
Lecture notes: single-agent dynamics part 3 1

1 Model with persistence in unobservables (“unobserved state

variables”)

Up to now, we consider models satisfying Rust’s “conditional independence” assump-

tion on the ε’s. This rules out persistence in unobservables, which can be economically

meaningful.

1.1 Example: Pakes (1986) patent renewal model

Pakes (1986). How much are patents worth? This question is important because it

inform public policy as to optimal patent length and design. Are patents a sufficient

means of rewarding innovation?

• QA: value of patent at age A

• Goal of paper is to estimate QA using data on their renewal. QA is inferred

from patent renewal process via a structural model of optimal patent renewal

behavior.

• Treat patent renewal system as exogenous (only in Europe)

• For a = 1, . . . , L, a patent can be renewed by paying the fee ca

• Timing:

– At age a = 1, patent holder obtains period revenue r1 from patent

– Decides whether or not to renew. If renew, then pay c1, and proceed to

age a = 2.

– At age a = 2, patent holder obtains period revenue r2 from patent

– Decides whether or not to renew. If renew, then pay c2, and proceed to

age a = 3. And so on...

Lecture notes: single-agent dynamics part 3 2

• Let Va denote the value of patent at age a.

Va ≡ max
t∈[a,L]

L−a∑
a′=1

βa
′
R(a+ a′), where

R(a) =

{
ra − ca if t ≥ a (when you hold onto patent)

0 if t < a (after you allow patent to expire)

(1)

t above denotes the age at which the agent allows the patent to expire, and is

the agent’s choice variable in this problem. This type of problem is called an

“optimal stopping” problem.

R(a) denotes the profits from the patent during the a-th year. The sequence

R(1), R(2), . . . is a “controlled” stochastic process: it is inherently random, but

also affect by agent’s actions.

• Since the maximal age L is finite, this is a finite-horizon (nonstationary) dy-

namic optimization problem.

• The state variable of this DO problem is ra, the single-period revenue.

• Finite-horizon DO problems are solved via backward recursion. The value func-

tions {V1(·), V2(·), . . . , Va(·), . . . , VL(·)} are recursively related via Bellman’s

equation:

Va(ra) = max

0, ra + βE [Va+1(ra+1)|Ωa]︸ ︷︷ ︸
≡Qa value of age a patent

−ca

 .

RHS means you will choose to renew the patent iff Qa − ca > 0.

Ωa: history up to age a, = {r1, r2, . . . , ra}

Expectation is over ra+1|Ωa. The sequence of conditional distributions Ga ≡
F (ra+1|Ωa), a = 1, 2, . . . , is an important component of the model specification.

Pakes’ assumptions are given in Eq. (7) of the paper:

ra+1 =

{
0 with prob. exp(−θra)
max(δra, z) with prob. 1− exp(−θra)

(2)

where density of z is qa = 1
σa

exp [−(γ + z)/σa] and σa = φa−1σ, a = 1, . . . , L−1.

δ, θ, γ, φ, and σ are the important structural parameters of the model.

Lecture notes: single-agent dynamics part 3 3

• So break down maximization problem into period-by-period problem, where

each period agent decides whether or not to incur cost ca and gain the value

of the patent Qa = ra + “option value”. Option value captures the value in

keeping patent alive in order to make a choice tomorrow.

Implications of model seen graphically:

• Drop out at age a if ca > Qa

• Optimal decision characterized by “cutoff points”:

Qa > ca ⇔ ra > r̄a

This feature due to assumption A3.3, which ensures that Qa is increasing in ra

(so that Qa and ca only cross once)

• The sequence of cutoff points r̄a < r̄a+1 < · · · < r̄L−1: ensured by assumption

A3.4.

1.2 Estimation: likelihood function and simulation

In this section, we consider estimation of the Pakes patent renewal model. For ease of

comparison with the Rust model from before, we use ε to denote the unobserved state

variable, which in the Pakes model correpsonds to the patent revenue rt. Furthermore,

we use it to denote the choice (control) variable; it is equal to zero if patent is renewed,

and equal to one if patent expires.

Consider one patent. Let T̃ denote the age at which the patent is allowed to expire.

Due to the setup of the problem, T̃ ≤ L, the maximal age of the patent. Let T =

min(L−1, T̃) denote the number of periods in which the agent makes an active patent

renewal decision. We model the agent’s decisions in periods t = 1, . . . , T .

ε evolves as a first-order Markov process, evolving according to: F (ε′|ε). We denote

the (age-specific) policy function by i∗t (ε).

Lecture notes: single-agent dynamics part 3 4

Now the likelihood function for this patent is:

l (it, . . . , iT |ε0, i0; θ)

=
T∏
t=1

Prob (it|i0, . . . , it−1; ε0, θ)
(3)

Note that because of the serially correlated ε’s, there is still dependence between (say)

it and it−2, even after conditioning on (it−1): compare the likelihood function in the

Rust lecture notes and Eq. (3). In other words, the joint process {it, εt} is first-order

Markov, but not the marginal process {it} is not first-order Markov Also, because of

serially correlation in the ε’s, the Prob (it|i0, . . . , it−1; θ) no longer has a closed form.

Thus, we consider simulating the likelihood function.

Note that simulation is part of the “outer loop” of nested fixed point estimation

routine. So at the point when we simulate, we already know the policy functions

i∗t (ε; θ). (How would you compute this?)

1.3 “Crude” frequency simulator: naive approach

In this section, we describe a naive approach to simulating the likelihood of this

model. This is not something we want to do in practice, but we describe it here in

order to contrast it with the particle-filtering (importance sampling) approach, which

we describe in the next section.

For simulation purposes, it is most convenient to go back to the full likelihood function

(the first line of Eq. (3):

l(i1, . . . , iT |i0, ε0; θ).

Note that because the ε’s are serially correlated, we also need to condition on an

initial value ε0 (which, for simplicity, we assume to be known). Pakes does something

slightly more complicated– he assumes that the distribution of ε0 is known.

Because i is discrete, the likelihood is the joint probability

Pr(i∗t (εt; θ) = it, ∀t = 1, . . . , T)

where the it’s denote the observed sequence of choices. The probability is taken over

the distribution of (ε1, . . . , εT |ε0).

Lecture notes: single-agent dynamics part 3 5

Let F (εt+1|εt; θ). Then the above probability can be expressed as the integral:∫
· · ·
∫ ∏

t

1(i∗t (εt; θ) = it)
∏
t

dF (εt|εt−1; θ).

We can simulate this integral by drawing sequences of (εt). For each simulation draw

s = 1, . . . , S, we take as initial values i0, ε0. Then:

• Generate (εs1, i
s
1):

1. Generate εs1 ∼ F (ε1|ε0)

2. Compute is1 = i∗1(ε
s
1; θ)

• Generate (εs2, i
s
2):

1. Generate εs2 ∼ F (ε2|εs1)

2. Subsequently compute is2 = i∗2(ε
s
2; θ)

... and so on, up to (εsT , i
s
T)

Then, for the case where (i, x) are both discrete (which is the case in Rust’s paper),

we can approximate

l (it, . . . , iT |ε0, i0; θ) ≈
1

S

∑
s

T∏
t=1

1(ist = it).

That is, the simulated likelihood is the frequency of the simulated sequences which

match the observed sequence.

This is a “crude” frequency simulator. Clearly, if T is long, or S is modest, the

simulated likelihood is likely to be zero. What is commonly done in practice is to

smooth the indicator functions in this simulated likelihood.

1.4 Importance sampling approach: Particle filtering

Another approach is to employ importance sampling in simulating the likelihood

function. This is not straightforward, given the across-time dependence between

Lecture notes: single-agent dynamics part 3 6

(it, εt). Here, we consider a new simulation approach, called particle filtering. It

is a recursive approach to simulate dependent sequences of random variables. The

presentation here draws from Fernandez-Villaverde and Rubio-Ramirez (2007) (see

also Flury and Shephard (2008)). This is also called “non-Gaussian Kalman filtering”.

We need to introduce some notation, and be more specific about features of the model.

Let:

• yt ≡ {it}. yt ≡ {yt, . . . , yt}. These are the observed sequences in the data.

• Evolution of utility shocks: εt|εt−1 ∼ f(ε′|ε). (Ignore dependence of distribution

of ε on age t for convenience.)

• As before, the policy function is it = i∗(εt).

• Let εt ≡ {ε1, . . . , εt}.

• The initial values y0 and ε0 are known.

Go back to the factorized likelihood:

l(yT |y0, ε0) =
T∏
t=1

l(yt|yt−1, y0, ε0)

=
∏
t

∫
l(yt|εt, yt−1)p(εt|yt−1)dεt

≈
∏
t

1

S

∑
s

l(yt|εt|t−1,s, yt−1)

(4)

where in the second to last line, we omit conditioning on (y0, ε0) for convenience. In

the last line, εt|t−1,s denotes simulated draws of εt from p(εt|yt−1).

Consider the two terms in the second to last line:

• The first term l(yt|εt, yt−1):

l(yt|εt, yt−1) = p(it|εt, yt−1)
= p(it|εt) = 1(i(εt) = it).

(5)

Clearly, this term can be explicitly calculated, for a given value of εt.

Lecture notes: single-agent dynamics part 3 7

• The second term p(εt|yt−1) is, generally, not obtainable in closed form. So

numerical integration not feasible. The particle filtering algorithm permits us

to draw sequences of εt from p(εt|yt−1), for every period t. Hence, the second-

to-last line of (4) can be approximated by simulation, as shown in the last line.

Particle filtering proposes a recursive approach to draw sequences from p(εt|yt−1), for

every t. Easiest way to proceed is just to describe the algorithm.

First period, t = 1: In order to simulate the integral corresponding to the first

period, we need to draw from p(ε1|y0, ε0). This is easy. We draw
{
ε1|0,s

}S
s=1

, according

to f(ε′|ε0). The notation ε1|0,s makes explicitly that the ε is a draw from p(ε1|y0, ε0).
Using these S draws, we can evaluate the simulated likelihood for period 1, in Eq.

(4). We are done for period t = 1.

Second period, t = 2: We need to draw from p(ε2|y1). Factorize this as:

p(ε2|y1) = p(ε1|y1) · p(ε2|ε1). (6)

Recall our notation that ε2 ≡ {ε1, ε2}. Consider simulating from each term separately:

• Getting a draw from p(ε1|y1), given that we already have draws
{
ε1|0,s

}
from

p(ε1|y0), from the previous period t = 1, is the heart of particle filtering.

We use the principle of importance sampling: by Bayes’ Rule,

p(ε1|y1) ∝ p(y1|ε1, y0) · p(ε1|y0)

Hence, if our desired sampling density is p(ε1|y1), but we actually have draws{
ε1|0,s

}
from p(ε1|y0), then the importance sampling weight for the draw ε1|0,s

is proportional to

τ s1 ≡ p(y1|ε1|0,s, y0).

Note that this coincides with the likelihood contribution for period 1, evaluated

at the shock ε1|0,s.

The SIR (Sampling/Importance Resampling) algorithm in Rubin (1988) pro-

poses that, making S draws with replacement from the samples
{
ε1|0,s

}S
s=1

,

using weights proportional to τ s1 , yields draws from the desired density p(ε1|y1),
which we denote {ε1,s}Ss=1. This is the filtering step.

Lecture notes: single-agent dynamics part 3 8

• For the second term in Eq. (6): we simply draw one εs2 from f(ε′|ε1,s), for each

draw ε1,s from the filtering step. This is the prediction step.

By combining the draws from these two terms, we have
{
ε2|1,s

}S
s=1

, which is S drawn

sequences from p(ε2|y1). Using these S draws, we can evaluate the simulated likeli-

hood for period 2, in Eq. (4).

Third period, t = 3: start again by factoring

p(ε3|y2) = p(ε2|y2) · p(ε3|ε2). (7)

As above, drawing from the first term requires filtering the draws
{
ε2|1,s

}S
s=1

, from

the previous period t = 2, to obtain draws {ε2,s}Ss=1. Given these draws, draw εs3 ∼
f(ε′|ε2,s) for each s.

And so on. By the last period t = T , you have{{
εt|t−1,s

}S
s=1

}T
t=1

.

Hence, the factorized likelihood in Eq. (4) can be approximated by simulation as∏
t

1

S

∑
s

l(yt|εt|t−1,s, yt−1).

As noted above, the likelihood term l(yt|εt|t−1,s, yt−1) coincides with the simulation

weight τ st . Hence, the simulated likelihood can also be constructed as

log l(yT |y0, ε0) =
∑
t

log

{
1

S

∑
s

τ st

}
.

Summary of particle filter simulator:

1. Start by drawing
{
ε1|0,s

}S
s=1

from p(ε1|y0, ε0).

2. In period t, we start with
{
εt−1|t−2,s

}S
s=1

, draws from p(εt−1|yt−2, ε0).

(a) Filter step: Calculate proportion weights τ st−1 ≡ p(yt−1|εt−1|t−2,s, yt−2)
using Eq. (5). Draw

{
εt−1|t−1,s

}S
s=1

by resampling from
{
εt−1|t−2,s

}S
s=1

with weights τ st−1.

Lecture notes: single-agent dynamics part 3 9

(b) Prediction step: Draw εst from p(εt|εt−1|t−1,s), for s = 1, . . . , S. Combine

to get
{
εt|t−1,s

}S
s=1

.

3. Set t = t+ 1, and go back to step 2. Stop when t = T + 1.

Note the difference between this recursive simulator, and the crude simulator de-

scribed previously. The crude simulator draws S sequences, and essentially assigns

zero weight to all sequences which do not match the observed sequence in the data. In

contrast, in particle filtering, in each period t, we just keep sequences where predicted

choices match observed choice that period. This will lead to more accurate evalua-

tion of the likelihood. Note that S should be large enough (relative to the sequence

length T) so that the filtering step does not end up assigning almost all weight to one

particular sequence εt|t−1,s in any period t.

References

Fernandez-Villaverde, J., and J. Rubio-Ramirez (2007): “Estimating Macroeco-
nomic Models: A Likelihood Approach,” Review of Economic Studies, 74, 1059–1087.

Flury, T., and N. Shephard (2008): “Bayesian inference based only on simulated likeli-
hood: particle filter analysis of dynamic economic models,” manuscript, Oxford Univer-
sity.

Pakes, A. (1986): “Patents as Options: Some Estimates of the Value of Holding European
Patent Stocks,” Econometrica, 54(4), 755–84.

Rubin, D. (1988): “Using the SIR Algorithm to Simulate Posterior Distributions,” in
Bayesian Statistics 3, ed. by J. Bernardo, M. DeGroot, D. Lindley, and A. Smith. Oxford
University Press.

