Lecture 2: Market Structure Part I (Perfect Competition and Monopoly)

EC 105. Industrial Organization

Matt Shum
HSS, California Institute of Technology
Consider market for a single good.

The perfectly competitive firm is a **price taker**: it cannot influence the price that is paid for its product.

This arises due to consumers’ indifference between the products of competing firms

- so they will buy from store with lowest price.

Consumers’ indifference arises from:

- Product homogeneity
- Consumers have perfect information
- No transactions cost
- Many firms
Perfect competition

Market structure #1: Perfect Competition

- Consider market for a single good.
- The perfectly competitive firm is a **price taker**: it cannot influence the price that is paid for its product.
- This arises due to consumers' indifference between the products of competing firms
 - so they will buy from store with lowest price.
- Consumers' indifference arises from:
 - Product homogeneity
 - Consumers have perfect information
 - No transactions cost
 - Many firms
Perfect competition

Market structure #1: Perfect Competition

- Consider market for a single good.
- The perfectly competitive firm is a **price taker**: it cannot influence the price that is paid for its product.
- This arises due to consumers’ indifference between the products of competing firms
 - so they will buy from store with lowest price.
- Consumers’ indifference arises from:
 - Product homogeneity
 - Consumers have perfect information
 - No transactions cost
 - Many firms
PC firm’s profit maximization problem

- $\max_q \pi(p) = pq - C(q)$
- First-order condition: $p = C'(q) = MC(q)$
- Second-order condition: $C''(q) > 0$, satisfied if $MC(q)$ is an increasing function
- If $p \uparrow$, production rises along $MC(q)$ curve: $MC(q)$ is the “supply curve” of the firm.
Perfect competition

PC firm’s profit maximization problem

\[\max_q \pi(p) = pq - C(q) \]

First-order condition: \(p = C'(q) = MC(q) \)

Second-order condition: \(C''(q) > 0 \), satisfied if \(MC(q) \) is an increasing function

If \(p \uparrow \), production rises along \(MC(q) \) curve: \(MC(q) \) is the “supply curve” of the firm.
Perfect competition

PC firm’s profit maximization problem

- \[\max_q \pi(p) = pq - C(q) \]
- First-order condition: \(p = C'(q) = MC(q) \)
- Second-order condition: \(C''(q) > 0 \), satisfied if \(MC(q) \) is an increasing function
- If \(p \uparrow \), production rises along \(MC(q) \) curve: \(MC(q) \) is the “supply curve” of the firm.
PC firm’s profit maximization problem

- \(\max_q \pi(p) = pq - C(q) \)
- First-order condition: \(p = C'(q) = MC(q) \)
- Second-order condition: \(C''(q) > 0 \), satisfied if \(MC(q) \) is an increasing function
- If \(p \uparrow \), production rises along \(MC(q) \) curve: \(MC(q) \) is the “supply curve” of the firm.
Where does the supply curve bottom out?

With U-shaped AC curve, at low levels of production, \(AC \gg MC \).

- Firms shouldn't agree to produce at those levels

A firm produces only when its profits from producing exceed the costs it would avoid by not producing

In short-run: avoidable costs do not include sunk costs.

- Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
- In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
- But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
- Eat too much at AYCE buffet to “get your money’s worth”?
Perfect competition

PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, $AC >> MC$.
 - Firms shouldn't agree to produce at those levels
- A firm produces only when its profits from producing exceed the costs it would avoid by not producing
- In short-run: avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, $AC \gg MC$.
 - Firms shouldn't agree to produce at those levels
- A firm produces only when its profits from producing exceed the costs it would avoid by not producing
- In short-run: avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
Perfect competition

PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, \(AC >> MC \).
 - Firms shouldn’t agree to produce at those levels
- A firm produces only when its profits from producing exceed the costs it would avoid by not producing
- In short-run: avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, \(AC \gg MC \).
 - Firms shouldn't agree to produce at those levels
- A firm produces only when its profits from producing exceed the costs it would avoid by not producing
- **In short-run:** avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, \(AC >> MC \).
 - Firms shouldn’t agree to produce at those levels
- A firm produces only when its profits from producing exceed the costs it would avoid by not producing
- **In short-run:** avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, \(AC \gg MC \).
 - Firms shouldn’t agree to produce at those levels

- A firm produces only when its profits from producing exceed the costs it would avoid by not producing

- In short-run: avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
PC firm’s supply curve

- Where does the supply curve bottom out?
- With U-shaped AC curve, at low levels of production, $AC >> MC$.
 - Firms shouldn’t agree to produce at those levels
- A firm produces only when its profits from producing exceed the costs it would avoid by not producing
- In short-run: avoidable costs do not include sunk costs.
 - Non-avoidable costs typically include components of fixed cost (rental, capital machinery, etc.)
 - In short-run, non-avoidable costs contribute zero opportunity cost, as they cannot be recovered. “Bygones are bygones”
 - But in real life, people appear more reluctant to leave an enterprise if they have sunk more resources into it: “sunk cost fallacy”
 - Eat too much at AYCE buffet to “get your money’s worth”?
Perfect competition

PC firm’s shutdown decisions

- **In short-run:** shut down once $pq < \text{Avoidable costs}$.
 1. All fixed costs are sunk. Avoidable costs = $VC(q)$: shut down once $p < AVC(q) \ (< AC(q))$.
 2. Proportion α of fixed costs not sunk. Avoidable costs = $VC(q) + \alpha F$: shut down once $p < AVC(q) + \frac{\alpha F}{q}$

- **In long-run:** avoidable costs include sunk cost. Shut down when $pq < C(q) \implies p < AC(q)$
 - In LR, components of fixed cost can be avoided (rental), scrapped (machinery), etc. Opportunity cost no longer zero.

- Short-run supply curve? Long-run supply curve? Graph.
In short-run: shut down once $pq < \text{Avoidable costs}$.

1. All fixed costs are sunk. Avoidable costs = $VC(q)$: shut down once $p < AVC(q) < AC(q)$.

2. Proportion α of fixed costs not sunk. Avoidable costs = $VC(q) + \alpha F$: shut down once $p < AVC(q) + \frac{\alpha F}{q}$

In long-run: avoidable costs include sunk cost. Shut down when $pq < C(q) \implies p < AC(q)$

- In LR, components of fixed cost can be avoided (rental), scrapped (machinery), etc. Opportunity cost no longer zero.

- Short-run supply curve? Long-run supply curve? Graph.
PC firm’s shutdown decisions

- **In short-run:** shut down once $pq < \text{Avoidable costs}$.
 1. All fixed costs are sunk. Avoidable costs $= VC(q)$: shut down once $p < AVC(q) (< AC(q))$.
 2. Proportion α of fixed costs not sunk. Avoidable costs $= VC(q) + \alpha F$: shut down once $p < AVC(q) + \frac{\alpha F}{q}$

- **In long-run:** avoidable costs include sunk cost. Shut down when $pq < C(q) \implies p < AC(q)$
 - In LR, components of fixed cost can be avoided (rental), scrapped (machinery), etc. Opportunity cost no longer zero.

- Short-run supply curve? Long-run supply curve? Graph.
Perfect competition

PC firm’s shutdown decisions

- **In short-run:** shut down once $pq < \text{Avoidable costs}$.
 1. All fixed costs are sunk. Avoidable costs = $VC(q)$: shut down once $p < AVC(q) (< AC(q))$.
 2. Proportion α of fixed costs not sunk. Avoidable costs = $VC(q) + \alpha F$: shut down once $p < AVC(q) + \frac{\alpha F}{q}$

- **In long-run:** avoidable costs include sunk cost. Shut down when $pq < C(q) \implies p < AC(q)$
 - In LR, components of fixed cost can be avoided (rental), scrapped (machinery), etc. Opportunity cost no longer zero.

 Short-run supply curve? Long-run supply curve? Graph.
PC firm’s shutdown decisions

- **In short-run:** shut down once $pq < \text{Avoidable costs}$.
 1. All fixed costs are sunk. Avoidable costs $= VC(q)$: shut down once $p < AVC(q)$ ($< AC(q)$).
 2. Proportion α of fixed costs not sunk. Avoidable costs $= VC(q) + \alpha F$: shut down once $p < AVC(q) + \frac{\alpha F}{q}$

- **In long-run:** avoidable costs include sunk cost. Shut down when $pq < C(q) \implies p < AC(q)$
 - In LR, components of fixed cost can be avoided (rental), scrapped (machinery), etc. Opportunity cost no longer zero.

Short-run supply curve? Long-run supply curve? Graph.
Perfect competition

PC firm’s shutdown decisions

- **In short-run:** shut down once \(pq < \text{Avoidable costs} \).
 1. All fixed costs are sunk. Avoidable costs = \(VC(q) \): shut down once \(p < AVC(q) (\leq AC(q)) \).
 2. Proportion \(\alpha \) of fixed costs not sunk. Avoidable costs = \(VC(q) + \alpha F \): shut down once \(p < AVC(q) + \frac{\alpha F}{q} \).

- **In long-run:** avoidable costs include sunk cost. Shut down when \(pq < C(q) \implies p < AC(q) \).
 - In LR, components of fixed cost can be avoided (rental), scrapped (machinery), etc. Opportunity cost no longer zero.

- Short-run supply curve? Long-run supply curve? Graph.
In the **short run**:

- Industry demand curve: downward sloping. Graph.
- Price determined by intersection of industry demand and supply curves. Graph.
- In short-run equilibrium: positive profits for each firm as long as $p > AC(q)$.
 - "quasi-rents"
The perfectly-competitive industry: Short run

In the **short run**:
- Industry demand curve: downward sloping. Graph.
- Price determined by intersection of industry demand and supply curves. Graph.
- In short-run equilibrium: positive profits for each firm as long as \(p > AC(q) \).
 - “quasi-rents”
The perfectly-competitive industry: Short run

In the **short run**:
- Industry demand curve: downward sloping. Graph.
- Price determined by intersection of industry demand and supply curves. Graph.
- In short-run equilibrium: positive profits for each firm as long as \(p > AC(q) \).
 - “quasi-rents”
The perfectly-competitive industry: Short run

In the **short run**:

- Industry demand curve: downward sloping. Graph.
- Price determined by intersection of industry demand and supply curves. Graph.
- In short-run equilibrium: positive profits for each firm as long as \(p > AC(q) \).
 - “quasi-rents”
The perfectly-competitive industry: Short run

In the **short run**:
- Industry demand curve: downward sloping. Graph.
- Price determined by intersection of industry demand and supply curves. Graph.
- In short-run equilibrium: positive profits for each firm as long as $p > AC(q)$.
 - “quasi-rents”
The perfectly competitive industry: Long-run

- In the long run, number of firms can vary
- **Assume “free entry and exit”:** firms enter and exit unconstrained
- Any short-run profits (quasi-rents) soaked up by new firms in long-run
 - → Price is driven down to the minimum of the AC curve
- Long-run industry supply curve: horizontal at minimum of the average cost curve
 - All firms are at MES
- In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand Q
 - (due, for example, to resource scarcity)
 - Fossil fuels, fracking
The perfectly competitive industry: Long-run

- **In the long run, number of firms can vary**
 - Assume “free entry and exit”: firms enter and exit unconstrained.
 - Any short-run profits (quasi-rents) soaked up by new firms in long-run
 - \implies Price is driven down to the minimum of the AC curve.
 - Long-run industry supply curve: horizontal at minimum of the average cost curve.
 - All firms are at MES.
 - In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand Q.
 - (due, for example, to resource scarcity).
 - Fossil fuels, fracking.
The perfectly competitive industry: Long-run

- In the long run, number of firms can vary
- **Assume “free entry and exit”:** firms enter and exit unconstrained
 - Any short-run profits (quasi-rents) soaked up by new firms in long-run
 - \Rightarrow Price is driven down to the minimum of the AC curve
 - Long-run industry supply curve: horizontal at minimum of the average cost curve
 - All firms are at MES
 - In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand Q
 - (due, for example, to resource scarcity)
 - Fossil fuels, fracking
In the long run, number of firms can vary

Assume “free entry and exit”: firms enter and exit unconstrained

Any short-run profits (quasi-rents) soaked up by new firms in long-run

⇒ Price is driven down to the minimum of the AC curve

Long-run industry supply curve: horizontal at minimum of the average cost curve

All firms are at MES

In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand Q

(due, for example, to resource scarcity)

Fossil fuels, fracking
In the long run, number of firms can vary

Assume “free entry and exit”: firms enter and exit unconstrained

Any short-run profits (quasi-rents) soaked up by new firms in long-run

⇒ Price is driven down to the minimum of the AC curve

Long-run industry supply curve: horizontal at minimum of the average cost curve

All firms are at MES

In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand Q

(due, for example, to resource scarcity)

Fossil fuels, fracking
The perfectly competitive industry: Long-run

- In the long run, number of firms can vary
- **Assume “free entry and exit”:** firms enter and exit unconstrained
- Any short-run profits (quasi-rents) soaked up by new firms in long-run
 - \Rightarrow Price is driven down to the minimum of the AC curve
- Long-run industry supply curve: horizontal at minimum of the average cost curve
 - All firms are at MES
- In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand Q
 - (due, for example, to resource scarcity)
 - Fossil fuels, fracking
The perfectly competitive industry: Long-run

- In the long run, number of firms can vary
- **Assume “free entry and exit”:** firms enter and exit unconstrained
- Any short-run profits (quasi-rents) soaked up by new firms in long-run
 - \[\Rightarrow \] Price is driven down to the minimum of the AC curve
- Long-run industry supply curve: horizontal at minimum of the average cost curve
 - All firms are at MES
- In some markets, LR supply curve may be (softly) upward-sloping if min AC is rising in market demand \(Q \)
 - (due, for example, to resource scarcity)
 - Fossil fuels, fracking
Perfect competition

PC as normative benchmark

The features of PC outcome serve as a *normative efficiency benchmark* against which alternative market structures are judged:

\[p = MC(q) = \min_q AC(q) \]

- **Economic efficiency**: resources used in most productive manner
- **Firm Efficiency**: Production at \(p = MC(q) \): firm produces an additional unit only if it can cover the production costs. This maximizes *producer surplus*.
- **Consumption efficiency**: Consumers who value good more than its marginal cost obtain the product. This maximizes *Consumer surplus*.
- **Market efficiency**: In market equilibrium, production occurs at minimum avg cost: no better alternative use of resources.
PC as normative benchmark

The features of PC outcome serve as a *normative efficiency benchmark* against which alternative market structures are judged:

\[p = MC(q) = \min_q AC(q) \]

- **Economic efficiency**: resources used in most productive manner
- **Firm Efficiency**: Production at \(p = MC(q) \): firm produces an additional unit only if it can cover the production costs. This maximizes *producer surplus*.
- **Consumption efficiency**: Consumers who value good more than its marginal cost obtain the product. This maximizes *Consumer surplus*.
- **Market efficiency**: In market equilibrium, production occurs at minimum avg cost: no better alternative use of resources.
PC as normative benchmark

The features of PC outcome serve as a *normative efficiency benchmark* against which alternative market structures are judged:

\[p = MC(q) = \min_q AC(q) \]

- **Economic efficiency**: resources used in most productive manner
- **Firm Efficiency**: Production at \(p = MC(q) \): firm produces an additional unit only if it can cover the production costs. This maximizes *producer surplus*.
- **Consumption efficiency**: Consumers who value good more than its marginal cost obtain the product. This maximizes *Consumer surplus*.
- **Market efficiency**: In market equilibrium, production occurs at minimum avg cost: no better alternative use of resources.
PC as normative benchmark

The features of PC outcome serve as a normative efficiency benchmark against which alternative market structures are judged:

\[p = MC(q) = \min_q AC(q) \]

- **Economic efficiency**: resources used in most productive manner
- **Firm Efficiency**: Production at \(p = MC(q) \): firm produces an additional unit only if it can cover the production costs. This maximizes *producer surplus*.
- **Consumption efficiency**: Consumers who value good more than its marginal cost obtain the product. This maximizes *Consumer surplus*.
- **Market efficiency**: In market equilibrium, production occurs at minimum avg cost: no better alternative use of resources.
PC as normative benchmark

The features of PC outcome serve as a *normative efficiency benchmark* against which alternative market structures are judged:

\[p = MC(q) = \min_q AC(q) \]

- **Economic efficiency**: resources used in most productive manner
- **Firm Efficiency**: Production at \(p = MC(q) \): firm produces an additional unit only if it can cover the production costs. This maximizes *producer surplus*.
- **Consumption efficiency**: Consumers who value good more than its marginal cost obtain the product. This maximizes *Consumer surplus*.
- **Market efficiency**: In market equilibrium, production occurs at minimum avg cost: no better alternative use of resources.
Perfect competition

PC as normative benchmark

The features of PC outcome serve as a *normative efficiency benchmark* against which alternative market structures are judged:

\[p = MC(q) = \min_q AC(q) \]

- **Economic efficiency**: resources used in most productive manner
- **Firm Efficiency**: Production at \(p = MC(q) \): firm produces an additional unit only if it can cover the production costs. This maximizes *producer surplus*.
- **Consumption efficiency**: Consumers who value good more than its marginal cost obtain the product. This maximizes *Consumer surplus*.
- **Market efficiency**: In market equilibrium, production occurs at minimum avg cost: no better alternative use of resources.
These ideas underlie arguments favoring free enterprise (market economy)

- Adam Smith’s “invisible hand”
- Desirable outcome reached despite (or due to?) self-interested optimizing behavior of each individual.
- These ideas can be generalized very broadly
 - Arrow, Debreu, McKenzie, ++
These ideas underlie arguments favoring free enterprise (market economy)

- Adam Smith’s “invisible hand”
- Desirable outcome reached despite (or due to?) self-interested optimizing behavior of each individual.

These ideas can be generalized very broadly

- Arrow, Debreu, McKenzie, ++
These ideas underlie arguments favoring free enterprise (market economy)

- Adam Smith’s “invisible hand”
- Desirable outcome reached despite (or due to?) self-interested optimizing behavior of each individual.
- These ideas can be generalized very broadly
 - Arrow, Debreu, McKenzie, ++
General equilibrium

- Consider the general case with multiple goods, and heterogeneous firms and agents.
- All agents are price takers.

- Given prices, consumers choose how much of each good to buy in order to maximize their welfare, given that their expenditures must not exceed their income. This gives rise to demand functions.
- Given prices, producers choose production plans to maximize profits given their technological possibilities, giving rise to supply functions.

- A competitive equilibrium is a set of prices, with associated demands and supplies, such that all the markets clear.
General equilibrium

- Consider the general case with multiple goods, and heterogeneous firms and agents.
- All agents are price takers.

- Given prices, consumers choose how much of each good to buy in order to maximize their welfare, given that their expenditures must not exceed their income. This gives rise to demand functions.
- Given prices, producers choose production plans to maximize profits given their technological possibilities, giving rise to supply functions.

- A competitive equilibrium is a set of prices, with associated demands and supplies, such that all the markets clear.
Consider the general case with multiple goods, and heterogeneous firms and agents.

All agents are price takers.

Given prices, consumers choose how much of each good to buy in order to maximize their welfare, given that their expenditures must not exceed their income. This gives rise to demand functions.

Given prices, producers choose production plans to maximize profits given their technological possibilities, giving rise to supply functions.

A competitive equilibrium is a set of prices, with associated demands and supplies, such that all the markets clear
Consider the general case with multiple goods, and heterogeneous firms and agents.

All agents are price takers.

Given prices, consumers choose how much of each good to buy in order to maximize their welfare, given that their expenditures must not exceed their income. This gives rise to demand functions.

Given prices, producers choose production plans to maximize profits given their technological possibilities, giving rise to supply functions.

A competitive equilibrium is a set of prices, with associated demands and supplies, such that all the markets clear.
Welfare Theorems

- Weak assumptions about preferences and technological possibilities yield general results on competitive equilibrium.

 - 1st Welfare Theorem: A competitive equilibrium is Pareto Optimal. A benevolent social planner can't improve on the competitive allocation.
 - PO: can't improve one individual’s welfare w/o hurting another’s. Key notion of efficiency.
 - 2nd Welfare Theorem: Any Pareto-optimal allocation can be decentralized by a choice of the right prices and an appropriate redistribution of income among consumers.
 - Requires convexity assumptions that rule out increasing returns to scale.

- In a market economy, policy needed only for (re)distribution (equity)
- Efficiency vs. equity?
Welfare Theorems

- Weak assumptions about preferences and technological possibilities yield general results on competitive equilibrium.

 - 1st Welfare Theorem: A competitive equilibrium is Pareto Optimal. A benevolent social planner can’t improve on the competitive allocation.
 - PO: can’t improve one individual’s welfare w/o hurting another’s. Key notion of efficiency.

 - 2nd Welfare Theorem: Any Pareto-optimal allocation can be decentralized by a choice of the right prices and an appropriate redistribution of income among consumers.
 - Requires convexity assumptions that rule out increasing returns to scale.

- In a market economy, policy needed only for (re)distribution (equity)
- Efficiency vs. equity?
Welfare Theorems

- Weak assumptions about preferences and technological possibilities yield general results on competitive equilibrium.

 1st Welfare Theorem: A competitive equilibrium is Pareto Optimal. A benevolent social planner can’t improve on the competitive allocation.

 - PO: can’t improve one individual’s welfare w/o hurting another’s. Key notion of efficiency.

 2nd Welfare Theorem: Any Pareto-optimal allocation can be decentralized by a choice of the right prices and an appropriate redistribution of income among consumers.

 - Requires convexity assumptions that rule out increasing returns to scale.

- In a market economy, policy needed only for (re)distribution (equity)
- Efficiency vs. equity?

EC 105. Industrial Organization (Matt Shum, California Institute of Technology) Lecture 2: Market Structure Part I (Perfect Competition and Monopoly)
Market structure 2: Monopoly

Nice outcome in perfectly competitive world depends crucially on free-entry assumption. But large fixed costs of entry exist in many markets, leading to few firms in a market. Now focus on extreme case of industry with only one firm: monopoly

- Industry has one firm, who faces downward-sloping industry demand curve
- Unlike PC firms, the monopolist has market power: ability of a firm to profitably raise prices.
- PC firm is a price-taker: it has no market power.
Market structure 2: Monopoly

Nice outcome in perfectly competitive world depends crucially on free-entry assumption. But large fixed costs of entry exist in many markets, leading to few firms in a market.

Now focus on extreme case of industry with only one firm: monopoly

- Industry has one firm, who faces downward-sloping industry demand curve.
- Unlike PC firms, the monopolist has market power: ability of a firm to profitably raise prices.
- PC firm is a price-taker: it has no market power.
Perfect competition

Market structure 2: Monopoly

Nice outcome in perfectly competitive world depends crucially on free-entry assumption. But large fixed costs of entry exist in many markets, leading to few firms in a market.

Now focus on extreme case of industry with only one firm: **monopoly**

- Industry has one firm, who faces downward-sloping industry demand curve
- Unlike PC firms, the monopolist has market power: ability of a firm to profitably raise prices.
- PC firm is a price-taker: it has no market power.
Nice outcome in perfectly competitive world depends crucially on free-entry assumption. But large fixed costs of entry exist in many markets, leading to few firms in a market. Now focus on extreme case of industry with only one firm: **monopoly**

- Industry has one firm, who faces downward-sloping industry demand curve
- Unlike PC firms, the monopolist has **market power**: ability of a firm to profitably raise prices.
- PC firm is a price-taker: it has no market power.
Market structure 2: Monopoly

Nice outcome in perfectly competitive world depends crucially on free-entry assumption. But large fixed costs of entry exist in many markets, leading to few firms in a market. Now focus on extreme case of industry with only one firm: monopoly

- Industry has one firm, who faces downward-sloping industry demand curve
- Unlike PC firms, the monopolist has market power: ability of a firm to profitably raise prices.
- PC firm is a price-taker: it has no market power.
Nice outcome in perfectly competitive world depends crucially on free-entry assumption. But large fixed costs of entry exist in many markets, leading to few firms in a market. Now focus on extreme case of industry with only one firm: monopoly

- Industry has one firm, who faces downward-sloping industry demand curve
- Unlike PC firms, the monopolist has market power: ability of a firm to profitably raise prices.
- PC firm is a price-taker: it has no market power.
Monopoly and profit maximization

Two equivalent formulations, both yield insights: First, monopolist chooses quantity to maximize profits

- \[\max_q p(q)q - C(q) = \text{Revenue}(q) - C(q) \]
- Graph. Quantity can be increased only if price is lower.
 - Tradeoff between increased *marginal* demand
 - versus revenue lost on *inframarginal* consumers who would have bought even under the higher price
- FOC: \[R'(q) = p(q) + p'(q)q = C'(q) \iff MR(q) = MC(q). \] Graph.
Monopoly and profit maximization

Two equivalent formulations, both yield insights: First, monopolist chooses quantity to maximize profits

- \[\max_q p(q)q - C(q) = \text{Revenue}(q) - C(q) \]
- Graph. Quantity can be increased only if price is lower.
 - Tradeoff between increased marginal demand
 - versus revenue lost on inframarginal consumers who would have bought even under the higher price
- FOC: \[R'(q)) = p(q) + p'(q)q = C'(q) \leftrightarrow MR(q) = MC(q). \] Graph.
Two equivalent formulations, both yield insights: First, monopolist chooses quantity to maximize profits

- \(\max_q p(q)q - C(q) = \text{Revenue}(q) - C(q) \)
- Graph. Quantity can be increased only if price is lower.
 - Tradeoff between increased marginal demand
 - versus revenue lost on inframarginal consumers who would have bought even under the higher price
- FOC: \(R'(q)) = p(q) + p'(q)q = C'(q) \leftrightarrow MR(q) = MC(q) \). Graph.
Two equivalent formulations, both yield insights: First, monopolist chooses quantity to maximize profits

- \(\max_q p(q)q - C(q) = \text{Revenue}(q) - C(q) \)
- Graph. Quantity can be increased only if price is lower.
 - Tradeoff between increased marginal demand
 - versus revenue lost on inframarginal consumers who would have bought even under the higher price
- FOC: \(R'(q)) = p(q) + p'(q)q = C'(q) \leftrightarrow MR(q) = MC(q) \). Graph.
Monopoly and profit maximization

Alternatively, monopolist chooses price to maximize profits

- \(\max_p pq(p) - C(q(p)) \), where \(q(p) \) is demand curve.
- FOC: \(q(p) + pq'(p) = C'(q(p))q'(p) \)
- At optimal price \(p^* \), **Inverse Elasticity Property** holds:
 \[
 (p^* - MC(q(p^*))) = -\frac{q(p^*)}{q'(p^*)} \quad \text{or} \quad \frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}
 \]
 where \(\epsilon(p^*) \) is \(q'(p^*) \frac{p^*}{q(p^*)} \). This is \(< 0 \) since \(q' < 0 \) (the law of demand)
- Across monopolistic markets, should observe negative relationship between price and demand elasticity
- If \(\epsilon \to -\infty \): \(p = MC(q) \)
Monopoly and profit maximization

Alternatively, monopolist chooses price to maximize profits

- \(\max_p pq(p) - C(q(p)) \), where \(q(p) \) is demand curve.
- FOC: \(q(p) + pq'(p) = C'(q(p))q'(p) \)
- At optimal price \(p^* \), Inverse Elasticity Property holds:

\[
(p^* - MC(q(p^*))) = -\frac{q(p^*)}{q'(p^*)} \quad \text{or} \quad \frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}
\]

where \(\epsilon(p^*) = q'(p^*)\frac{p^*}{q(p^*)} \). This is \(< 0 \) since \(q' < 0 \) (the law of demand)

- Across monopolistic markets, should observe negative relationship between price and demand elasticity
- If \(\epsilon \to -\infty \): \(p = MC(q) \)
Monopoly and profit maximization

Alternatively, monopolist chooses price to maximize profits
- \(\max_p pq(p) - C(q(p)), \) where \(q(p) \) is demand curve.
- FOC: \(q(p) + pq'(p) = C'(q(p))q'(p) \)
- At optimal price \(p^* \), Inverse Elasticity Property holds:

\[
(p^* - MC(q(p^*)))) = -\frac{q(p^*)}{q'(p^*)} \quad \text{or} \quad \frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}
\]

where \(\epsilon(p^*) = q'(p^*)\frac{p^*}{q(p^*)} \). This is \(< 0\) since \(q' < 0 \) (the law of demand)
- Across monopolistic markets, should observe negative relationship between price and demand elasticity
- If \(\epsilon \to -\infty \): \(p = MC(q) \)
Monopoly and profit maximization

Alternatively, monopolist chooses price to maximize profits

- \(\max_p pq(p) - C(q(p)) \), where \(q(p) \) is demand curve.
- FOC: \(q(p) + pq'(p) = C'(q(p))q'(p) \)
- At optimal price \(p^* \), **Inverse Elasticity Property** holds:

\[
(p^* - MC(q(p^*))) = -\frac{q(p^*)}{q'(p^*)} \quad \text{or} \quad \frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}
\]

where \(\epsilon(p^*) = q'(p^*) \frac{p^*}{q(p^*)} \). This is \(< 0 \) since \(q' < 0 \) (the law of demand)

- Across monopolistic markets, should observe negative relationship between price and demand elasticity
- If \(\epsilon \to -\infty \): \(p = MC(q) \)
Monopoly and profit maximization

Alternatively, monopolist chooses price to maximize profits

- $\max_p pq(p) - C(q(p))$, where $q(p)$ is demand curve.
- FOC: $q(p) + pq'(p) = C'(q(p))q'(p)$
- At optimal price p^*, **Inverse Elasticity Property** holds:

$$ (p^* - MC(q(p^*))) = -\frac{q(p^*)}{q'(p^*)} \quad \text{or} \quad \frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)} $$

where $\epsilon(p^*)$ is $q'(p^*)\frac{p^*}{q(p^*)}$. This is < 0 since $q' < 0$ (the law of demand)

- Across monopolistic markets, should observe negative relationship between price and demand elasticity
- If $\epsilon \to -\infty$: $p = MC(q)$
Inverse elasticity property is key pricing principle

- Firm’s market power is *inversely related* to the elasticity of demand
 - with *inelastic* demand, firm sets prices higher
 - with *elastic* demand, firm sets prices lower

- Interpretation:
 - elasticity: primarily related to availability of close substitutes
 - when few substitutes available, a firm can set high prices without losing customers
 - when many substitutes available, a firm which sets prices too high will lose many customers

- Examples:
 - Ride-sharing (Uber’s surge pricing): weekends vs. weekdays
 - Prices of iPhone 6 once iPhone 8 released.
 - Movies: daytime vs. evening
Inverse elasticity property is key pricing principle

- Firm’s market power is *inversely related* to the elasticity of demand
 - with *inelastic* demand, firm sets prices higher
 - with *elastic* demand, firm sets prices lower

- Interpretation:
 - elasticity: primarily related to availability of close substitutes
 - when few substitutes available, a firm can set high prices without losing customers
 - when many substitutes available, a firm which sets prices too high will lose many customers

- Examples:
 - Ride-sharing (Uber’s surge pricing): weekends vs. weekdays
 - Prices of iPhone 6 once iPhone 8 released.
 - Movies: daytime vs. evening
Inverse elasticity property is key pricing principle

- Firm's market power is \textit{inversely related} to the elasticity of demand
 - with \textit{inelastic} demand, firm sets prices higher
 - with \textit{elastic} demand, firm sets prices lower

- Interpretation:
 - elasticity: primarily related to availability of close substitutes
 - when few substitutes available, a firm can set high prices without losing customers
 - when many substitutes available, a firm which sets prices too high will lose many customers

- Examples:
 - Ride-sharing (Uber's surge pricing): weekends vs. weekdays
 - Prices of iPhone 6 once iPhone 8 released.
 - Movies: daytime vs. evening
Inverse elasticity property is key pricing principle

- Firm’s market power is *inversely related* to the elasticity of demand
 - with *inelastic* demand, firm sets prices higher
 - with *elastic* demand, firm sets prices lower

- Interpretation:
 - elasticity: primarily related to availability of close substitutes
 - when few substitutes available, a firm can set high prices without losing customers
 - when many substitutes available, a firm which sets prices too high will lose many customers

- Examples:
 - Ride-sharing (Uber’s surge pricing): weekends vs. weekdays
 - Prices of iPhone 6 once iPhone 8 released.
 - Movies: daytime vs. evening
In this section, we discuss the inverse elasticity property, which is a key principle in pricing. The elasticity of demand is inversely related to a firm's market power. If the demand is inelastic, the firm has the power to set higher prices without losing many customers. Conversely, if the demand is elastic, the firm must set lower prices to avoid losing many customers.

Firm’s market power is inversely related to the elasticity of demand.

- with *inelastic* demand, firm sets prices higher
- with *elastic* demand, firm sets prices lower

Interpretation:
- elasticity: primarily related to availability of close substitutes
- when few substitutes available, a firm can set high prices without losing customers
- when many substitutes available, a firm which sets prices too high will lose many customers

Examples:
- Ride-sharing (Uber’s surge pricing): weekends vs. weekdays
- Prices of iPhone 6 once iPhone 8 released.
- Movies: daytime vs. evening
Inverse elasticity property is key pricing principle

- Firm’s market power is *inversely related* to the elasticity of demand
 - with *inelastic* demand, firm sets prices higher
 - with *elastic* demand, firm sets prices lower

- Interpretation:
 - elasticity: primarily related to availability of close substitutes
 - when few substitutes available, a firm can set high prices without losing customers
 - when many substitutes available, a firm which sets prices too high will lose many customers

- Examples:
 - Ride-sharing (Uber’s surge pricing): weekends vs. weekdays
 - Prices of iPhone 6 once iPhone 8 released.
 - Movies: daytime vs. evening
Inverse elasticity property is key pricing principle

- Firm’s market power is *inversely related* to the elasticity of demand
 - with *inelastic* demand, firm sets prices higher
 - with *elastic* demand, firm sets prices lower

- Interpretation:
 - elasticity: primarily related to availability of close substitutes
 - when few substitutes available, a firm can set high prices without losing customers
 - when many substitutes available, a firm which sets prices too high will lose many customers

- Examples:
 - Ride-sharing (Uber’s surge pricing): weekends vs. weekdays
 - Prices of iPhone 6 once iPhone 8 released.
 - Movies: daytime vs. evening
A puzzle, or cautionary tale

$$\frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}$$

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if $-1 < \epsilon(p^*) < 0$? Implies $p^* < 0$, which is nonsensical!!
- Unpack marginal revenue expression:

$$MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)$$

$$= \frac{q(p)}{q'(p)} + p = \frac{p}{p q'(p)} q(p) + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)$$

which is negative for prices where $-1 < \epsilon(p) < 0$. ($p'(q) = \frac{1}{q''(p)}$).
- More intuitive: monopolist never chooses a p (or equivalently $q(p)$) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[\frac{p^* - mc(q(p^*)))}{p^*} = -\frac{1}{\epsilon(p^*)} \]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:
 \[
 MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)
 \]
 \[
 = \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)
 \]
 which is negative for prices where \(-1 < \epsilon(p) < 0\). \((p'(q) = \frac{1}{q'(p)})\).
- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[
p^* - mc(q(p^*)) = \frac{1}{\epsilon(p^*)}
\]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:

\[
MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)
\]
\[
= \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)
\]

which is negative for prices where \(-1 < \epsilon(p) < 0\). (\(p'(q) = \frac{1}{q'(p)}\)).

- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[\frac{p^* - mc(q(p^*))}{p^*} = - \frac{1}{\epsilon(p^*)} \]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:

\[
MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)
\]

\[
= \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)
\]

which is negative for prices where \(-1 < \epsilon(p) < 0\). \((p'(q) = \frac{1}{q'(p)})\).
- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[
\frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}
\]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:

\[
MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)
\]
\[
= \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)
\]

which is negative for prices where \(-1 < \epsilon(p) < 0\). \((p'(q) = \frac{1}{q'(p)})\).
- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[\frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)} \]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:

\[
MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q) \\
= \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)
\]

which is negative for prices where \(-1 < \epsilon(p) < 0\). \((p'(q) = \frac{1}{q'(p)})\).

- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[
\frac{p^* - mc(q(p^*))}{p^*} = -\frac{1}{\epsilon(p^*)}
\]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:

\[
MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)
\]

\[
= \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} q(p) + 1 \right) = p(\frac{1}{\epsilon(p)} + 1)
\]

which is negative for prices where \(-1 < \epsilon(p) < 0\). \((p'(q) = \frac{1}{q'(p)})\).
- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
A puzzle, or cautionary tale

\[
\frac{p^* - mc(q(p^*)))}{p^*} = -\frac{1}{\epsilon(p^*)}
\]

- Reasonable interpretation: “low elasticities are good for monopolist”
- What if \(-1 < \epsilon(p^*) < 0\)? Implies \(p^* < 0\), which is nonsensical!!
- Unpack marginal revenue expression:

\[
MR(q) = \frac{\partial R(q)}{\partial q} = p'(q)q + p(q)
\]

\[
= \frac{q(p)}{q'(p)} + p = \frac{p}{p} \frac{q(p)}{q'(p)} + p = p \left(\frac{1}{q'(p)} \frac{q(p)}{p} + 1 \right) = p \left(\frac{1}{\epsilon(p)} + 1 \right)
\]

which is negative for prices where \(-1 < \epsilon(p) < 0\). \((p'(q) = \frac{1}{q'(p)})\).

- More intuitive: monopolist never chooses a \(p\) (or equivalently \(q(p)\)) where its marginal revenue would be negative.
- Lesson: demand elasticity not free variable independent of price. It depends on price.
Dead-Weight Loss: monopoly vs competitive outcome

- Comparing monopoly to competitive outcome, we see that monopoly outcome features both higher price, and lower output.
- DWL represents that part of consumer and producer surplus which is lost under monopoly outcome
 - Lost: not just shifted between consumer and producer
How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)

- Product differentiation: Apple vs. Samsung

- Government-granted monopolies (patents): reward for firm’s innovation efforts

- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position

- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.

- Checks on a monopolist’s market power: threat of entry keeps price around average cost
How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)
- Product differentiation: Apple vs. Samsung
- Government-granted monopolies (patents): reward for firm’s innovation efforts
- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position
- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.
- Checks on a monopolist’s market power: threat of entry keeps price around average cost
How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)
- Product differentiation: Apple vs. Samsung
- Government-granted monopolies (patents): reward for firm’s innovation efforts
- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position
- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.
- Checks on a monopolist’s market power: threat of entry keeps price around average cost
Perfect competition

How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)
- Product differentiation: Apple vs. Samsung
- Government-granted monopolies (patents): reward for firm’s innovation efforts
- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position
- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.
- Checks on a monopolist’s market power: threat of entry keeps price around average cost
Perfect competition

How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)
- Product differentiation: Apple vs. Samsung
- Government-granted monopolies (patents): reward for firm’s innovation efforts
- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position
- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.
- Checks on a monopolist’s market power: threat of entry keeps price around average cost
How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)
- Product differentiation: Apple vs. Samsung
- Government-granted monopolies (patents): reward for firm’s innovation efforts
- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position
- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.
- Checks on a monopolist’s market power: threat of entry keeps price around average cost
How monopolies arise

- Crucial aspect of monopoly: price-setting ability (relatively inelastic demand curve)
- Product differentiation: Apple vs. Samsung
- Government-granted monopolies (patents): reward for firm’s innovation efforts
- Superior production technology (Demsetz critique). Monopoly “deserves” its dominant position
- Natural monopoly: industry characterized by increasing returns to scale. MES is $+\infty$, efficient to have just 1 firm.
 - Energy utilities (water, electricity, gas) typically natural monopoly.
 - Governments may need to regulate to keep prices low.
- Checks on a monopolist’s market power: threat of entry keeps price around average cost
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)–
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change ("process of creative destruction")
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes profits, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)–
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- Industry life cycle: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change ("process of creative destruction")
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)—
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change (“process of creative destruction”)
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)–
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change (“process of creative destruction”)
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)–
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change ("process of creative destruction")
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)–
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change (“process of creative destruction”)
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)—
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change (“process of creative destruction”)
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)– to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change (“process of creative destruction”)
 - Pharmaceuticals, gaming, apps.
How monopolies disappear

- A firm with market power makes *profits*, which encourages other firms
 - even inefficient ones (those with costs higher than monopolist)—
 - to enter: “monopoly umbrella”
- Additional entry reduces market power of firms: if price at one firm is too high, consumers will buy at other firms.
 - Demand for each firm becomes more and more elastic
- As more firms enter market, price is driven down to costs. Firms make zero profit.
- *Industry life cycle*: firms must keep innovating to survive.
 - Schumpeter: monopoly profits provide an incentive for innovation and technological change (“process of creative destruction”)
 - Pharmaceuticals, gaming, apps.
Perfect competition

Individual firm takes prices as given in making output decisions
Shutdown decisions: long run vs. short run
Industry equilibrium: in long-run $p = MC(q) = \min q AC(q)$
 - market efficiency, invisible hand

Monopoly

Firm has power to set both quantity and price
Tradeoff between higher demand but lower per-unit prices
$MR(q^*) = MC(q^*)$; inverse-elasticity pricing property