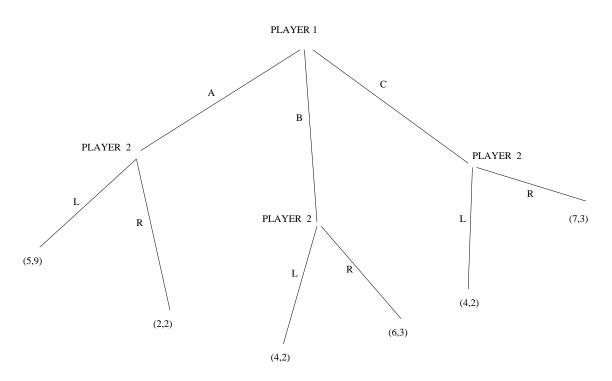
Ec 106 Problem Set #2

Oligopoly: practice problems


Return to the 2-firm case. Assume each firm produces with C(q) = cq, and market demand curve is p = a - bQ.

1. Cournot:

- (***) Solve for the Cournot Nash equilibrium quantities, prices, and profits for the two firms. Call these $q*, p*, \pi^*$.
- (***) What if these two firms formed a cartel and maximized joint profits? Solve for the resulting quantities, prices, and profits; call these q^j, p^j, π^j .
- What if firm 2 cheats when firm 1 sets $q_1 = q^j$? What are the resulting quantities, prices, and profits?
- What does this have to do with the prisoner's dilemma?
- (Think about) What if firms play the Cournot game for two consecutive periods? What are the chances that a cartel could survive, and how could this happen? What if they play for ten periods? What if they play forever? (Hint: how do we solve multi-period games?)
- 2. (***) Bertrand: derive the Bertrand nash equilibrium prices, quantities, and profits. Call these q^b, p^b, π^b .
- 3. (***) Stackelberg: If firm 1 is the Stackelberg leader, what are the resulting quantities, prices, and profits $(q_1^s, q_s^2), (p_1^s, p_2^s), (\pi_1^s, \pi_2^s)$.
- 4. Rank the quantities, prices, and profits computed in the problems marked (***).
- 5. Consider the following game tree (see figure 1)
- (a) List all of player 1's strategies
- (b) List all of player 2's strategies
- (c) What are the Nash equilibria of this game? Show why.
- (d) What are the subgame perfect equilibria of this game? Show why.
- 6. Construct a "Nash reversion"-type subgame-perfect equilibrium to the infinitely repeated Bertrand (price-setting) game. Assume there are two identical firms, each producing at constant marginal cost c. The market demand curve is p = a bQ.

Ec 106 Problem Set #2

Figure 1: Game tree for question 5

