(Largely) Review: Cost concepts The Cost Function

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount. Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $-AVC(q) = \frac{VC(q)}{q}; AFC(q) = \frac{F}{q};$ AC(q) = AVC(q) + AFC(q).

Example

•
$$C(q) = 125 + 5q + 5q^2$$

$$\bullet$$
 $AC(q) =$

•
$$MC(q) =$$

•
$$AFC(q) = 125/q$$

$$\bullet \ AVC(q) = 5 + 5q$$

	q	AC(q)	MC(q)
	1	135	15
	3	61.67	35
•	5	55	55
	7	57.86	75
	9	63.89	95

• AC rises if MC exceeds it, and falls if MC is below it. Implies that MC intersects AC at the minimum of AC.

Short-run vs. long-run costs:

- Short run: production technology given
- Long run: can adapt production technology to market conditions
- Long-run AC curve cannot exceed short-run AC curve: its the lower envelope

Example: "The division of labor is limited by the extent of the market" (Adam Smith)

- Division of labor requires high fixed costs (for example, assembly line requires high setup costs).
- Firm adopts division of labor only when scale of production (market demand) is high enough.
- Graph: Price-taking firm has "choice" between two production technologies.

Opportunity cost

The *opportunity cost* of a product is the value of the best forgone alternative use of the resources employed in making it.

Normal profit of a product is its selling price minus opportunity cost. Quit when normal profit < 0.

Example:

Car factory: a worker would make \$5 an hour

Two brothers, who make one lamp each hour, with materials costing \$7

What is opportunity cost of lamp?

Normal profit when market price of lamp is \$11? \$10? \$9?

Economies of scale: slope of AC curve

- AC'(q) < 0: increasing returns to scale
- AC'(q) > 0: decreasing returns to scale
- AC'(q) = 0: constant returns to scale

Example: U-shaped AC curve

- Factors affecting EOS:
 - Fixed costs
 - Congestion
 - specialization
- Measure of scale economies: AC(q)/MC(q)
 - Increasing RS
 - Decreasing RS
- Minimum efficient scale of production: smallest output which minimizes long-run AC.

Economies of scope 1

- $C(q_1, q_2) < C_1(q_1) + C_2(q_2)$
- Example (common fixed costs):

$$C_1(q_1) = 10 + 2q_1$$

 $C_2(q_2) = 10 + 3q_2$
 $C(q_1, q_2) = 10 + 2q_1 + 3q_2$

• Depends on levels of q_1 , q_2 : $C_1(q_1) = 5 + 2q_1$ $C_2(q_2) = 5 + 3q_2$ $C(q_1, q_2) = 10 + 3q_1 + 2q_2$ Consider two output levels: 1 and 2

(q_1,q_2)	$C_1(q_1)$	$C_2(q_2)$	$C(q_1, q_2)$
$\overline{(1,1)}$			
$\boxed{(1,2)}$			
(2,1)			
(2,2)			

Economies of Scope 2: Ray Average Costs

How to measure economics of scale for multiproduct firms? Need to define appropriate notion of "average costs" for this firm.

- What is AC for a multiproduct firm?
- Assume production of the different products i = 1, ..., N in **fixed proportions**, and let these proportions be $\lambda_1, ..., \lambda_N$, with $\sum_i \lambda_i = 1$.
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.
- Example: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- Example: auto (one body plus four wheels)

Economies of Scope 3: Ray Average Costs (contd)

- Define: Ray Average Costs (RAC(q)) for the composite quantity q: $\frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$
 - Graph: RAC concept only considers production combinations along "rays".
- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, then RAC(q) is $\frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- Slope of RAC(q) curve determines economies of scale for a multiproduct firm.

Economies of Scope 4

- Reasons for Economies of Scope
 - 1. Common inputs (cow yields beef and leather)
 - 2. Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)

Summary

- Define: cost function
- Returns to scale
- Economies of Scope