Lecture 5: Collusion and Cartels in Oligopoly

EC 105. Industrial Organization

Matt Shum HSS, California Institute of Technology

Outline

Introduction

2 Dynamic Games: introduction

- Recall: in static games from last lecture:
 - firms produce "too much"
 - relative to joint profit maximization
 - as in Prisoner's dilemma
- Can cooperation occur in multi-period ("dynamic") games?
 - main idea: repeated interactions allow for threats/rewards
 - examples: roommates? restaurant? bank?
- In order to study dynamic games, we need to introduce a new concept of equilibrium
 - Nash equilibrium not enough
- Introduce: Subgame Perfect Equilibrium
- Finitely-repeated Cournot game
- Infinitely-repeated Cournot game

- Recall: in static games from last lecture:
 - firms produce "too much"
 - relative to joint profit maximization
 - as in Prisoner's dilemma
- Can cooperation occur in multi-period ("dynamic") games?
 - main idea: repeated interactions allow for threats/rewards
 - examples: roommates? restaurant? bank?
- In order to study dynamic games, we need to introduce a new concept of equilibrium
 - Nash equilibrium not enough
- Introduce: Subgame Perfect Equilibrium
- Finitely-repeated Cournot game
- Infinitely-repeated Cournot game

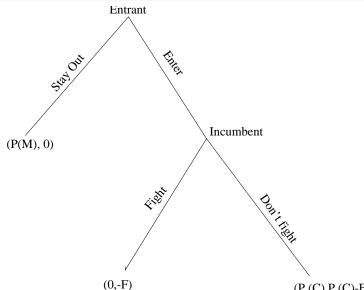
- Recall: in static games from last lecture:
 - firms produce "too much"
 - relative to joint profit maximization
 - as in Prisoner's dilemma
- Can cooperation occur in multi-period ("dynamic") games?
 - main idea: repeated interactions allow for threats/rewards
 - examples: roommates? restaurant? bank?
- In order to study dynamic games, we need to introduce a new concept of equilibrium
 - Nash equilibrium not enough
- Introduce: Subgame Perfect Equilibrium
- Finitely-repeated Cournot game
- Infinitely-repeated Cournot game

- Recall: in static games from last lecture:
 - firms produce "too much"
 - relative to joint profit maximization
 - as in Prisoner's dilemma
- Can cooperation occur in multi-period ("dynamic") games?
 - main idea: repeated interactions allow for threats/rewards
 - examples: roommates? restaurant? bank?
- In order to study dynamic games, we need to introduce a new concept of equilibrium
 - Nash equilibrium not enough
- Introduce: Subgame Perfect Equilibrium
- Finitely-repeated Cournot game
- Infinitely-repeated Cournot game

- Recall: in static games from last lecture:
 - firms produce "too much"
 - relative to joint profit maximization
 - as in Prisoner's dilemma
- Can cooperation occur in multi-period ("dynamic") games?
 - main idea: repeated interactions allow for threats/rewards
 - examples: roommates? restaurant? bank?
- In order to study dynamic games, we need to introduce a new concept of equilibrium
 - Nash equilibrium not enough
- Introduce: Subgame Perfect Equilibrium
- Finitely-repeated Cournot game
- Infinitely-repeated Cournot game

- Recall: in static games from last lecture:
 - firms produce "too much"
 - relative to joint profit maximization
 - as in Prisoner's dilemma
- Can cooperation occur in multi-period ("dynamic") games?
 - main idea: repeated interactions allow for threats/rewards
 - examples: roommates? restaurant? bank?
- In order to study dynamic games, we need to introduce a new concept of equilibrium
 - Nash equilibrium not enough
- Introduce: Subgame Perfect Equilibrium
- Finitely-repeated Cournot game
- Infinitely-repeated Cournot game

Simple model of threat: Limit pricing



- Extensive Form Representation specifies:
- 1. players in the game
- 2. when each player has the move.
- 3. what each player can do at each of his or her opportunities to move
- 4. what each player knows at each of his or her opportunities to move.
- 5. the payoff received by each player for each combination of moves that could be chosen by the players.

- Extensive Form Representation specifies:
- 1. players in the game.
- 2. when each player has the move.
- 3. what each player can do at each of his or her opportunities to move
- 4. what each player knows at each of his or her opportunities to move.
- 5. the payoff received by each player for each combination of moves that could be chosen by the players.

- Extensive Form Representation specifies:
- 1. players in the game.
- 2. when each player has the move.
- 3. what each player can do at each of his or her opportunities to move.
- 4. what each player knows at each of his or her opportunities to move.
- 5. the payoff received by each player for each combination of moves that could be chosen by the players.

- Extensive Form Representation specifies:
- 1. players in the game.
- 2. when each player has the move.
- 3. what each player can do at each of his or her opportunities to move.
- 4. what each player knows at each of his or her opportunities to move.
- 5. the payoff received by each player for each combination of moves that could be chosen by the players.

Definition

A strategy for a player is a complete plan of action.

It specifies a feasible action for the player in every contingency in which
the player might be called to act

Definition

A strategy for a player is a complete plan of action.

It specifies a feasible action for the player in every contingency in which the player might be called to act

Definition

A strategy for a player is a complete plan of action. It specifies a feasible action for the player in every contingency in which the player might be called to act

Definition

A strategy for a player is a complete plan of action. It specifies a feasible action for the player in every contingency in which the player might be called to act

Incumbent:	Fight	Don't fight
Entrant:		
Stay Out	O, Monop	O, Monop
Enter	-F, 0	Prof-F, Prof

- What are NE?
- But what if entrant enters?
- Some Nash equilibria seem unpalatable, bc they involve noncredible threats

Incumbent:	Fight	Don't fight
Entrant:		
Stay Out	O, Monop	O, Monop
Enter	-F, 0	Prof-F, Prof

- What are NE?
- But what if entrant enters?
- Some Nash equilibria seem unpalatable, bc they involve noncredible threats

Incumbent:	Fight	Don't fight
Entrant:		
Stay Out	O, Monop	O, Monop
Enter	-F, 0	Prof-F, Prof

- What are NE?
- But what if entrant enters?
- Some Nash equilibria seem unpalatable, bc they involve noncredible threats

Incumbent:	Fight	Don't fight
Entrant:		
Stay Out	O, Monop	O, Monop
Enter	-F, 0	Prof-F, Prof

- What are NE?
- But what if entrant enters?
- Some Nash equilibria seem unpalatable, bc they involve noncredible threats

Incumbent:	Fight	Don't fight
Entrant:		
Stay Out	O, Monop	O, Monop
Enter	-F, 0	Prof-F, Prof

- What are NE?
- But what if entrant enters?
- Some Nash equilibria seem unpalatable, bc they involve noncredible threats

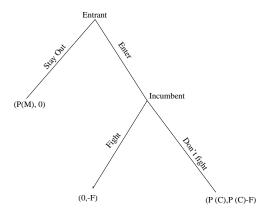
- A *subgame* is the part of the multi-period game that starts from any given node onwards.
- A subgame perfect equilibrium (SPE) is a strategy profile, from which, no player can receive a higher payoff in any subgame. That is, each player's SPE strategy must be a best-response in any subgame
- Find SPE by doing backwards induction on the game tree
 - this eliminates all non-BR actions in any subgame
- All SPE are NE, not all NE are SPE

- A subgame is the part of the multi-period game that starts from any given node onwards.
- A subgame perfect equilibrium (SPE) is a strategy profile, from which, no player can receive a higher payoff in any subgame. That is, each player's SPE strategy must be a best-response in any subgame
- Find SPE by doing backwards induction on the game tree
 this eliminates all non-BR actions in any subgame
- All SPE are NE, not all NE are SPE

- A subgame is the part of the multi-period game that starts from any given node onwards.
- A subgame perfect equilibrium (SPE) is a strategy profile, from which, no player can receive a higher payoff in any subgame. That is, each player's SPE strategy must be a best-response in any subgame
- Find SPE by doing backwards induction on the game tree
 this eliminates all non-BR actions in any subgame
- All SPE are NE, not all NE are SPE

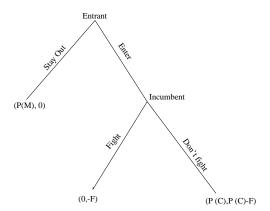
- A subgame is the part of the multi-period game that starts from any given node onwards.
- A subgame perfect equilibrium (SPE) is a strategy profile, from which, no player can receive a higher payoff in any subgame. That is, each player's SPE strategy must be a best-response in any subgame
- Find SPE by doing backwards induction on the game tree
 - this eliminates all non-BR actions in any subgame
- All SPE are NE, not all NE are SPE

Limit pricing, redux



- What are subgames?
- What are SPE?

Limit pricing, redux



- What are subgames?
- What are SPE?

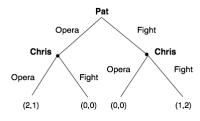
Sequential Version of BoS: Pat moves first

Strategic / Normal Form Representation

		Chris			
		Ор-Ор	Op-Fi	Fi-Op	Fi-Fi
n	Opera	(2,1)	(2,1)	(0,0)	(0,0)
Pat	Fight	(0,0)	(1,2)	(0,0)	(1,2)

Ol- --1 -

Extensive Form / Game Tree



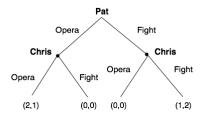
Sequential Version of BoS: Pat moves first

Strategic / Normal Form Representation

		Chris			
		Ор-Ор	Op-Fi	Fi-Op	Fi-Fi
n	Opera	(2,1)	(2,1)	(0,0)	(0,0)
Pat	Fight	(0,0)	(1,2)	(0,0)	(1,2)

Ol- --1 -

Extensive Form / Game Tree



Now let's consider repeating the Cournot Game

2-firm Cournot quantity-setting game. Relevant quantities are

- NE profits $\pi^* = \frac{(a-c)^2}{9b}$
- Cartel profits $\pi^j = \frac{(a-c)^2}{8b}$
- Firm 1 cheats on firm 2: $\pi^{\times} = \pi_1(BR_1(q_2^j)) = \frac{9(a-c)^2}{64b}$
- Prisoners' dilemma analogy:

Firm $2 \rightarrow$ Firm $1 \downarrow$	cheat	cartel
cheat	$\frac{(a-c)^2}{9b}$, $\frac{(a-c)^2}{9b}$	$\frac{9(a-c)^2}{64b}$, $\frac{3(a-c)^2}{32b}$
cartel	$\frac{3(a-c)^2}{32b}$, $\frac{9(a-c)^2}{64b}$	$\frac{(a-c)^2}{8b}$, $\frac{(a-c)^2}{8b}$

Now let's consider repeating the Cournot Game

2-firm Cournot quantity-setting game. Relevant quantities are:

- NE profits $\pi^* = \frac{(a-c)^2}{9b}$
- Cartel profits $\pi^j = \frac{(a-c)^2}{8b}$
- Firm 1 cheats on firm 2: $\pi^{x} = \pi_{1}(BR_{1}(q_{2}^{j})) = \frac{9(a-c)^{2}}{64b}$
- Prisoners' dilemma analogy:

Firm 2 \rightarrow Firm 1 \downarrow	cheat	cartel
cheat	9b , 9b	$\frac{9(a-c)^2}{64b}$, $\frac{3(a-c)^2}{32b}$
cartel	$\frac{3(a-c)^2}{32h}$, $\frac{9(a-c)^2}{64h}$	$\frac{(a-c)^2}{8h}$, $\frac{(a-c)^2}{8h}$

Now let's consider repeating the Cournot Game

2-firm Cournot quantity-setting game. Relevant quantities are:

- NE profits $\pi^* = \frac{(a-c)^2}{9b}$
- Cartel profits $\pi^j = \frac{(a-c)^2}{8b}$
- Firm 1 cheats on firm 2: $\pi^{x} = \pi_{1}(BR_{1}(q_{2}^{j})) = \frac{9(a-c)^{2}}{64b}$
- Prisoners' dilemma analogy:

$\begin{array}{c} Firm\ 2 \to \\ Firm\ 1 \downarrow \end{array}$	cheat	cartel
cheat	$\frac{(a-c)^2}{9b}, \frac{(a-c)^2}{9b}$	$\frac{9(a-c)^2}{64b}$, $\frac{3(a-c)^2}{32b}$
cartel	$\frac{3(a-c)^2}{32h}, \frac{9(a-c)^2}{64h}$	$\frac{(a-c)^2}{8b}$, $\frac{(a-c)^2}{8b}$

Let's repear the Cournot Game twice

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat)

 — unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about

```
Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ??
```

What about 3 periods? *N* periods?

Let's repear the Cournot Game twice

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat)

 — unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about
 - Firm 1 plays (cartel; cheat if cheat, cartel if cartel) Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ???

What about 3 periods? N periods?

Let's repear the Cournot Game twice

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat) → unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about

```
Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ???
```

What about 3 periods? N periods?

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat) → unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about
 Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
 Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ??

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat) → unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about
 Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
 Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ??

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat) → unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about
 Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
 Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ??

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat) → unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about
 Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
 Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ???

2-period Cournot game

• Firm 1 chooses quantities (q_{11}, q_{12}) Firm 2 chooses quantities (q_{21}, q_{22})

What are SPE: solve backwards

- Second period: unique NE is (cheat,cheat)
- First period: (cheat,cheat) → unique SPE is ((cheat,cheat), (cheat,cheat))
- What about ((cartel,cartel), (cartel,cartel))?
- What about ((cartel, cheat), (cartel, cheat))?
- What about
 Firm 1 plays (cartel; cheat if cheat, cartel if cartel)
 Firm 2 plays (cartel; cheat if cheat, cartel if cartel) ???

What if the 2-firm Cournot game is repeated forever? Are there SPE of this game in which both firms play "cartel" each period?

Need to introduce the concept of discounting

- ullet Discount rate $\delta \in [0,1]$, which measures how "patient" a firm is.
- The "discounted present value" of receiving \$10 both today and tomorrow is $10+\delta 10$.
- If $\delta=1$, then there is no difference between receiving \$10 today and \$10 tomorrow.
- Geometric series property: $x + \delta x + \delta^2 x + \cdots + \delta^n x + \cdots = \frac{x}{1-\delta}$.

What if the 2-firm Cournot game is repeated forever? Are there SPE of this game in which both firms play "cartel" each period?

Need to introduce the concept of discounting

- ullet Discount rate $\delta \in [0,1]$, which measures how "patient" a firm is.
- The "discounted present value" of receiving \$10 both today and tomorrow is $10 + \delta 10$.
- If $\delta=1$, then there is no difference between receiving \$10 today and \$10 tomorrow.
- Geometric series property: $x + \delta x + \delta^2 x + \cdots + \delta^n x + \cdots = \frac{x}{1 \delta}$.

What if the 2-firm Cournot game is repeated forever? Are there SPE of this game in which both firms play "cartel" each period?

Need to introduce the concept of discounting:

- ullet Discount rate $\delta \in [0,1]$, which measures how "patient" a firm is.
- The "discounted present value" of receiving \$10 both today and tomorrow is $10 + \delta 10$.
- If $\delta=1$, then there is no difference between receiving \$10 today and \$10 tomorrow.
- Geometric series property: $x + \delta x + \delta^2 x + \cdots + \delta^n x + \cdots = \frac{x}{1-\delta}$.

What if the 2-firm Cournot game is repeated forever? Are there SPE of this game in which both firms play "cartel" each period?

Need to introduce the concept of discounting:

- ullet Discount rate $\delta \in [0,1]$, which measures how "patient" a firm is.
- The "discounted present value" of receiving \$10 both today and tomorrow is $10 + \delta 10$.
- If $\delta=1$, then there is no difference between receiving \$10 today and \$10 tomorrow.
- Geometric series property: $x + \delta x + \delta^2 x + \cdots + \delta^n x + \cdots = \frac{x}{1-\delta}$.

What if the 2-firm Cournot game is repeated forever? Are there SPE of this game in which both firms play "cartel" each period?

Need to introduce the concept of discounting:

- Discount rate $\delta \in [0,1]$, which measures how "patient" a firm is.
- The "discounted present value" of receiving \$10 both today and tomorrow is $10 + \delta 10$.
- If $\delta=1$, then there is no difference between receiving \$10 today and \$10 tomorrow.
- Geometric series property: $x + \delta x + \delta^2 x + \cdots + \delta^n x + \cdots = \frac{x}{1-\delta}$.

- Let q^j denote the cartel (joint profit-maximizing) quantity.
- Proposition: If the discount rate is "high enough", then these strategies constitute a SPE of the infinitely-repeated Cournot game:
 - ① In period t, firm 1 plays $q_{1t} = q^j$ if $q_{i,t-1} = q^j$ for both i = 1, 2.
 - 2 Play q^* if $q_{i,t-1} \neq q^j$ for either i = 1, 2.
- Firm 1 cooperates as long as it observes firm 2 to be cooperating.
 Once firm 2 cheats firm 1 produces the Cournot-Nash quantity every period hereafter: Nash reversion
 - "Grim strategy": no second chances.
- Show that these strategies constitute a SPE by finding conditions such that they prescribe best-response behavior for firm 1 given that firm 2 is following this strategy also in each subgame.

- Let q^j denote the cartel (joint profit-maximizing) quantity.
- Proposition: If the discount rate is "high enough", then these strategies constitute a SPE of the infinitely-repeated Cournot game:
 - ① In period t, firm 1 plays $q_{1t} = q^j$ if $q_{i,t-1} = q^j$ for both i = 1, 2.
 - ② Play q^* if $q_{i,t-1} \neq q^j$ for either i = 1, 2
- Firm 1 cooperates as long as it observes firm 2 to be cooperating.
 Once firm 2 cheats firm 1 produces the Cournot-Nash quantity every period hereafter: Nash reversion
 - "Grim strategy": no second chances.
- Show that these strategies constitute a SPE by finding conditions such that they prescribe best-response behavior for firm 1 given that firm 2 is following this strategy also in each subgame.

- Let q^j denote the cartel (joint profit-maximizing) quantity.
- Proposition: If the discount rate is "high enough", then these strategies constitute a SPE of the infinitely-repeated Cournot game:
 - **1** In period t, firm 1 plays $q_{1t} = q^j$ if $q_{i,t-1} = q^j$ for both i = 1, 2.
 - 2 Play q^* if $q_{i,t-1} \neq q^j$ for either i = 1, 2.
- Firm 1 cooperates as long as it observes firm 2 to be cooperating.
 Once firm 2 cheats firm 1 produces the Cournot-Nash quantity every period hereafter: Nash reversion
 - "Grim strategy": no second chances.
- Show that these strategies constitute a SPE by finding conditions such that they prescribe best-response behavior for firm 1 given that firm 2 is following this strategy also in each subgame.

- Let q^j denote the cartel (joint profit-maximizing) quantity.
- Proposition: If the discount rate is "high enough", then these strategies constitute a SPE of the infinitely-repeated Cournot game:
 - **1** In period t, firm 1 plays $q_{1t} = q^j$ if $q_{i,t-1} = q^j$ for both i = 1, 2.
 - 2 Play q^* if $q_{i,t-1} \neq q^j$ for either i = 1, 2.
- Firm 1 cooperates as long as it observes firm 2 to be cooperating.
 Once firm 2 cheats firm 1 produces the Cournot-Nash quantity every period hereafter: Nash reversion
 - "Grim strategy": no second chances.
- Show that these strategies constitute a SPE by finding conditions such that they prescribe best-response behavior for firm 1 given that firm 2 is following this strategy also in each subgame.

- Let q^j denote the cartel (joint profit-maximizing) quantity.
- Proposition: If the discount rate is "high enough", then these strategies constitute a SPE of the infinitely-repeated Cournot game:
 - **1** In period t, firm 1 plays $q_{1t} = q^j$ if $q_{i,t-1} = q^j$ for both i = 1, 2.
 - 2 Play q^* if $q_{i,t-1} \neq q^j$ for either i = 1, 2.
- Firm 1 cooperates as long as it observes firm 2 to be cooperating.
 Once firm 2 cheats firm 1 produces the Cournot-Nash quantity every period hereafter: Nash reversion
 - "Grim strategy": no second chances.
- Show that these strategies constitute a SPE by finding conditions such that they prescribe best-response behavior for firm 1 given that firm 2 is following this strategy also in each subgame.

Consider firm 1 (symmetric for firm 2).

There are two relevant (types of) subgames for firm 1. Consider each in turn.

Subgame type #1: After a period in which cheating (either by himself or the other firm) has occurred.

Consider firm 1 (symmetric for firm 2).

There are two relevant (types of) subgames for firm 1. Consider each in turn.

Subgame type #1: After a period in which cheating (either by himself or the other firm) has occurred.

Consider firm 1 (symmetric for firm 2).

There are two relevant (types of) subgames for firm 1. Consider each in turn.

Subgame type #1: After a period in which cheating (either by himself or the other firm) has occurred.

Consider firm 1 (symmetric for firm 2).

There are two relevant (types of) subgames for firm 1. Consider each in turn.

Subgame type #1: After a period in which cheating (either by himself or the other firm) has occurred.

Subgame type #2: After a period when no cheating has occurred.

- Proposed strategy prescribes cooperating and playing q^j , with discounted PV of payoffs = $\pi^j/(1-\delta)$.
- The best other possible strategy is to play $BR_1(q_2^j) \equiv q_1^{\times}$ this period, but then be faced with $q_2 = q^*$ forever. This yields discounted PV = $\pi^{\times} + \delta(\pi^*/(1-\delta))$.
- In order for q_j to be NE of this subgame, require $\pi^j/(1-\delta) > \pi^x + \delta(\pi^*/(1-\delta))$ (profits from cooperating exceed profits from deviating). This is satisfied if $\delta > 9/17$.

Therefore, the Nash reversion specifies a best response in both of these subgames if $\delta > 9/17$ ("high enough"). In this case, Nash reversion constitutes a SPE

Subgame type #2: After a period when no cheating has occurred.

- Proposed strategy prescribes cooperating and playing q^j , with discounted PV of payoffs = $\pi^j/(1-\delta)$.
- The best other possible strategy is to play $BR_1(q_2^j) \equiv q_1^{\times}$ this period, but then be faced with $q_2 = q^*$ forever. This yields discounted PV = $\pi^{\times} + \delta(\pi^*/(1-\delta))$.
- In order for q_j to be NE of this subgame, require $\pi^j/(1-\delta) > \pi^x + \delta(\pi^*/(1-\delta))$ (profits from cooperating exceed profits from deviating). This is satisfied if $\delta > 9/17$.

Therefore, the Nash reversion specifies a best response in both of these subgames if $\delta > 9/17$ ("high enough"). In this case, Nash reversion constitutes a SPE

Subgame type #2: After a period when no cheating has occurred.

- Proposed strategy prescribes cooperating and playing q^j , with discounted PV of payoffs $= \pi^j/(1-\delta)$.
- The best other possible strategy is to play $BR_1(q_2^j) \equiv q_1^{\times}$ this period, but then be faced with $q_2 = q^*$ forever. This yields discounted PV = $\pi^{\times} + \delta(\pi^*/(1-\delta))$.
- In order for q_j to be NE of this subgame, require $\pi^j/(1-\delta) > \pi^x + \delta(\pi^*/(1-\delta))$ (profits from cooperating exceed profits from deviating). This is satisfied if $\delta > 9/17$.

Therefore, the Nash reversion specifies a best response in both of these subgames if $\delta > 9/17$ ("high enough"). In this case, Nash reversion constitutes a SPE.

Subgame type #2: After a period when no cheating has occurred.

- Proposed strategy prescribes cooperating and playing q^j , with discounted PV of payoffs = $\pi^j/(1-\delta)$.
- The best other possible strategy is to play $BR_1(q_2^j) \equiv q_1^x$ this period, but then be faced with $q_2 = q^*$ forever. This yields discounted PV = $\pi^x + \delta(\pi^*/(1-\delta))$.
- In order for q_j to be NE of this subgame, require $\pi^j/(1-\delta) > \pi^x + \delta(\pi^*/(1-\delta))$ (profits from cooperating exceed profits from deviating). This is satisfied if $\delta > 9/17$.

Therefore, the Nash reversion specifies a best response in both of these subgames if $\delta > 9/17$ ("high enough"). In this case, Nash reversion constitutes a SPE.

Subgame type #2: After a period when no cheating has occurred.

- Proposed strategy prescribes cooperating and playing q^j , with discounted PV of payoffs = $\pi^j/(1-\delta)$.
- The best other possible strategy is to play $BR_1(q_2^j) \equiv q_1^{\times}$ this period, but then be faced with $q_2 = q^*$ forever. This yields discounted PV = $\pi^{\times} + \delta(\pi^*/(1-\delta))$.
- In order for q_j to be NE of this subgame, require $\pi^j/(1-\delta) > \pi^x + \delta(\pi^*/(1-\delta))$ (profits from cooperating exceed profits from deviating). This is satisfied if $\delta > 9/17$.

Therefore, the Nash reversion specifies a best response in both of these subgames if $\delta > 9/17$ ("high enough"). In this case, Nash reversion constitutes a SPE.

- No need to consider deviations now followed by other deviations later
- If there is no profitable one-shot deviation, then there is no profitable finite sequence of deviations
 - Last deviation can't be profitable . . .
- If there is no profitable finite deviation, then there is no profitable infinite sequence of deviations
 - Suppose there are no one-shot profitable deviations from a strategy p_i , but there is a stage t and a history h_t where player i could improve his payoff using a different strategy \hat{p}_i in the subgame starting at h_t .
 - distant payoffs can't matter much. Thus, there is a t' > t such that the strategy p_i' that coincides with \hat{p}_i at all stages before t' and agrees with p_i at all stages from t' on must improve on p_i in the subgame starting at h_t . But this contradicts the fact that no finite sequence of deviations can make no improvement at all!

- No need to consider deviations now followed by other deviations later
- 1. If there is no profitable one-shot deviation, then there is no profitable finite sequence of deviations
 - Last deviation can't be profitable . . .
- If there is no profitable finite deviation, then there is no profitable infinite sequence of deviations
 - Suppose there are no one-shot profitable deviations from a strategy p_i , but there is a stage t and a history h_t where player i could improve his payoff using a different strategy \hat{p}_i in the subgame starting at h_t .
 - Since payoff is a discounted sum and feasible profits are bounded, distant payoffs can't matter much. Thus, there is a t' > t such that the strategy p_i' that coincides with \hat{p}_i at all stages before t' and agrees with p_i at all stages from t' on must improve on p_i in the subgame starting at h_t . But this contradicts the fact that no finite sequence of deviations can make no improvement at all.

- No need to consider deviations now followed by other deviations later
- 1. If there is no profitable one-shot deviation, then there is no profitable finite sequence of deviations
 - Last deviation can't be profitable . . .
- If there is no profitable finite deviation, then there is no profitable infinite sequence of deviations
 - Suppose there are no one-shot profitable deviations from a strategy p_i , but there is a stage t and a history h_t where player i could improve his payoff using a different strategy \hat{p}_i in the subgame starting at h_t .
 - Since payoff is a discounted sum and feasible profits are bounded, distant payoffs can't matter much. Thus, there is a t' > t such that the strategy p_i' that coincides with \hat{p}_i at all stages before t' and agrees with p_i at all stages from t' on must improve on p_i in the subgame starting at h_t . But this contradicts the fact that no finite sequence of deviations can make no improvement at all!

- No need to consider deviations now followed by other deviations later
- 1. If there is no profitable one-shot deviation, then there is no profitable finite sequence of deviations
 - Last deviation can't be profitable . . .
- 2. If there is no profitable finite deviation, then there is no profitable infinite sequence of deviations
 - Suppose there are no one-shot profitable deviations from a strategy p_i , but there is a stage t and a history h_t where player i could improve his payoff using a different strategy \hat{p}_i in the subgame starting at h_t .
 - Since payoff is a discounted sum and feasible profits are bounded, distant payoffs can't matter much. Thus, there is a t' > t such that the strategy p_i' that coincides with \hat{p}_i at all stages before t' and agrees with p_i at all stages from t' on must improve on p_i in the subgame starting at h_t . But this contradicts the fact that no finite sequence of deviations can make no improvement at all!

- No need to consider deviations now followed by other deviations later
- 1. If there is no profitable one-shot deviation, then there is no profitable finite sequence of deviations
 - Last deviation can't be profitable . . .
- 2. If there is no profitable finite deviation, then there is no profitable infinite sequence of deviations
 - Suppose there are no one-shot profitable deviations from a strategy p_i , but there is a stage t and a history h_t where player i could improve his payoff using a different strategy \hat{p}_i in the subgame starting at h_t .
 - Since payoff is a discounted sum and feasible profits are bounded, distant payoffs can't matter much. Thus, there is a t' > t such that the strategy p_i' that coincides with \hat{p}_i at all stages before t' and agrees with p_i at all stages from t' on must improve on p_i in the subgame starting at h_t . But this contradicts the fact that no finite sequence of deviations can make no improvement at all.

- Nash reversion is but one example of strategies which yield cooperative outcome in an infinitely-repeated Cournot game.
- In general, firm 1 need not punish firm 2 forever to induce it to cooperate; after firm 2 deviates, just produce q* for long enough so that it never pays for firm 2 to ever deviate.
 - "carrot and stick" strategies
- In general, the Folk Theorem says that, if the discount rate is "high enough", an infinite number of SPE exist for infinite-horizon repeated games, which involve higher payoffs than in the single-period Nash outcome.
- δ "high enough": punishments must be severe. If δ too low, firm 2 prefers higher profits from cheating now, undeterred from lower future profits from firm 1's punishment.

- Nash reversion is but one example of strategies which yield cooperative outcome in an infinitely-repeated Cournot game.
- In general, firm 1 need not punish firm 2 forever to induce it to cooperate; after firm 2 deviates, just produce q^* for long enough so that it never pays for firm 2 to ever deviate.
 - "carrot and stick" strategies
- In general, the Folk Theorem says that, if the discount rate is "high enough", an infinite number of SPE exist for infinite-horizon repeated games, which involve higher payoffs than in the single-period Nash outcome.
- δ "high enough": punishments must be severe. If δ too low, firm 2 prefers higher profits from cheating now, undeterred from lower future profits from firm 1's punishment.

- Nash reversion is but one example of strategies which yield cooperative outcome in an infinitely-repeated Cournot game.
- In general, firm 1 need not punish firm 2 forever to induce it to cooperate; after firm 2 deviates, just produce q^* for long enough so that it never pays for firm 2 to ever deviate.
 - "carrot and stick" strategies
- In general, the Folk Theorem says that, if the discount rate is "high enough", an infinite number of SPE exist for infinite-horizon repeated games, which involve higher payoffs than in the single-period Nash outcome.
- δ "high enough": punishments must be severe. If δ too low, firm 2 prefers higher profits from cheating now, undeterred from lower futur profits from firm 1's punishment.

- Nash reversion is but one example of strategies which yield cooperative outcome in an infinitely-repeated Cournot game.
- In general, firm 1 need not punish firm 2 forever to induce it to cooperate; after firm 2 deviates, just produce q^* for long enough so that it never pays for firm 2 to ever deviate.
 - "carrot and stick" strategies
- In general, the Folk Theorem says that, if the discount rate is "high enough", an infinite number of SPE exist for infinite-horizon repeated games, which involve higher payoffs than in the single-period Nash outcome.
- δ "high enough": punishments must be severe. If δ too low, firm 2 prefers higher profits from cheating now, undeterred from lower future profits from firm 1's punishment.

Generally: threats of punishment must be *credible* — it must be a firm's best-response to punish when it detects cheating

- Flexible capacity: punishment may involve a large hike in quantity, this must be relatively costless
- ② Good monitoring technology: cheating must be detected rather quickly. Trade journals facilitate collusion? Fewer number of firms?
- Oemand uncertainty foils detection of cheating: is low profits due to lower demand or cheating?
- Product homogeneity: firms' products are close substitutes, so that firm 1 can hurt firm 2 by producing more

Generally: threats of punishment must be *credible* — it must be a firm's best-response to punish when it detects cheating

- Flexible capacity: punishment may involve a large hike in quantity, this must be relatively costless
- @ Good monitoring technology: cheating must be detected rather quickly. Trade journals facilitate collusion? Fewer number of firms?
- Obeying Demand uncertainty foils detection of cheating: is low profits due to lower demand or cheating?
- Product homogeneity: firms' products are close substitutes, so that firm 1 can hurt firm 2 by producing more

Generally: threats of punishment must be *credible* — it must be a firm's best-response to punish when it detects cheating

- Flexible capacity: punishment may involve a large hike in quantity, this must be relatively costless
- Quickly. Trade journals facilitate collusion? Fewer number of firms?
- Oemand uncertainty foils detection of cheating: is low profits due to lower demand or cheating?
- Product homogeneity: firms' products are close substitutes, so that firm 1 can hurt firm 2 by producing more

Generally: threats of punishment must be *credible* — it must be a firm's best-response to punish when it detects cheating

- Flexible capacity: punishment may involve a large hike in quantity, this must be relatively costless
- Good monitoring technology: cheating must be detected rather quickly. Trade journals facilitate collusion? Fewer number of firms?
- Oemand uncertainty foils detection of cheating: is low profits due to lower demand or cheating?
- Product homogeneity: firms' products are close substitutes, so that firm 1 can hurt firm 2 by producing more

Generally: threats of punishment must be *credible* — it must be a firm's best-response to punish when it detects cheating

- Flexible capacity: punishment may involve a large hike in quantity, this must be relatively costless
- Good monitoring technology: cheating must be detected rather quickly. Trade journals facilitate collusion? Fewer number of firms?
- Oemand uncertainty foils detection of cheating: is low profits due to lower demand or cheating?
- Product homogeneity: firms' products are close substitutes, so that firm 1 can hurt firm 2 by producing more

Same arguments for infinitely-repeated Bertrand

- Consider Nash reversion strategy:
 - Let π^m denote monopoly profits each period.
 - Thus firms share $\frac{1}{2}\pi^m$ in periods that they collude.
 - If firm cheats (by undercutting), he gains π^m in that period, but is punished to get 0 thereafter.
- Thus no-cheating onstraint very simple:

$$\pi^m \le \frac{1}{2} \frac{\pi^m}{1 - \delta} \quad \Leftrightarrow \quad \delta \ge \frac{1}{2}$$

Same arguments for infinitely-repeated Bertrand

- Consider Nash reversion strategy:
 - Let π^m denote monopoly profits each period.
 - Thus firms share $\frac{1}{2}\pi^m$ in periods that they collude.
 - If firm cheats (by undercutting), he gains π^m in that period, but is punished to get 0 thereafter.
- Thus no-cheating onstraint very simple:

$$\pi^m \le \frac{1}{2} \frac{\pi^m}{1 - \delta} \quad \Leftrightarrow \quad \delta \ge \frac{1}{2}$$

Same arguments for infinitely-repeated Bertrand

- Consider Nash reversion strategy:
 - Let π^m denote monopoly profits each period.
 - Thus firms share $\frac{1}{2}\pi^m$ in periods that they collude.
 - If firm cheats (by undercutting), he gains π^m in that period, but is punished to get 0 thereafter.
- Thus no-cheating onstraint very simple:

$$\pi^m \le \frac{1}{2} \frac{\pi^m}{1 - \delta} \quad \Leftrightarrow \quad \delta \ge \frac{1}{2}.$$

Repeated Bertrand vs. repeated Cournot

- Compared to Cournot, collusion under Bertrand can occur for less patient firms $\frac{1}{2} \leq \delta \leq \frac{9}{17}$
 - Punishment "worse" under Bertrand: zero profits.
 - (Under Cournot: profits > 0)
- But if firms patient enough, then both repeated Cournot and Bertrand yield same outcome:
 - both firms produce (half of) monopoly output,
 - get (half of) monopoly profits
 - This is another way to resolve "Bertrand paradox"

Repeated Bertrand vs. repeated Cournot

- Compared to Cournot, collusion under Bertrand can occur for less patient firms $\frac{1}{2} \leq \delta \leq \frac{9}{17}$
 - Punishment "worse" under Bertrand: zero profits.
 - (Under Cournot: profits > 0)
- But if firms patient enough, then both repeated Cournot and Bertrand yield same outcome:
 - both firms produce (half of) monopoly output,
 - get (half of) monopoly profits
 - This is another way to resolve "Bertrand paradox"

Repeated Bertrand vs. repeated Cournot

- Compared to Cournot, collusion under Bertrand can occur for less patient firms $\frac{1}{2} \le \delta \le \frac{9}{17}$
 - Punishment "worse" under Bertrand: zero profits.
 - (Under Cournot: profits > 0)
- But if firms patient enough, then both repeated Cournot and Bertrand yield same outcome:
 - both firms produce (half of) monopoly output,
 - get (half of) monopoly profits
 - This is another way to resolve "Bertrand paradox"

