
falls as bidders drop out. For example, for auction #30 (New Orleans block A, the
lower-left hand corner graph), if x1 = 4, then we can read o0 the graph that bidder
1’s targeted log-dropout price falls from around $4 million in the opening round 0, to
about $3.4 million in the ,nal round.
This monotonic change in the slope of the bid functions is characteristic of sym-

metric ascending auctions. As noted above, the small point estimate of the CEL PRES
coeMcient suggests that bidders are essentially symmetric. Changes in the slope of the
bid function occur because the conditioning events change as the auction progresses,
as bidder 1 learns the private signals of the bidders who have dropped out.
In a symmetric ascending auction, where no di0erences exist among his competitors,

bidder 1’s expected valuation for the object is either increasing or decreasing in each
and every one of her competitors’ private signals. Furthermore, when bidder j remains
in the auction, bidder 1 assumes in equilibrium that bidder j’s private signal is equal
to x1. 27 Once bidder j drops out, bidder 1 learn xj and, given symmetry, xj ¡x1.
Essentially, bidder 1 “plugs” a smaller number xj into her bid function. This is true
for every bidder j �= 1, since bidder 1 wins the auction.

This process of “plugging-in” smaller numbers (the xj’s, j �= 1) in place of larger
numbers (x1) causes the slopes of the successive bid functions to change monotonically
as the auction progresses. This change will be monotonically decreasing if bidder 1’s
expected valuation for the object is increasing in all her competitors’ private signals.
This is true for our additive log-normal model with a common value component, which
induces positive correlation among all the bidders’ signals.
For the asymmetric case, this monotonicity need not hold, even assuming, as in the

log-normal model, that bidder 1’s expected valuation is increasing in each and every
private signal. This is because in every round, bidder 1 not only learns the private

27 This is because, in equilibrium, bidder 1 bids a log-price b1(x1) in which her expected log-revenue from
winning is just equal to b1(x1). If she in fact wins at the log-price b1(x1), this must mean that bidder j has
dropped out at that price, implying that bidder j’s private log-signal xj = b−1

j (b1(x1)). For the symmetric

case, bj(·) = b(·); ∀ j, so that xj = b
−1
j (b1(x1)) = x1.
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Fig. 1. Estimated bid functions: using model A results. x-axis: log-signals; y-axis: log-bid.
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signal of the dropout bidder during that round, but also revises her beliefs about the
remaining bidders’ signals knowing that these bidders are also revising their beliefs
upon observing dropout behavior. While the coeMcients on all the private signals in
bidder 1’s expected valuation of the object are still positive, it is not clear whether the
new values for the signals “plugged in” during each round are larger or smaller than
the old values; therefore, it is unclear how this change in information a0ects the slope
of her bid function.
In conclusion, therefore, while the log-linearity of the estimated bid functions results

from the log-normality assumption, the monotonic decrease in slopes as the auction
proceeds arises from our ,nding that the bidders were largely symmetric.

6. Conclusions

We have characterized an increasing-strategy Bayesian Nash equilibrium in asym-
metric ascending (English) auctions. We showed that the equilibrium (inverse) bidding
strategies in each round of the auction are de,ned implicitly via systems of non-
linear equations. This formed the basis of an algorithm we devised to calculate the
likelihood function for an observed vector of bids. In the case that bidders’ private
signals are drawn from nonidentical log-normal distributions, we show that the vector
of log-dropout prices observed in a given ascending auction is distributed as truncated
multivariate normal. We illustrated the use of this model with data from the FCC spec-
trum auctions, and estimated examples of bid functions to demonstrate how equilibrium
learning a0ects bidding behavior in ascending auctions.
An important extension to our current model is to relax the irrevocable dropout

assumption. However, the result may be an “open call” auction which, as noted by
Vickrey (1961), is strategically equivalent to a sealed bid second-price auction (since,
essentially, without the irrevocable dropout requirement, no information can be credibly
revealed during the course of the auction).
Nonetheless, there has been very little work to date on the structural estimation of

sealed bid second-price auction models accommodating both common values and asym-
metries. 28 This may be due in part to the diMculties involved in calculating equilibrium
bidding strategies in these auctions. However, the empirical framework developed in
this paper can be directly generalized to other auction formats, including the ,rst- and
second-price sealed bid auctions. The common element in all these auction models is
that the equilibrium bid functions are described by systems of equations, which facili-
tates the numerical or computational algorithms required for empirical implementation
of these models. We discuss these issues in more detail in Hong and Shum (1999),
and we plan to apply this methodology to ,rst- and second-price auction settings in
future research.

28 For example, empirical studies of open-call timber auctions in the structural vein (by, among others,
Paarsch (1997), Baldwin et al. (1997), Haile and Tamer (2000)) have used the independent private values
framework. Asymmetries are potentially important in these auctions, arising from both geographical locational
di0erences among the ,rms as well as collusive behavior.
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Appendix A. Proofs

Proof of Proposition 1. Mimicking the proof of Theorem 10 in Milgrom and Weber
(1982), we show that if all bidders j �= i follow their equilibrium strategies 
kj (·),
bidder i’s best response is to play 
ki (·) because this guarantees that bidder i will win
the auction if and only if his expected net payo0 is positive conditional on winning.
For any price P, (3) holds. If bidder i wins the auction in round k when all remaining

bidders simultaneously exit a price of P, his ex post valuation is

E[Vi|Xi;Xj = (
kj )
−1(P); j = 1; : : : ; n− k; j �= i;�k ]: (A.1)

Since this conditional expectation is increasing in Xi (from Assumption A1), bidder
i makes a positive expected pro,t from winning in round k by staying active in the
auction at a price of P if and only if Xi¿ (
ki )

−1(P) ⇔ 
ki (Xi)¿P (here we use
Assumption A2, the monotonicity of equilibrium bid strategies). In other words, 
ki (Xi)
speci,es the price below which bidder i makes a positive expected pro,t by staying
in the auction and above which bidder i makes a negative expected pro,t by staying
in the auction. Therefore, for every realization of Xi, 
ki (Xi) speci,es a best-response
dropout price for bidder i in round k. 29

Proof of Lemma 1. Since Ak ≡ ( k�∗−1
k;1

′)−1lk , the lemma states that each row of
( k�∗−1

k;1
′)−1 sums to a positive number. Note that ( k�∗−1

k;1
′) is equal to the

(N−k) (N−k) principal submatrix of  0�∗−1, indexed by 1; : : : ; N−k. Since vi=ai+v,

29 For the symmetric model of Milgrom and Weber (1982), Bikhchandani et al. (2000) described addi-
tional equilibria where the bidding strategies 
ki (Xi) for the bidders i=1; : : : ; k remaining in round k, and for
k = 0; : : : ; N − 3 (i.e., for all rounds except the last one), take the form of : ∗ E[Vi|Xi;Xj = (
kj )

−1(
ki (Xi));
j=1; : : : ; n− k; j �= i;�k ]; for :∈ (0; 1]. The asymmetric equilibrium we focus on is analogous to the “maxi-
mum” symmetric equilibrium discussed in Bikhchandani et al. (2000), which coincides with the construction
of Milgrom and Weber (1982).
The estimation procedure described in this paper extends readily to accommodate any other value of :

chosen a priori from (0; 1]. Indeed, : can be estimated simultaneously with the other parameters, if desired.
See Bjorn and Vuong (1985) for a similar approach to dummy endogenous variable models. We do not take
this approach in this paper.
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we can write

 0 = Cov(l0 v; x) + Cov(a; x) = l0 Cov(v; x) + Cov(a; x)

where we denote a ≡ (a1; : : : ; aN ). Hence ( k�∗−1
k;1

′) can be written as lky′ + D∗,
where y′ is the ,rst N − k elements of Cov(v; x)�∗−1 (which are strictly positive
due to the strict aMliation between v and x), and D∗ is the ,rst (N − k) principal
matrix of D ≡ Cov(a; x)�∗−1. As shown by Sarkar (1969), strict aMliation of x im-
plies that �∗−1 is a matrix with a dominant diagonal, as de,ned in McKenzie (1959,
Theorem 4). Alternatively, one can write �∗=(ly′′+ PD), for l a column of ones, y′′ a
row vector, and PD a diagonal matrix. Then the same arguments as in Eq. (A.2) below
show directly that �∗−1 has a dominant diagonal, in the sense that up to multiplica-
tion by a diagonal matrix, each diagonal element is positive and each row sums to a
positive number.
Since Cov(a; x) is a diagonal matrix, D also has a dominant diagonal because the

property of diagonal dominance is preserved under multiplication by a diagonal matrix.
The property of diagonal dominance is also perserved by any principal submatrix of
D, including D∗. Next we write (using, for example, Dhrymes, 1984, p. 39)

(lky′ + D∗)−1 =D∗−1 − 1
1 + y′D∗−1lk

D∗−1lky′D∗−1

=D∗−1
(
I − 1

1 + y′D∗−1lk
lky′D∗−1

)
: (A.2)

Since D∗−1 is a positive matrix (McKenzie, 1959, Theorem 4), y∗′ = y′D∗−1 is a
nonnegative vector. Next 1 + y′D∗−1lk = 1+

∑n−k
i=1 y

∗′
i , and each row of lky′D∗−1 is

just the row vector y∗′. Therefore, the sum of each row of the second matrix in the
last expression in (A.2) is [1=(1 +

∑n−k
i=1 y

∗
i
′)]¿ 0. Since D∗−1’s elements are also

nonnegative, it follows that the row sums of (A.2) must also be positive.
Alternatively, one could calculate ( k�∗−1

k;1
′)−1 explicitly using the information struc-

ture of the log-normal model, as we did in a previous version of this paper. This would
show that ( k�∗−1

k;1
′)−1 can in fact be written in the form of (lky′′+D∗∗)−1, for some

positive y′′ and a positive diagonal matrix D∗∗. Then the same argument of (A.2)
applies.

Proof of Lemma 2. Consider the round j and round j − 1 system of equations, eval-
uated at Pj−1, the dropout price for round j − 1. In what follows, let *̃N−kk (P) ≡
exp(*N−kk (logP)), for each round k = 1; : : : ; N − 2. In round j − 1:

Pj−1 = E[Vi | *̃j−1
1 (Pj−1); *̃

j−1
2 (Pj−1); : : : ; *̃

j−1
N−j+1(Pj−1); *̃kN−k(Pk);

k = 0; : : : ; j − 2] (A.3)

for i=1; : : : ; N−j+1. Let [*̃j−1](Pj−1) ≡ (*̃j−1
1 (Pj−1); *̃

j−1
2 (Pj−1); : : : ; *̃

j−1
N−j+1(Pj−1))′

denote the vector of inverse bid functions which solve this system of equations at the
price Pj−1. Note that the (j−1)th element of this (that corresponding to bidder N−j+1)
is XN−j+1, which is this bidder’s actual signal.
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Let �j−1 denote {*̃kN−k(Pk); k = 0; : : : ; j − 2}, the information set in round j − 1.
Using this notation, we can write the round j system of equations as:

Pj−1 = E[V1 | *̃j1(Pj−1); *̃
j
2(Pj−1); : : : ; *̃

j
N−j(Pj−1); *̃

j−1
N−j+1(Pj−1); �j−1];

Pj−1 = E[V2 | *̃j1(Pj−1); *̃
j
2(Pj−1); : : : ; *̃

j
N−j(Pj−1); *̃

j−1
N−j+1(Pj−1); �j−1];

...

Pj−1 = E[VN−j | *̃j1(Pj−1); *̃
j
2(Pj−1); : : : ; *̃

j
N−j(Pj−1); *̃

j−1
N−j+1(Pj−1); �j−1]:

(A.4)

If we substitute in the ,rst (N − j) elements of [*̃j−1](Pj−1) into the round j system,
we get:

Pj−1 = E[V1 | *̃j−1
1 (Pj−1); *̃

j−1
2 (Pj−1); : : : ; *̃

j−1
N−j(Pj−1); *̃

j−1
N−j+1(Pj−1); �j−1];

Pj−1 = E[V2 | *̃j−1
1 (Pj−1); *̃

j−1
2 (Pj−1); : : : ; *̃

j−1
N−j(Pj−1); *̃

j−1
N−j+1(Pj−1); �j−1];

...

Pj−1 = E[VN−j | *̃j−1
1 (Pj−1); *̃

j−1
2 (Pj−1); : : : ; *̃

j−1
N−j(Pj−1); *̃

j−1
N−j+1(Pj−1); �j−1]:

(A.5)

Note that Eqs. (A.5) exactly resembles the ,rst (N − j) equations in the round j − 1
system (A.3): this immediately implies that [*̃j−1](Pj−1) solves both the round j and
j − 1 systems of equations, at the price Pj−1. In other words, the bid functions for
rounds j and j − 1 must intersect at the point ([*̃j−1](Pj−1); Pj−1).

Proof of Corollary 1. We break the proof into two steps. Throughout, we omit the
conditioning arguments xkd and 
 for brevity. First we show that (20) implies

bk+1
N−k−1(xN−k−1)¿ bkN−k(xN−k);∀k = 0; : : : ; N − 3 (A.6)

namely, that the constructed sequence of dropout prices are increasing. To see this,
note that (20) implies

xN−k−1¿*kN−k−1(b
k
N−k(xN−k))

⇒ bk+1
N−k−1(xN−k−1)¿ bk+1

N−k−1(*
k
N−k−1(b

k
N−k(xN−k)))

= bkN−k(xN−k);

where the inequality in the ,rst line arises from (20), and the equality in the second
line arises from Lemma 2. Clearly, this argument holds for all k = 0; : : : ; N − 3.
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Second, we use (20) and (A.6) to show (18). For a given round k, and bidder
i6N − k − 1:

xi¿*N−i−1
i (bN−i−1

i+1 (xi+1))

¿*N−i−1
i (bN−i−2

i+2 (xi+2)) = *N−i−2
i (bN−i−2

i+2 (xi+2))

¿*N−i−2
i (bN−i−3

i+3 (xi+3)) = *N−i−3
i (bN−i−3

i+3 (xi+3))

¿ · · ·¿*ki (b
k
N−k(xN−k))

where the inequality in the ,rst line arises from (20), the inequality in the second line
arises from (A.6), and the equality in the second line arises from Lemma 2. Applying
the bki (· · ·) transformation to the ,rst and last terms in the above inequality yields
bki (xi)¿ bkN−k(xN−k). This argument applies ∀k = 0; : : : ; N − 2, ∀i6N − k − 1.

Proof of Lemma 3. Note that

bli (*
k
i (pk)) = bli (*

l+1
i (bl+1

i (· · ·*k−1
i (bk−1

i (*ki (pk))))))

¿ bli (*
l+1
i (bl+1

i (· · ·*k−1
i (bk−1

i (*ki (pk−1))))))

= bli (*
l+1
i (bl+1

i (· · ·*k−1
i (pk−1))))

¿ bli (*
l+1
i (bl+1

i (· · ·*k−1
i (pk−2)))) = bli (*

l+1
i (bl+1

i (· · ·*k−2
i (pk−2))))

¿ · · ·= bli (*l+1
i (pl+1))

¿ bli (*
l+1
i (pl)) = pl;

where the equality in the second and third lines use Lemma 2, and all the inequalities
use the fact that the sequence of dropout prices p0; : : : ; pN−2 is nondecreasing.

Appendix B. Data description

The data on the auction results from the MTA broadband auction is taken from
the FCC’s web site (http://www.fcc.gov). This data gives us information on the
participants and the bids that they submitted during each round on the various licenses.
We supplemented this data with market characteristics at the MTA level from the Rand–
McNally guide. The cellular presence data came from the Cellular Telephone Industry
Association’s Wireless Market Book (Cellular Telephone Industry of America, 1996).
We discuss how we created the dependent variable and the regressors in turn.

B.1. The dropout prices

In order to ,t the model to the FCC data, we impose some assumptions about
bidders’ beliefs concerning the dropout behavior of the other bidders. We assign a

http://www.fcc.gov
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Table 4
Summary statistics for data variables

Variable N Mean Std dev Min Max

Winning
prices ($mill) 91a 75.87 89.71 4.39 493.5
Population
(millions) 91 5.15 4.14 1.15 26.78
Pop’n change
(1990–95,%) 91 6.00 3.53 0.40 12.80
Per capita
income (’000) 91 15.86 3.71 11.96 20.70
Dropout
prices ($mill) 423 53.18 69.28 0.89 493.5
Cell. pres 423 0.61 1.28 0 8

aWe omitted the observations for: Puerto Rico, Guam, Samoa, and Alaska.

“dropout price” to bidder j which is the last price at which he was “active” (in a
sense to be clari,ed below). We assume that all remaining bidders also believe this
assigned price to be bidder j’s dropout price.
Next we de,ne how we classify a bidder as “active”. The following example will

be useful: suppose that there are four bidders (A, B, C, D) and we observe that the
last submitted bids for A, B, and C were 10, 20, and 30, respectively. If the price goes
up by increments of 5, then, D will win the object at a price of 35 (assuming that his
valuation is greater than that).
One simple way would be to assign to each bidder a dropout price equal to his last

submitted bid, and assume that the winner’s dropout price was greater than or equal to
the winning price, i.e., PA =10; PB=20; PC=30; PD¿ 35. This method is inconsistent,
because of the gap between the second-highest dropout price PC and the lower bound
on the highest dropout price PD. As Milgrom and Weber (1982) note, their formulation
of the ascending model model reduces to a second-price auction when there are only
two bidders left– in this case, these would be C and D. One problem with the above
assignment of dropout prices is that the winner—D—does not win the object at the
“second-price”, which is C’s dropout price.
To address this problem, we assign a dropout price to a given bidder equal to the last

submitted bid of the next bidder who drops out. In the example above: PA = 20; PB =
30; PC = 35; PD¿ 35. The reason this problem occurs is that the Milgrom and Weber
(1982) (and Wilson, 1998) model assume continuously rising prices and instantaneous
dropouts, whereas in the FCC auctions (and probably in most real-life situations) the
price ascends by discrete intervals.

B.2. Speci%cation details

Here we describe how the exogenous covariates enter the empirical model. First,
m (the mean of the log common value distribution for a given license) should be a
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function of MTA-level demographic variables which capture the across-license variation
in values. We use POP (population) and POP CHANGE (population change).
Second, Pai (the publicly known mean of the private value component of Vi) is a

function of ,rm-and-object speci,c covariates. We only use CEL PRES, an indicator
of cellular presence in the surrounding area. More precisely, this regressor is a tally
of the total number of the BTA’s surrounding 30 a particular MTA in which a given
,rm has cellular presence. 31

Finally, (s; t; r0) (the standard deviations for the noisiness of the signal, the private
value component, and the common value component, respectively) are parameterized
di0erently across the two speci,cations we estimated (Models A and B in Table 3).
Both speci,cations restrict these quantities to be the same over all bidders; Model B,
however, allows s to vary over objects as a function of POP and INCOME.
Table 4 presents summary statistics for all the variables we use in the analysis.

References

Amemiya, T., 1985. Advanced Econometrics. Harvard University Press, Cambridge, MA.
Athey, S., Haile, P., 2000. Identi,cation of Standard Auction Models. Econometrica, forthcoming.
Ausubel, L., Cramton, P., McAfee, R., McMillan, J., 1997. Synergies in wireless telephony: evidence from

the MTA auction. Journal of Economics and Management Strategy 7, 389–430.
Bajari, P., 1998. A structural econometric model of the ,rst price sealed bid auction: with applications to

procurement of highway improvements. Mimeo, Stanford University.
Bajari, P., Hortacsu, A., 1999. Winner’s curse, reserve prices, and endogenous entry: empirical insights from

eBay auctions. Mimeo, Stanford University.
Baldwin, L., Marshall, R., Richard, J.-F., 1997. Bidder collusion at forest service timber sales. Journal of

Political Economy 105, 657–699.
Bikhchandani, S., Haile, P., Riley, J., 2000. Symmetric separating equilibria in English auctions. Games and

Economic Behavior, Jan. 2002, 38 (1), 19–27.
Bjorn, P., Vuong, Q., 1985. Simulateous equations models for dummy endogenous variables: a game theoretic

formulation with an application to labor force participation. Working Paper #577, Caltech.
Bulow, J., Huang, M., Klemperer, P., 1999. Toeholds and Takeovers. Journal of Political Economy 107,

427–454.
Campo, S., Perrigne, I., Vuong, Q., 1998. Asymmetry and joint bidding in OCS wildcat auctions. Mimeo,

University of Southern California.
Cellular Telephone Industry of America, 1996. Wireless Market Book.
Cramton, P., 1997. The PCS spectrum auctions: an early assessment. Journal of Economics and Management

Strategy 7, 497–527.
Dhrymes, P.J., 1984. Mathematics for Econometrics. Springer, Berlin.
Donald, S., Paarsch, H., 1996. Identi,cation, estimation, and testing in parametric empirical models of

auctions within the independent private values paradigm. Econometric Theory 12, 517–567.
Donald, S., Paarsch, H., Robert, J., 1997. Identi,cation, estimation, and testing in empirical models of

sequential, ascending-price auctions with multi-unit demand: an application to Siberian timber-export
permits. Mimeo, University of Texas.

Engelbrechet-Wiggans, R., Milgrom, P.R., Weber, R.J., 1983. Competitive bidding and proprietary
information. Journal of Mathematical Economics 11, 161–169.

30 Firms with substantial cellular coverage in a given market were barred from bidding for PCS spectra in
that market.
31 We are grateful to P. Moreton for providing “neighboring county” tables which facilitated the construction

of the CEL PRES variable for each (,rm-MTA) combination.



358 H. Hong, M. Shum / Journal of Econometrics 112 (2003) 327–358

Froeb, L., Tschantz, S., Crooke, P., 2000. Mergers in ,rst vs. second price asymmetric auctions. International
Journal of the Economics of Business 7, 201–213.

Gourieroux, C., Monfort, A., 1996. Simulation-Based Econometric Methods. Oxford University Press, Oxford.
Haile, P., Hong, H., Shum, M., 2000. A nonparametric test for common values. Mimeo, University of

Wisconsin.
Haile, P., Tamer, E., 2000. Inference with an incomplete model of oral auctions. Journal of Political Economy,

forthcoming.
Hendricks, K., Porter, R., 1988. An empirical study of an auction with asymmetric information. American

Economic Review, 78 (5), 865–883.
Hong, H., Shum, M., 1999. Structural estimation of auction models. In: Garcia-Jurado, I., Tijs, S., Patrone,

F. (Eds.), Game Practice: Contributions from Applied Game Theory. Kluwer, Dordrecht.
Klemperer, P., 1998. Auctions with almost common values: the “wallet game” and its applications. European

Economic Review 42, 757–769.
La0ont, J.J., Ossard, H., Vuong, Q., 1995. Econometrics of ,rst-price auctions. Econometrica 63, 953–980.
La0ont, J.J., Vuong, Q., 1996. Structural analysis of auction data. American Economic Review, Papers and

Proceedings 86, 414–420.
Li, T., Perrigne, I., Vuong, Q., 2000. Conditionally independent private information in OCS wildcat auctions.

Journal of Econometrics 98, 129–161.
McFadden, D., 1989. A method of simulated moments for estimation of discrete response models without

numerical integration. Econometrica 57, 995–1026.
McFadden, D.L., 1996. Lectures on Simulation-Assisted Statistical Inference, papers presented at the

EC-Squared Conference, Florence, Italy.
McKenzie, L., 1959. Matrices with dominant diagonals and economic theory. In: Arrow, K.J., Karlin, L.S.,

Suppes, L.P. (Eds.), Mathematical Methods in the Social Sciences, pp. 47–62. Stanford University Press,
Stanford.

Milgrom, P., 1981. Rational expectations, information acquisition, and competitive bidding. Econometrica
49, 921–943.

Milgrom, P., Weber, R., 1982. A theory of auctions and competitive bidding. Econometrica 50, 1089–1122.
Moreton, P., Spiller, P., 1998. What’s in the air: interlicense synergies in the federal communications

commission’s broadband personal communication service spectrum auctions. Journal of Law and
Economics 41, 677–716.

Paarsch, H., 1992. Deciding between the common and private value paradigms in empirical models of
auctions. Journal of Econometrics 51, 191–215.

Paarsch, H., 1997. Deriving and estimate of the optimal reserve price: an application to British Columbian
timber sales. Journal of Econometrics 78, 333–357.

Pakes, A., Pollard, D., 1989. Simulation and the asymptotics of optimization estimators. Econometrica 57,
1027–1057.

Sarkar, T.K., 1969. Some lower bounds of reliability. Technical Report, No. 124 66-70, Department of
Operations Research and Statistics, Stanford University.

Vickrey, W., 1961. Counterspeculation and competitive sealed tenders. Journal of Finance 15, 8–37.
Wilson, R., 1998. Sequential equilibria of asymmetric ascending auctions. Economic Theory 12, 433–440.


	Econometric models of asymmetric ascending auctions
	Introduction
	Asymmetric ascending auctions
	Equilibrium bidding in the ascending auction

	Log-normal asymmetric ascending auction model
	Deriving the equilibrium bid functions
	Deriving the likelihood function of the dropout price vector
	Truncation probability and equilibrium consistency conditions
	Characterization of T1(theta)
	Characterization of T2(G- 1(P- F);theta)
	The likelihood function: log-normal specification


	Estimation issues
	Maximum likelihood estimation
	Simulated nonlinear least-squares estimation
	Identification

	Empirical illustration
	Monte Carlo experiments
	Estimation results
	Estimated bid functions

	Conclusions
	Acknowledgements
	Appendix A. Proofs
	Appendix B. Data description
	The dropout prices
	Specification details

	References


