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Papers to be covered:

• Laffont, Ossard, and Vuong (1995)

• Guerre, Perrigne, and Vuong (2000)

• Haile, Hong, and Shum (2003)

In this lecture, focus on empirical of auction models. Auctions are models of asymmetric

information which have generated the most interest empirically. We begin by summarizing

some relevant theory.

1 Theoretical background

An auction is a game of incomplete information. Assume that there are N players, or

bidders, indexed by i = 1, . . . , N . There are two fundamental random elements in any

auction model.

• Bidders’ private signals X1, . . . ,XN . We assume that the signals are scalar random

variables, although there has been recent interest in models where each signal is multi-

dimensional.

• Bidders’ utilities: ui (Xi,X−i), where X−i ≡ {X1, . . . ,Xi−1,Xi+1, . . . ,XN}, the vec-

tor of signals excluding bidder i’s signal. Since signals are private, Vi ≡ ui(Xi,X−i) is

a random variable from all bidders’ point of view. In what follows, we will also refer

to bidder i’s (random) utility as her valuation.

Differing assumptions on the form of bidders’ utility function lead to the important dis-

tinction between common value and private value models. In the private value case,

Vi = Xi, ∀i: each bidder knows his own valuation, but not that of his rivals.1 In the (pure)

common value case, Vi = V, ∀i, where V is in turn a random variable from all bidders’ point

of view, and bidders’ signals are to be interpreted as their noisy estimates of the true but

known common value V . Therefore, signals will generally not be independent when com-

mon values are involved. More generally a common value model arises when ui(Xi,X−i) is

functionally dependent on X−i.

1More generally, in a private value model, ui(Xi, X−i) is restricted to be a function only of Xi.
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Before proceeding, we give some examples to illustrate the auction formats discussed above.

• Symmetric independent private values (IPV) model: Xi ∼ F , i.i.d. across all bid-

ders i, and Vi = Xi. Therefore, F (X1, . . . ,XN ) = F (X1) ∗ F (X2) · · · ∗ F (XN ), and

F (V1,X1, . . . , VN ,XN ) =
∏

i [F (Xi)]
2.

• Conditional independent model: signals are independent, conditional on a common

component V . Vi = V,∀i, but F (V,X1, . . . ,XN ) = F (V )
∏

i F (Xi|V ).

Models also differ depending on the auction rules. In a first-price auction, the object

is awarded to the highest bidder, at her bid. A second-price auction also awards the

object to the highest bidder, but she pays a price equal to the bid of the second-highest

bidder. (Sometimes second-price auctions are also called “Vickrey” auctions, after the late

Nobel laureate William Vickrey.) In an English or ascending auction, the price the raised

continuously by the auctioneer, and the winner is the last bidder to remain, and he pays an

amount equal to the price at which all of his rivals have dropped out of the auction. In a

Dutch auction, the price is lowered continuously by the auctioneer, and the winner is the

first bidder to agree to pay any price.

There is a large amount of theory and empirical work. In this lecture, we focus on first-

price auction models. We also discuss a few theoretical concepts that will come up in the

empirical papers discussed later.

1.1 Equilibrium bidding

In discussing equilibrium bidding in the different auction models, we will focus on the general

symmetric affiliated model, used in the seminal paper of Milgrom and Weber (1982). The

assumptions made in this model are:

• Vi = ui(Xi,X−i)

• Symmetry: F (V1,X1, . . . , VN ,XN ) is symmetric (i.e., exchangeable) in the indices i

so that, for example, F (VN ,XN , . . . , V1,X1) = F (V1,X1, . . . , VN ,XN ).

• The random variables V1, . . . , VN ,X1, . . . ,XN are affiliated. Let Z1, . . . , ZM and

Z∗
1 , . . . , Z∗

M denote two realizations of a random vector process, and Z̄ and Z de-

note, respectively, the component-wise maximum and minimum. Then we say that

2



Lecture notes: Auction models 3

Z1, . . . , ZM are affiliated if F (Z̄)F (Z) ≥ F (Z1, . . . , ZM )F (Z∗
1 , . . . , Z∗

M ). In other

words, large values for some of the variables make large values for the other variables

most likely. Affiliation implies useful stochastic orderings on the conditional distri-

butions of bidders’ signals and valuations, which is necessary in deriving monotonic

equilibrium bidding strategies.

Let Yi ≡ maxj 6=i Xj , the highest of the signals observed by bidder i’s rivals. Given affiliation,

the conditional expectation E[Vi|Xi, Yi] is increasing in both Xi and Yi.

Winner’s curse Another consequence of affiliation is the winner’s curse, which is just

the fact that

E[Vi|Xi] ≥ E[Vi|Xi > Yi]

where the conditioning event in the second expectation (Xi > Yi) is the event of winning

the auction.

To see this, note that

E[Vi|Xi] = EX−i
E [Vi|Xi;X−i] =

∫

· · ·

∫

︸ ︷︷ ︸

N−1

E [Vi|Xi;X−i]F (dX1, . . . , dXN )

≥

∫ Xi

· · ·

∫ Xi

︸ ︷︷ ︸

N−1

E [Vi|Xi;X−i]F (dX1, . . . , dXN )

= E [Vi|Xi > Xj , j 6= i] = E [Vi|Xi > Yi] .

In other words, if bidder i “naively” bids E [Vi|Xi], her expected payoff from a first-price

auction is negative for every Xi. In equilibrium, therefore, rational bidders should “shade

down” their bids by a factor to account for the winner’s curse.

This winner’s curse intuition arises in many non-auction settings also. For example, in

two-sided markets where traders have private signals about unknown fundamental value of

the asset, the ability to consummate a trade is “good news” for sellers, but “bad news” for

buyers, implying that, without ex-ante gains from trade, traders may not be able to settle

on a market-clearing price. The result is the famous “lemons” result by Akerlof (1970), as

well as a version of the “no-trade” theorem in Milgrom and Stokey (1982). Glosten and

Milgrom (1985) apply the same intuition to explain bid-ask spreads in financial markets.
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Next, we cover some specific auction results in some detail, in order to understand method-

ology in the empirical papers.

1.2 First-price auctions

We derive the symmetric monotonic equilibrium bidding strategy b∗(·) for first-price auc-

tions. If bidder i wins the auction, he pays his bid b∗(Xi). His expected profit is

=E [(Vi − b)1 (b∗(Yi) < b) |Xi = x]

=EYi
E
[

(Vi − b)1
(

Yi < b∗−1(b)
)

|Xi = x, Yi

]

=EYi

[

(V (x, Yi) − b)1
(

Yi < b∗−1(b)
)

|Xi = x
]

=

∫ b∗−1(b)

−∞
(V (x, Yi) − b)f(Yi|x)dYi.

The first-order conditions are

0 = −

∫ b∗−1(b)

−∞
f(Yi|x)dYi +

1

b∗′(x)

[
(V (x, x) − b) ∗ fYi|Xi

(x|x)
]
⇔

0 = − FYi|x(x|x) +
1

b∗′(x)

[
(V (x, x) − b) ∗ fYi|Xi

(x|x)
]
⇔

b∗′(x) = (V (x, x) − b∗(x))

[
f(x|x)

F (x|x)

]

⇒

b∗(x) = exp

(

−

∫ x

x

f(s|s)

F (s|s)
ds

)

b(x) +

∫ x

x

V (α,α)dL(α|x)

where

L(α|x) = exp

(

−

∫ x

α

f(s|s)

F (s|s)

)

.

Initial condition: b(x) = V (x, x).

For the IPV case:

V (α,α) = α

F (s|s) = F (s)N−1

f(s|s) = (n − 1)F (s)N−2f(s)
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An example Xi ∼ U [0, 1], i.i.d. across bidders i. Then F (s) = s, f(s) = 1. Then

b∗(x) = 0 +

∫ x

0
α exp

(

−

∫ x

α

(n − 1)f(s)

sF (s)
ds

)
(n − 1)f(α)

αF (α)
dα

=

∫ x

0
exp

(

−(n − 1)(log
x

α
)
)

(n − 1)dα

=

∫ x

0

(α

x

)N−1
(N − 1)dα

= α

(
N − 1

N

)(α

x

)N
]x

0

=

(
N − 1

N

)

x.

1.2.1 Reserve prices

A reserve price just changes the initial condition of the equilibrium bid function. With

reserve price r, initial condition is now b(x∗(r)) = r. Here x∗(r) denotes the screening

value, defined as

x∗(r) ≡ inf {x : E [Vi|Xi = x, Yi < x] ≥ r} . (1)

Conditional expectation in brackets is value of winning to bidder i, who has signal x.

Screening value is lowest signal such that bidder i is willing to pay at least the reserve price

r.

(Note: in PV case, x∗(r) = r. In CV case, with affiliation, generally x∗(r) > r, due to

winners curse.)

Equilibrium bidding strategy is now:

b∗(x)

{

= exp
(

−
∫ x

x∗(r)
f(s|s)
F (s|s)ds

)

r +
∫ x

x∗(r) V (α,α)dL(α|x) for x ≥ x∗(r)

< r for x < x∗(r)

For IPV, uniform example above:

b∗(x) =

(
N − 1

N

)

x +
1

N

( r

x

)N−1
r.

1.3 Second-price auctions

Assume the existence of a monotonic equilibrium bidding strategy b∗(x). Next we derive

the functional form of this equilibrium strategy.
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Given monotonicity, the price that bidder i will pay (if he wins) is b∗(Yi): the bid submitted

by his closest rivals. He only wins when his bid b < b∗(Yi). Therefore, his expected profit

from participating in the auction with a bid b and a signal Xi = x is:

EYi
[(Vi − b∗(Yi))1 (b∗(Yi) < b) |Xi = x]

=EYi
[(Vi − b∗(Yi))1 (Yi < Xi) |Xi = x]

=EYi|Xi
E [(Vi − b∗(Yi))1 (Yi < Xi) |Xi = x, Yi]

=EYi|Xi
[(E(Vi|Xi, Yi) − b∗(Yi))1 (Yi < Xi)]

≡EYi|Xi
[(v(Xi, Yi) − b∗(Yi))1 (Yi < Xi)]

=

∫ (b∗)−1(b)

−∞
(v(x, Yi) − b∗(Yi)) f (Yi|Xi = x) .

(2)

Bidder i chooses his bid b to maximize his profits. The first-order conditions are (using

Leibniz’ rule):

0 = b∗−1′(b) ∗
[

v(x, b∗−1(b)) − b∗(b∗−1(b))
]

∗ f(b∗−1(b)|Xi) ⇔

0 =
1

b∗′(b)
[v(x, x) − b∗(x)] ∗ f(b∗−1(b)|Xi) ⇔

b∗(x) = v(x, x) = E [Vi|Xi = x, Yi = x] .

In the PV case, the equilibrium bidding strategy simplifies to

b∗(x) = v(x, x) = x.

With reserve price, equilibrium strategy remains the same, except that bidders with signals

less than the screening value x∗(r) (defined in Eq. (1) above) do not bid.

2 Laffont-Ossard-Vuong (1995): “Econometrics of First-Price

Auctions”

• Structural estimation of 1PA model, in IPV context.

• Example of a parametric approach to estimation.

• Goal of empirical work:

– We observe bids b1, . . . , bn, and we want to recover valuations v1, . . . , vn.
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– Why? Analogously to demand estimation, we can evaluate the “market power”

of bidders, as measured by the margin v − p.

Could be interesting to examine: how fast does margin decrease as n (number

of bidders) increases?

– Useful for the optimal design of auctions:

1. What is auction format which would maximize seller revenue?

2. What value for reserve price would maximize seller revenue?

• Another exercise in simulation estimation

���

MODEL

• I bidders

• Information structure is IPV: valuations vi, i = 1, . . . , I are i.i.d. from F (·|zl, θ) where

l indexes auctions, and zl are characteristics of l-th auctions

• θ is parameter vector of interest, and goal of estimation

• p0 denotes “reserve price”: bid is rejected if < p0.

• Dutch auction: strategically identical to first-price sealed bid auction.

Equilibrium bidding strategy is:

bi = e
(
vi, I, p0, F

)
=







vi −

R vi

p0 F (x)I−1dx

F (vi)I−1 if vi > p0

0 otherwise
(3)

Note: (1) bi(vi = p0) = p0; (2) strictly increasing in vi.

���

Dataset: only observe winning bid bw
l for each auction l. Because bidders with lower bids

never have a chance to bid in Dutch auction.

Given monotonicity, the winning bid bw = e
(
v(I), I, p0, F

)
, where v(I) ≡ maxi vi (the highest

order statistic out of the I valuations).
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Furthermore, the CDF of v(I) is F (·|zl, θ)I , with corresponding density I · F I−1f .

���

Goal is to estimate θ by (roughly speaking) matching the winning bid in each auction l to

its expectation.

Expected winning bid is (for simplicity, drop zl and θ now)

Ev(I)>p0(bw) =

∫ ∞

p0

e
(
v(I), I, p0, F

)
I · F (v|θ)I−1f(v|θ)dv

= I

∫ ∞

p0

(

v −

∫ v

p0 F (x)I−1dx

F (v)I−1

)

F (v|θ)I−1f(v|θ)dv

= I

∫ ∞

p0

(

v · F (v)I−1 −

∫ ∞

p0

F (x)I−1dx

)

f(v)dv. (∗).

���

If we were to estimate by simulated nonlinear least squares, we would proceed by finding

θ to minimize the sum-of-squares between the observed winning bids and the predicted

winning bid, given by expression (*) above. Since (*) involves complicated integrals, we

would simulate (*), for each parameter vector θ.

How would this be done:

• Draw valuations vs, s = 1, . . . , S i.i.d. according to f(v|θ). This can be done by

drawint u1, . . . , uS i.i.d. from the U [0, 1] distribution, then transform each draw:

vs = F−1(us|θ).

• For each simulated valuation vs, compute integrand Vs = vsF (vs|θ)I−1−
∫ vs

p0 F (x|θ)I−1dx.

(Second term can also be simulated, but one-dimensional integral is that very hard to

compute.)

• Approximate the expected winning bid as 1
S

∑

s Vs.

However, the authors do not do this— they propose a more elegant solution. In particular,

they simplify the simulation procedure for the expected winning bid by appealing to the

Revenue-Equivalence Theorem: an important result for auctions where bidders’ signals

are independent, and the model is symmetric. (This was first derived explicitly in Myerson

(1981), and this statement is due to Klemperer (1999).)
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Theorem 1 (Revenue Equivalence) Assume each of N risk-neutral bidders has a privately-

known signal X independently drawn from a common distribution F that is strictly increas-

ing and atomless on its support [X, X̄ ]. Any auction mechanism which is (i) efficient in

awarding the object to the bidder with the highest signal with probability one; and (ii) leaves

any bidder with the lowest signal X with zero surplus yields the same expected revenue for

the seller, and results in a bidder with signal x making the same expected payment.

From a mechanism design point of view, auctions are complicated because they are multiple-

agent problems, in which a given agent’s payoff can depend on the reports of all the agents.

However, in the independent signal case, there is no gain (in terms of stronger incentives) in

making any given agent’s payoff depend on her rivals’ reports, so that a symmetric auction

with independent signal essentially boils down to independent contracts offered to each of

the agents individually.

Furthermore, in any efficient auction, the probability that a given agent with a signal x

wins is the same (and, in fact, equals F (x)N−1). This implies that each bidder’s expected

surplus function (as a function of his signal) is the same, and therefore that the expected

payment schedule is the same.

���

By RET:

• expected revenue in 1PA same as expected revenue in 2PA

• expected revenue in 2PA is Ev(I−1)

• with reserve price, expected revenue in 2PA is E max(v(I−1), p0). (Note: with IPV

structure, reserve price r screens out same subset of valuations v ≤ r in both 1PA

and 2PA.)

���

In 1PA, expected revenue corresponds to expected winning bid. Hence, expected winning

bid is:

Ev(I)
b∗(v(I)) = Ev(I)

E
[
max

(
v(I−1), p

0
)
|v(I)

]
= E

[
max

(
v(I−1), p

0
)]

which is insanely easy to simulate:

For each parameter vector θ, and each auction l

9
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• For each simulation draw s = 1, . . . , S:

– Draw vs
1, . . . , vs

Il
: vector of simulated valuations for auction l (which had Il

participants)

– Sort the draws in ascending order: vs
1:Il

< · · · < vs
Il:Il

– Set bw,s
l = vI−1l:Il

(ie. the second-highest valuation)

– If bw,s
l < p0

l , set bw,s
l = p0

l . (ie. bw,s
l = max

(

vs
I−1l:Il

, p0
l

)

)

• Approximate E (bw
l ; θ) = 1

S

∑

s bw,s
l .

Estimate θ by simulated nonlinear least squares:

min
θ

1

L

L∑

l=1

(bw
l − E (bw

l ; θ))2 .

Results.

���

Remarks:

• Problem: bias when number of simulation draws S is fixed (as number of auctions

L → ∞). Propose bias correction estimator, which is consistent and asymptotic

normal under these conditions.

• This clever methodology is useful for independent value models: works for all cases

where revenue equivalence theorem holds.

• Does not work for affiliated value models (including common value models)

���

3 Application: internet used car auctions

• Consider Lewis (2007) paper on used cars sold on eBay (simplified exposition)

• Question: does information revealed by sellers lead to high prices? (Question about

the credibiltiy of information revealed by sellers.)
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• Observe transsactions price in ascending auction. Assume that transaction price is

equal to

v(Xn−1:n,Xn−1:n)

(as in second-price auction).

• Consider pure common value setup with conditionally independent signals. Log-

normality is assumed:

ṽ ≡ log v = µ + σǫv ∼ N(µ, σ2)

xi|ṽ = ṽ + rǫi ∼ N(ṽ, r2)

These are, respectively, the prior distribution of valuations, and the conditional dis-

tribution of signals.

• Allow seller information variables z to affect the mean and variance of the prior

distribution:

µ = α′z

σ = κ(β′z).

κ(·) is just a transformation of the index β′z to ensure that the estimate of σ > 0.

• z includes variables such as: number of photos, how much text is on the website.

(Larger z denotes better information.)

• Question: is α > 0?

• Results.

4 Guerre-Perrigne-Vuong (2000): Nonparametric Identifica-

tion and Estimation in IPV First-price Auction Model

The recent emphasis in the empirical literature is on nonparametric identification and esti-

mation of auction models. Motivation is to estimate bidders’ unobserved valuations, while

avoiding parametric assumption (as in the LOV paper).

• Recall first-order condition for equilibrium bid (general affiliated values case):

b′(x) = (v(x, x) − b(x)) ·
fyi|xi

(x|x)

Fyi|xi
(x|x)

; yi ≡ max
j 6=i

xi. (4)

11
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• In IPV case:

v(x, x) = x

Fyi|xi
(x|x) = F (x)n−1

fyi|xi
(x|x) =

∂

∂x
F (x)n−1 = (n − 1)F (x)n−2f(x)

so that first-order condition becomes

b′(x) = (x − b(x)) · (n − 1)
F (x)n−2f(x)

F (x)n−1

= (x − b(x)) · (n − 1)
f(x)

F (x)
.

(5)

• Now, note that because equilibrium bidding function b(x) is just a monotone increasing

function of the valuation x, the change of variables formulas yield that (take bi ≡ b(xi))

–

G(bi) = F (xi)

–

g(bi) = f(xi) · 1/b
′(xi)

.

Hence, substituting the above into Eq. (5):

1

g(bi)
= (n − 1)

xi − bi

G(bi)

⇔ xi = bi +
G(bi)

(n − 1)g(bi)
.

(6)

Everything on the RHS of the preceding equation is observed: the equilibrium bid

CDF G and density g can be estimated directly from the data, in nonparametric

fashion (assuming a dataset consisting of T n-bidder auctions):

ĝ(b) ≈
1

T · n

T∑

t=1

n∑

i=1

1

h
K

(
b − bit

h

)

Ĝ(b) ≈
1

T · n

T∑

t=1

n∑

i=1

K
(

b−bit

h

)

· 1(bit ≤ b)

∑T
t=1

∑n
i=1 K

(
b−bi′t′

h

) .

(7)
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The first is a kernel density estimate of bid density. The second is a kernel-smoothed

empirical CDF. The bandwidth h is a design variable which should be chosen such

that it → 0 as T → ∞.

• Hence, the IPV first-price auction model is nonparametrically identified. For each

observed bid bi, the corresponding valuation xi = b−1(bi) can be recovered as:

x̂i = bi +
Ĝ(bi)

(n − 1)ĝ(bi)
. (8)

Hence, GPV recommend a two-step approach to estimating the valuation distribution f(x):

1. In first step, estimate G(b) and g(b) nonparametrically, using Eqs. (7).

2. In second step, estimate f(x) by using kernel density estimator of recovered valuations:

f̂(x) ≈
1

T · n

T∑

t=1

n∑

i=1

1

h
K

(
x − x̂it

h

)

. (9)

Deriving the asymptotics of the quantity (9) is complicated by the fact that the valuations

x̂it are estimated. In their paper, GPV derive an upper bound on the rate at which the

function f(x) can be estimated using their procedure, and show how this rate can be

achieved (by the right choice of the bandwidth sequence).

Athey and Haile (2002) shows many nonparametric identification results for a variety of

auction models (first-price, second-price) under a variety of assumption on the information

structure (symmetry, asymmetry). They focus on situations when only a subset of the bids

submitted in an auction are available to a researcher.

As an example of such a result, we see that identification continues to hold, even when only

the highest-bid in each auction is observed. Specifically, if only bn:n is observed, we can

estimate Gn:n, the CDF of the maximum bid, from the data. Note that the relationship

between the CDF of the maximum bid and the marginal CDF of an equilibrium bid is

Gn:n(b) = G(b)n

implying that G(b) can be recovered from knowledge of Gn:n(b). Once G(b) is recovered,

the corresponding density g(b) can also be recovered, and we could solve Eq. (8) for every

b to obtain the inverse bid function.

���
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5 Affiliated values models

Can this methodology be extended to affiliated values models (including common value

models)?

However, Laffont and Vuong (1996) nonidentification result: from observation of bids in

n-bidder auctions, the affiliated private value model (ie. a PV model where valuations are

dependent across bidders) is indistinguishable from a CV model.

• Intuitively, all you identify from observed bid data is joint density of b1, . . . , bn. In

particular, can recover the correlation structure amongst the bids. But correlation of

bids in an auction could be due to both affiliated PV, or to CV.

5.1 Affiliated private value models

Li, Perrigne, and Vuong (2002) proceed to consider nonparametric identification and esti-

mation of the affiliated private values model. In this model, valuations xi, . . . , xn are drawn

from some joint distribution (and there can be arbitrary correlation amongst them).

First order condition for this model is: for bidder i

b′(xi) = (xi − b(x)) ·
fyi|xi

(x|x)

Fyi|xi
(x|x)

; yi ≡ max
j 6=i

xi.

where yi ≡ maxj 6=i {x1, . . . , xn}.

Procedure similar to GPV can be used here to recover, for each bid bi, the corresponding

valuation xi = b−1(bi). As before, exploit the following change of variable formulas:

•

Gb∗|b(b|b) = Fy|x(x|x)

•

gb∗|b(b|b) = fy|x(x|x) · 1/b′(x)

where b∗ denotes (for a given bidder), the highest bid submitted by this bidder’s rivals: for

a given bidder i, b∗i = maxj 6=i bj . To prepare what follows, we introduce n subscript (so we

index distributions according to the number of bidders in the auction).

14
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Li, Perrigne, and Vuong (2000) suggest nonparametric estimates of the form

Ĝn(b; b) =
1

Tn × h × n

T∑

t=1

n∑

i=1

K

(
b − bit

h

)

1 (b∗it < b, nt = n)

ĝn(b; b) =
1

Tn × h2 × n

T∑

t=1

n∑

i=1

1(nt = n)K

(
b − bit

h

)

K

(
b − b∗it

h

)

.

(10)

Here h and h are bandwidths and K(·) is a kernel. Ĝn(b; b) and ĝn(b; b) are nonparametric

estimates of

Gn(b; b) ≡ Gn(b|b)gn (b) =
∂

∂b
Pr(B∗

it ≤ m,Bit ≤ b)|m=b

and

gn(b; b) ≡ gn(b|b)gn (b) =
∂2

∂m∂b
Pr(B∗

it ≤ m,Bit ≤ b)|m=b

respectively, where gn(·) is the marginal density of bids in equilibrium. Because

Gn(b; b)

gn(b; b)
=

Gn(b|b)

gn(b|b)
(11)

Ĝn(b;b)
ĝn(b;b) is a consistent estimator of Gn(b|b)

gn(b|b) . Hence, by evaluating Ĝn(·, ·) and ĝn(·, ·) at each

observed bid, we can construct a pseudo-sample of consistent estimates of the realizations

of each xit = b−1(bit) using Eq. (4):

x̂it =
Ĝn(bit; bit)

ĝn(bit; bit)
. (12)

Subsequently, joint distribution of x1, . . . , xn can be recovered as sample joint distribution

of x̂1, . . . , x̂n.

5.2 Common value models: testing between CV and PV

Laffont-Vuong did not consider variation in n, the number of bidders.

In Haile, Hong, and Shum (2003), we explore how variation in n allows us to test for

existence of CV.

Introduce notation:

v(xi, xi, n) = E[Vi|Xi = xi,max
j 6=i

Xj = xi, n].

Recall the winner’s curse: it implies that v(x, x, n) is invariant to n for all x in a PV model

but strictly decreasing in n for all x in a CV model.

15
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Consider the first-order condition in the common value case:

b′(x, n) = (v(x, x, n) − b(x, n)) ·
fyi|xi,n(x|x)

Fyi|xi,n(x|x)
; yi ≡ max

j 6=i
xi.

Hence, the Li, Perrigne, and Vuong (2002) procedure from the previous section can be

used to recover the “pseudovalue” v(xi, xi, n) corresponding to each observed bid bi. Note

that we cannot recover xi = b−1(bi) itself from the first-order condition, but can recover

v(xi, xi, n). (This insight was also articulated in Hendricks, Pinkse, and Porter (2003).)

In Haile, Hong, and Shum (2003), we use this intuition to develop a test for CV:

H0 (PV) : E [v(X,X;n)] = E [v(X,X;n + 1)] = · · · = E [v(X,X; n̄)]

H1 (CV) : E [v(X,X;n)] > E [v(X,X;n + 1)] > · · · > E [v(X,X; n̄)]

16
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6 Revenue Equivalence, Optimal Auctions, and Linkage Prin-

ciple

6.1 Revenue Equivalence

Consider the auction as an example of a mechanism, which is a general scheme whereby

agents with private types v give a report ṽ of their type (where possibly ṽ 6= v). The auction

mechanism consists of two functions:

• T (ṽ): payment agent must make if his report is ṽ

• P (ṽ): probability of winning the object if his report is ṽ.

The surplus of an agent with type v, who reports that his type is ṽ, is “quasilinear”:

S(ṽ; v) ≡ vP (ṽ) − T (ṽ).

The seller’s mechanism design problem is to choose the functions P (·) and T (·) to maximize

his expected profits. By the “revelation principle” (for which the 2007 Nobel Laureate

Roger Myerson is most well known for), we can restrict attention to mechanisms which

satisfy an incentive compatibility condition, which requires that agents find it in their

best interest to report the truth.

The revenue equivalence result falls out as an implication of quasilinearity and incentive

compatibility. Assuming differentiability, incentive compatibility implies the following first-

order condition:

∂S(ṽ; v)

∂ṽ

∣
∣
∣
∣
ṽ=v

= vP ′(v) − T ′(v) = 0. (13)

Hence, under an IC mechanism, the surplus of an agent with type v is just equal to

S̄(v) ≡ S(v; v) = vP (v) − T (v).

Given quasilinearity, instead of viewing the seller as setting P and T functions, can view

him as setting P and S̄ functions, and T (v) = S̄(v) − vP (v).

By Eq. (13), we see that IC places restrictions on the S̄ function that seller can choose.

Namely, the derivative of the S̄ function must obey:

S̄′(v) = P (v) + vP ′(v) − T ′(v)

= P (v) + 0
(14)

17
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where the second line follows from Eq. (13). This operation is the “envelope condition”.

Hence, integrating up, the S̄ function obeys

S̄(v) = S̄(v) +

∫ v

v

P (v)dv (15)

where v denotes the lowest type. From the above, we see that any IC-auction mechanism

with quasilinear preferences is completely characterized by (i) the quantity S̄(v), the surplus

gained by the lowest type; and (ii) P (·), the probability of winning.

Now note that, under independence of types, the monotonic equilibrium in the standard

auction forms (including first-price and second-price auctions) have the same P (v) function.

This is because the object is always awarded to the bidder with the highest type, so that

for any v, P (v) is just the probability that a bidder with type v has the highest type;

that is, with N bidders, and each type v distributed i.i.d. from distribution F (v), we have

P (v) = [F (v)]N−1. Furthermore, the standard auction forms also have the condition that

b(v) = v, so that S̄(v) = 0.

Hence, by quasilinearity, the standard auction forms also have the same T function, given

by T (v) = S(v) − vP (v). Since the T function is the revenue function for the seller, for

each type, we conclude that the standard auction forms give the seller the same expected

revenue.

6.2 Optimal auctions

Now consider the seller’s optimal choice of mechanism. As the discussion above showed,

we can just focus on the seller’s choice of S̄(v) and P (·). These are chosen to maximize

expected revenue from selling to each bidder, which is equal to

ER =

∫ v̄

v

T (v)f(v)dv

=

∫ v̄

v

[vP (v) − S̄(v)]f(v)dv

=

∫ v̄

v

vP (v)f(v)dv −

∫ v̄

v

f(v)[

∫ v

v

P (x)dx]dv −

∫ v̄

v

S̄(v)f(v)dv

=

∫ v̄

v

P (v)f(v)

[

v −
1 − F (v)

f(v)

]

dv − S̄(v)

≡

∫ v̄

v

P (v)f(v)v∗dv.

(16)
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The third equality follows by substituting in the IC constraint (15). The fourth equality

uses integration by parts to simplify the second term, with the substitution u =
∫ v̄

v
P (x)dx

and dv = f(v)dv. In the above, V ∗ is called the “virtual type” corresponding to a type v.

The interpretation is that the revenue that the seller makes from a bidder with type v is

v∗ ≤ v, so that the deviation 1−F (v)
f(v) is the bidder’s “information rent” which arises because

only the bidder knows his type.

Under the additional assumption:

(∗)
1 − F (v)

f(v)
is decreasing in v

then v∗ is increasing in v.2 In this case, given a set of N bidders, the seller just wants

to award the object to the bidder with the highest report. To implement this, he will

set P (v) = Pr(v is highest out of N signals) = F (v)N−1. This is just like in the standard

auction forms.

However, because of the information rent, he will not be willing to sell to all bidders, but

only those with non-negative v∗. Thus he will set a reserve price, such that all bidders with

v∗ ≤ 0 are excluded. Let r∗ denote this optimal reserve price. Recall that, with a reserve

price r and IPV, the lower bound on bids is given by the condition b(r) = r, that is, the

reserve price r screens out bidders with valuations v ≤ r. Hence, the optimal reserve price

r∗ satisfies

r∗ −
1 − F (r∗)

f(r∗)
= 0.

r∗ depends on the distribution of types f(v). For example, if v ∼ U [0, 1], then

0 = r∗ −
1 − F (r∗)

f(r∗)
= r∗ −

1 − r∗

1
= 2r∗ − 1 ⇒ r∗ =

1

2
.

6.3 Linkage principle

See handout from Krishna (2002).

6.4 Important results under non-independence

The crucial assumption for the RET is independence of bidder types. This turns a compli-

cated multi-agent mechanism design problem to the single-agent problem, which was how

2In statistics, the quantity f(v)/[1 = F (v)] is called the hazard function, so that assumption (*) is

equivalently that the hazard function of v is increasing.
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we presented it in the previous sections.

When types are no longer independent (as in the general affiliated case of Milgrom and

Weber (1982)), revenue equivalence of the standard auction forms no longer holds. However,

a remarkable series of papers (Cremer and McLean (1985), Cremer and McLean (1988),

McAfee and Reny (1992)) argued that the seller can potentially exploit dependence among

bidder types to extract all the surplus in the auction.

Note that in the independent case, if a bidder’s valuation is x, but he only needs to pay

x∗ = x− 1−F (x)
f(x) , implying that he gets an “information rent” equal to the inverse hazard rate,

1−F (x)
f(x) (the highest type x̄ gets zero information rent; this is the familiar “no distortion at

the top” result from optimal mechanism design). Thus it is indeed remarkable that relaxing

the independence assumption allows the designer to extract all the surplus.

We consider this insight for a two-bidder correlated private values auction, as considered

in McAfee and Reny (1992) (pp. 397–398). Bidders 1 and 2 have values v1 and v2, which

are both discrete-valued from the finite set {v1, . . . , vn}. Let P denote the n× n matrix of

conditional probabilities: the (i, j)-th element of P is the probability that (from bidder 1’s

point of view) bidder 2 has value vj, given that bidder 1 has value vi. Clearly, the rows of

P should sum to one.

Cremer and McLean focus on simple two-part mechanisms. First, bidders find out their

values, and then choose from among a menu of participation fee schedules offered by the

seller. These schedules specify the fixed fee that each bidder must pay, as a function of both

bidders’ reports. Second, the two bidders participate in a Vickrey (second-price) auction.

Truth-telling is assured in the Vickrey auction, so we focus on the optimal design of the

participation fee schedules assuming that both bidders report the truth, i.e., report v1 and

v2.

In what follows, we focus on bidder 1 (argument for bidder 2 is symmetric). Intuitively, the

seller wants to design the fee schedules so that bidder 1 pays an amount arbitrarily close to

his expected profit π1 from participating which, given his value v1, is v1 −E[v2|v1] (due to

second-stage Vickrey auction). Given the discreteness in values, without loss of generality

we can consider fee schedules of the form where, for the m-th schedule, bidder 1 must pay an

amount zmij if he announces v1 = vi, but bidder 2 announces v2 = vj . Therefore bidder 1’s

expected profit from schedule m, given his type v1 = vi, is vi−E[v2|v1 = vi]−
∑n

j=1 pijzmij .

Assume that the seller offers n different schedules, indexed m = 1, . . . n. Also assume that
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zmij = vm − E[v2|v1 = vm] + αm ∗ xmj . Hence, the net expected payoff to bidder 1, who

has valuation vi, chooses schedule m, and then the bidders announce (vi, vj), are:

v1 − E[v2|v1 = vi] − (vm − E[v2|v1 = vm]) − αm

n∑

j=1

pijxmj .

It turns out that the parameter α will be the same across all schedules, and so we eliminate

the m subscript from these quantities.

In order for the seller to design schedules which extract all of bidder 1’s surplus, we require

that:

1. For each i = 1, . . . , n, there exists a vector ~xi ≡ (xi1, . . . , xin)′ such that

n∑

j=1

pijxij = 0,

n∑

j=1

pi′jxij ≤ 0, ∀i′ 6= i :

that is, the vector ~xi “separates” the i-th row of P from the other rows, at 0.

2. α must be set sufficiently large so that, for all i = 1, . . . , n, if bidder 1 has value v1 = vi

he will choose schedule i. This implies that his expected profit from choosing schedule

i exceeds that from choosing any schedule i′ 6= i. These incentive compatibility

conditions pin down α:

− α ∗

n∑

j=1

pijxij ≥ vi − E[v2|v1 = vi] − (vi′ − E[v2|v1 = vi′ ]) − α ∗

n∑

j=1

pijxi′j , ∀i′ 6= i

⇔0 ≥ vi − E[v2|v1 = vi] − (vi′ − E[v2|v1 = vi′ ]) − αi ∗
n∑

j=1

pijxi′j, ∀i′ 6= i

⇔α > max
i′ 6=i

(
vi − E[v2|v1 = vi]

)
−
(
vi′ − E[v2|v1 = vi′ ]

)

∑n
j=1 pijxi′j

.

A sufficient condition for the first point above is that, for all i = 1, . . . , n, the i-th row

of P is not in the (n-dimensional) convex set spanned by all the other rows of P .3 Then

we can apply the separating hyperplane theorem to say that there always exists a vector

(xi1, . . . , xin)′ which separates the i-th row of P from the convex set composed of convex

combinations of the other n − 1 rows of P .

3Or, using terminology in McAfee and Reny (1992), the i-th row of P is not in the convex hull of the

other n − 1 rows of P .
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In order for the i-th row of P is not in the (n-dimensional) convex set spanned by all the

other rows of P , we require that the i-th row of P cannot be written as a linear combination

of the other n − 1 rows, i.e., that all the rows of P are linear independent. As Cremer and

McLean (1988) note, this is a full rank condition on P .

As an example, consider the case where the P matrix is diagonal (that is, pii = 1 for all

i = 1, . . . , n). This is the case of “Stalin’s food taster”. In this case, the vector ~xi with

element xii = 0 and xij = −1 for j 6= i satisfies point 1. The numerator of the expression

for α is equal to 0. Thus any arbitrarily small participation fee will lead to full surplus

extraction!
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