Exclusive dealing contracts

- Return to phenomenon of *exclusive dealing*: upstream seller dictates that it is sole source for downstream retailer
- Previously: explain by upstream moral hazard (eg. upstream manufacturer wants to recoup its R&D costs)
- Next abstract away from these issues. Ask instead: can exclusive dealing be anti-competitive (i.e., deter entry)?

Chicago school answer: No

- Reduced competition means higher wholesale price \iff lower profits for retailer
- Since signing ED contract is voluntary, retailer would never voluntarily enter into a relationship with lower profits.

Consider model where retailer would voluntarily sign such contracts: Aghion/Bolton model (handout)

Setup

Graph: Incumbent (\mathcal{I}) and entrant (\mathcal{E}) upstream seller; one downstream retailer/buyer (\mathcal{B})

 \mathcal{B} demands one unit of product, derives utility 1 from it.

 \mathcal{I} produces at cost 1/2, sells at price P.

 \mathcal{E} has cost c_e , unknown to \mathcal{B} or \mathcal{I} ; it is uniformly distributed between [0,1]. If enter, sells at price \tilde{P} .

Two stage game:

- 1. \mathcal{I} and \mathcal{B} negotiate a contract. \mathcal{E} decides whether or not to enter.
- 2. Production and trade:
 - Contract must be obeyed.
 - Bertrand competition between \mathcal{I} and \mathcal{E} .

In the absence of contract 1 Graph:

- Bertrand competition if \mathcal{E} enters: market price is $\max\{c_e, 1/2\}$
 - If $c_e < 1/2$, \mathcal{E} sells, at $\tilde{P} = 1/2$.
 - If $c_e > 1/2$, \mathcal{I} sells, at $P = c_e$.
- \mathcal{E} enters only when profit > 0: only when $c_e < 1/2$. Cost threshold c^* is 1/2. This is with probability $\phi = 1/2$. This is efficient: \mathcal{E} enters only when technology is superior to \mathcal{I} .
- If \mathcal{E} doesn't enter, \mathcal{I} charges 1.

In the absence of contract 2

Sumup:

- Expected surplus of \mathcal{B} : $\phi * \frac{1}{2} + (1 \phi) * (1 1) = \frac{1}{4}$.
- Expected surplus of \mathcal{I} : $\phi * 0 + (1 \phi) * (1 1/2) = \frac{1}{4}$.
- \mathcal{B} and \mathcal{I} will write contract only when it leads to higher expected surplus for *both* \mathcal{B} and \mathcal{I} . This is Chicago school argument.
- Question: Is there such a contract which would deter \mathcal{E} 's entry (i.e., lower cost threshold $c^* < 1/2$)?

With a contract 1

Consider a contract b/t \mathcal{B} and \mathcal{I} which specifies

- 1. P: price at which \mathcal{B} buys from \mathcal{I}
- 2. P_0 : penalty if \mathcal{B} switches to \mathcal{E} (liquidated damages)

What is optimal (P, P_0) ?

- What is \mathcal{B} 's expected surplus from contract? (1-P) if buy from \mathcal{I} ; in order to generate sale, \mathcal{E} must set \tilde{P} s.t. \mathcal{B} gets surplus of at least (1-P). So: \mathcal{B} 's expected surplus is (1-P).
- \mathcal{B} get surplus of $\frac{1}{4}$ without contract, so will only accept contract if surplus $\geq \frac{1}{4} \Leftrightarrow (1-P) \geq \frac{1}{4}$.
- When will \mathcal{E} enter? If \mathcal{E} enters, it will set $\tilde{P} = P P_0$. In order to make positive profit $c_e \leq \tilde{P} = P - P_0$.
- \mathcal{E} enters with probability $\phi' = \max\{0, P P_0\}$.

With a contract 2

• \mathcal{I} proposes P, P_0 to maximize his expected surplus, subject to \mathcal{B} 's participation:

$$\max_{P,P_0} \phi' * P_0 + (1 - \phi') * (P - 1/2)$$
subject to $1 - P \ge 1/4$.

- Set P as high as possible: P = 3/4.
- Graph: optimal $P_0 = 1/2$, so that \mathcal{I} 's expected surplus = 5/16 > 1/2.
- \mathcal{B} 's expected surplus: 1/4. as before.
- \mathcal{E} : only enter when $c_e \leq P P_0 = 1/4$. Inefficient: when $c_e \in [1/4, 1/2]$, more efficient than \mathcal{I} , but (socially desirable) entry is deterred.

Would parties want to renegotiate the contract?

- Assume contract is renegotiated if both \mathcal{I} and \mathcal{B} agree to do so.
- If \mathcal{E} enters and offers $\tilde{P} = 2/5$:
 - $-\mathcal{B}$ offers to buy from \mathcal{E} , and pay 1/4 to \mathcal{I} .
 - \mathcal{I} accepts, since 1/4 is same surplus he could get if \mathcal{B} "punished" him by purchasing from him at P = 3/4.
 - \mathcal{B} strictly better off, since 1 2/5 1/4 = 0.35 is greater than 1/4, his surplus under original contract.
- The exclusive dealing contract is not renegotiation-proof.
- Same argument for \tilde{P} up to 1/2:
 - No exclusive contracts are renegotiation-proof.
 - Once we take this into account, socially efficient outcome obtains, where \mathcal{E} enters if her costs $c_e \leq 1/2 = c_i$.

Remarks

- Contract deters entry by imposing switching costs upon buyer: much-observed practice: Loyalty-reward programs (Frequent-flyer miles, Buy 10/Get 1 free, etc.)
- Falls under category of raising rivals costs: recall that this is profitable if $\pi^m K \ge \pi^d$. Here $\pi^d = ?, K = ?, \pi^m = ?$
- What if two competing incumbent sellers?
- What if \mathcal{E} 's cost known? Then Chicago result holds: contract will never be desired by both \mathcal{I} and \mathcal{B} .
- What if \mathcal{B} is risk averse (i.e., dislikes variation in payoffs)?
 - Under contract: guaranteed surplus of 1/4, no matter if \mathcal{E} enters or not
 - Without contract, gets 1/2 if \mathcal{E} enters, but 0 if \mathcal{E} stays out.
 - Prefers contract since it is less risky: if extremely risk-averse, exclusive contract could even survive renegotiation (i.e., if incumbent can set *P* very close to 1).