Lecture 1: Costs

EC 105. Industrial Organization.

Matt Shum HSS, California Institute of Technology

Technology and Costs

- Two main components of a firm's costs:
 - Fixed costs F: cost incurred regardless of output amount.
 - 2 Variable costs VC; vary with the amount produced.
- Examples:
 - Airline: fixed cost is cost of airplane; variable cost are costs of incremental customers
 - Computer factory: fixed cost is cost of setting up factory; variable cost include input costs for each PC produced
 - Starbucks: fixed cost is rent for space; VC are costs of making each cup of coffee (almost zero!)
- Magnitude of fixed vs. variable cost determine the efficient size of a firm.

- Two main components of a firm's costs:
 - Fixed costs F: cost incurred regardless of output amount.
 - 2 Variable costs VC; vary with the amount produced.
- Examples:
 - Airline: fixed cost is cost of airplane; variable cost are costs of incremental customers
 - Computer factory: fixed cost is cost of setting up factory; variable cost include input costs for each PC produced
 - Starbucks: fixed cost is rent for space; VC are costs of making each cup of coffee (almost zero!)
- Magnitude of fixed vs. variable cost determine the efficient size of a firm.

- Two main components of a firm's costs:
 - Fixed costs F: cost incurred regardless of output amount.
 - 2 Variable costs VC; vary with the amount produced.
- Examples:
 - Airline: fixed cost is cost of airplane; variable cost are costs of incremental customers
 - Computer factory: fixed cost is cost of setting up factory; variable cost include input costs for each PC produced
 - Starbucks: fixed cost is rent for space; VC are costs of making each cup of coffee (almost zero!)
- Magnitude of fixed vs. variable cost determine the efficient size of a firm.

- Two main components of a firm's costs:
 - Fixed costs F: cost incurred regardless of output amount.
 - 2 Variable costs *VC*; vary with the amount produced.
- Examples:
 - Airline: fixed cost is cost of airplane; variable cost are costs of incremental customers
 - Computer factory: fixed cost is cost of setting up factory; variable cost include input costs for each PC produced
 - Starbucks: fixed cost is rent for space; VC are costs of making each cup of coffee (almost zero!)
- Magnitude of fixed vs. variable cost determine the efficient size of a firm.

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs *F*: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

EC 105. Industrial Organization. (Matt Shur

Lecture 1: Costs

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

EC 105. Industrial Organization. (Matt Shur

Lecture 1: Costs

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

- Cost function C(q): **minimum** cost of producing a given quantity q
- C(q) = F + VC(q), where
 - Fixed costs F: cost incurred regardless of output amount.
 - Avoidable vs. sunk: crucial for determining shut-down decisions for the firm.
 - Variable costs VC(q); vary with the amount produced.
 - Average cost $AC(q) = \frac{C(q)}{q}$
 - Marginal cost $MC(q) = \frac{\partial C(q)}{\partial q}$
 - $AVC(q) = \frac{VC(q)}{q}$; $AFC(q) = \frac{F}{q}$; AC(q) = AVC(q) + AFC(q).

•
$$C(q) = 125 + 5q + 5q^2$$

•
$$AC(q) =$$

•
$$MC(q) =$$

•
$$AFC(q) = 125/q$$
; $AVC(q) = 5 + 5q$
 q $AC(q)$ $MC(q)$
1 135 15
3 61.67 35
5 55 55
7 57.86 75

AC rises if MC exceeds it, and falls if MC is below it. Implies that MC intersects AC at the minimum of AC.

•
$$C(q) = 125 + 5q + 5q^2$$

•
$$AC(q) =$$

•
$$MC(q) =$$

•
$$AFC(q) = 125/q$$
; $AVC(q) = 5 + 5q$
 q $AC(q)$ $MC(q)$
1 135 15
3 61.67 35
5 55 55
7 57.86 75

AC rises if MC exceeds it, and falls if MC is below it. Implies that MC intersects AC at the minimum of AC.

•
$$C(q) = 125 + 5q + 5q^2$$

•
$$AC(q) =$$

•
$$MC(q) =$$

•
$$AFC(q) = 125/q$$
; $AVC(q) = 5 + 5q$

	(' /	, .
q	AC(q)	MC(q)
1	135	15
3	61.67	35
5	55	55
7	57.86	75
9	63.89	95

AC rises if MC exceeds it, and falls if MC is below it. Implies that MC intersects AC at the minimum of AC.

•
$$C(q) = 125 + 5q + 5q^2$$

•
$$AC(q) =$$

•
$$MC(q) =$$

•
$$AFC(q) = 125/q$$
; $AVC(q) = 5 + 5q$
 q $AC(q)$ $MC(q)$
1 135 15
3 61.67 35
5 55 55
7 57.86 75
9 63.89 95

AC rises if MC exceeds it, and falls if MC is below it. Implies that MC intersects AC at the minimum of AC.

•
$$C(q) = 125 + 5q + 5q^2$$

•
$$AC(q) =$$

•
$$MC(q) =$$

•
$$AFC(q) = 125/q$$
; $AVC(q) = 5 + 5q$
 q $AC(q)$ $MC(q)$
1 135 15
3 61.67 35
5 55 55
7 57.86 75
9 63.89 95

AC rises if MC exceeds it, and falls if MC is below it. Implies that MC intersects AC at the minimum of AC.

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Traditional companies vs. internet companies can have very different cost structures:
- Compare to traditional products, some internet versions have lower fixed costs but higher variable costs
- Ex: Restaurants
 - Traditional restaurant: FC (costs of renting space; hiring workers) >>
 VC (cost of ingredients for each dish)
 - Food delivery service: FC (no need for physical restaurant) <<(?) VC (costs for delivery)
- Ex: Internet retailers (books, electronics, clothing, etc.)
 - Lower overhead costs, but high shipping costs
- As a result, internet companies actively try to reduce VC
 - automation based on machine learning in warehouses;
 - using drones for delivery

- Other internet ventures dominate traditional in both FC and VC
- Ex: movies
 - Traditional movie theater: FC>> VC
 - Online movie streaming: very low FC and VC
- Ex: music streaming, eBooks, etc.
- In these cases, however, traditional versions still surviving!
 - Traditional and internet versions are becoming differentiated products
 - Watching movie at home (with friends) vs. in theater ("date")
 - can profitably coexist

- Other internet ventures dominate traditional in both FC and VC
- Ex: movies
 - Traditional movie theater: FC>> VC
 - Online movie streaming: very low FC and VC
- Ex: music streaming, eBooks, etc.
- In these cases, however, traditional versions still surviving!
 - Traditional and internet versions are becoming differentiated products
 - Watching movie at home (with friends) vs. in theater ("date")
 - can profitably coexist

- Other internet ventures dominate traditional in both FC and VC
- Ex: movies
 - Traditional movie theater: FC>> VC
 - Online movie streaming: very low FC and VC
- Ex: music streaming, eBooks, etc.
- In these cases, however, traditional versions still surviving!
 - Traditional and internet versions are becoming differentiated products
 - Watching movie at home (with friends) vs. in theater ("date")
 - can profitably coexist

- Other internet ventures dominate traditional in both FC and VC
- Ex: movies
 - Traditional movie theater: FC>> VC
 - Online movie streaming: very low FC and VC
- Ex: music streaming, eBooks, etc.
- In these cases, however, traditional versions still surviving!
 - Traditional and internet versions are becoming differentiated products
 - Watching movie at home (with friends) vs. in theater ("date")
 - can profitably coexist

- Other internet ventures dominate traditional in both FC and VC
- Ex: movies
 - Traditional movie theater: FC>> VC
 - Online movie streaming: very low FC and VC
- Ex: music streaming, eBooks, etc.
- In these cases, however, traditional versions still surviving!
 - Traditional and internet versions are becoming differentiated products
 - Watching movie at home (with friends) vs. in theater ("date")
 - can profitably coexist

- Other internet ventures dominate traditional in both FC and VC
- Ex: movies
 - Traditional movie theater: FC>> VC
 - Online movie streaming: very low FC and VC
- Ex: music streaming, eBooks, etc.
- In these cases, however, traditional versions still surviving!
 - Traditional and internet versions are becoming differentiated products
 - Watching movie at home (with friends) vs. in theater ("date")
 - can profitably coexist

- Magnitude of FC and VC determine the best size for a firm.
- When FC high relative to VC, there are Economies of scale:
- Larger firms are more efficient, bc they produce at lower avg costs:
 - AC'(q) < 0: increasing returns to scale
 - AC'(q) > 0: decreasing returns to scale
 - AC'(q) = 0: constant returns to scale
 - Example: U-shaped AC curve
- Minimum Efficient Scale (MES): level of production where AC is minimized. At minimum of AC curve (more later).
- Factors affecting scale economies:
 - Fixed costs
 - Congestion
 - specialization: "division of labor limited by the extent of the market"

- Magnitude of FC and VC determine the best size for a firm.
- When FC high relative to VC, there are Economies of scale:
- Larger firms are more efficient, bc they produce at lower avg costs:
 - AC'(q) < 0: increasing returns to scale
 - AC'(q) > 0: decreasing returns to scale
 - AC'(q) = 0: constant returns to scale
 - Example: U-shaped AC curve
- Minimum Efficient Scale (MES): level of production where AC is minimized. At minimum of AC curve (more later).
- Factors affecting scale economies:
 - Fixed costs
 - Congestion
 - specialization: "division of labor limited by the extent of the market"

- Magnitude of FC and VC determine the best size for a firm.
- When FC high relative to VC, there are Economies of scale:
- Larger firms are more efficient, bc they produce at lower avg costs:
 - AC'(q) < 0: increasing returns to scale
 - AC'(q) > 0: decreasing returns to scale
 - AC'(q) = 0: constant returns to scale
 - Example: U-shaped AC curve
- Minimum Efficient Scale (MES): level of production where AC is minimized. At minimum of AC curve (more later).
- Factors affecting scale economies:
 - Fixed costs
 - Congestion
 - specialization: "division of labor limited by the extent of the market"

- Magnitude of FC and VC determine the best size for a firm.
- When FC high relative to VC, there are Economies of scale:
- Larger firms are more efficient, bc they produce at lower avg costs:
 - AC'(q) < 0: increasing returns to scale
 - AC'(q) > 0: decreasing returns to scale
 - AC'(q) = 0: constant returns to scale
 - Example: U-shaped AC curve
- Minimum Efficient Scale (MES): level of production where AC is minimized. At minimum of AC curve (more later).
- Factors affecting scale economies:
 - Fixed costs
 - Congestion
 - specialization: "division of labor limited by the extent of the market"

- Magnitude of FC and VC determine the best size for a firm.
- When FC high relative to VC, there are Economies of scale:
- Larger firms are more efficient, bc they produce at lower avg costs:
 - AC'(q) < 0: increasing returns to scale
 - AC'(q) > 0: decreasing returns to scale
 - AC'(q) = 0: constant returns to scale
 - Example: U-shaped AC curve
- Minimum Efficient Scale (MES): level of production where AC is minimized. At minimum of AC curve (more later).
- Factors affecting scale economies:
 - Fixed costs
 - Congestion
 - specialization: "division of labor limited by the extent of the market"

• Subadditive cost function:

$$C(q_1,q_2) < C_1(q_1) + C_2(q_2)$$

- Example 1: common fixed costs
 - Ricardo: rancher produces beef & leather
 - "joint production"
 - Leads to global EOS

$$C_1(q_1) = 10 + 2q_1;$$
 $C_2(q_2) = 10 + 3q_2;$ $C(q_1, q_2) = 10 + 2q_1 + 3q_2$

EC 105. Industrial Organization. (Matt Shur

Subadditive cost function:

$$C(q_1,q_2) < C_1(q_1) + C_2(q_2)$$

- Example 1: common fixed costs
 - Ricardo: rancher produces beef & leather
 - "joint production"
 - Leads to global EOS

$$C_1(q_1) = 10 + 2q_1;$$
 $C_2(q_2) = 10 + 3q_2;$ $C(q_1, q_2) = 10 + 2q_1 + 3q_2$

EC 105. Industrial Organization. (Matt Shur

Subadditive cost function:

$$C(q_1,q_2) < C_1(q_1) + C_2(q_2)$$

- Example 1: common fixed costs
 - Ricardo: rancher produces beef & leather
 - "joint production"
 - Leads to global EOS

$$C_1(q_1) = 10 + 2q_1;$$
 $C_2(q_2) = 10 + 3q_2;$ $C(q_1, q_2) = 10 + 2q_1 + 3q_2$

Subadditive cost function:

$$C(q_1,q_2) < C_1(q_1) + C_2(q_2)$$

- Example 1: common fixed costs
 - Ricardo: rancher produces beef & leather
 - "joint production"
 - Leads to global EOS

$$C_1(q_1) = 10 + 2q_1;$$
 $C_2(q_2) = 10 + 3q_2;$ $C(q_1, q_2) = 10 + 2q_1 + 3q_2$

Economies of Scope, cont'd

• More often, EOS is local & depends on levels of q_1 , q_2 :

$$C_1(q_1) = 5 + 2q_1; \quad C_2(q_2) = 5 + 3q_2; C(q_1, q_2) = 10 + 3q_1 + 2q_2$$

(q_1, q_2)	$C_1(q_1)$	$C_2(q_2)$	$C(q_1, q_2)$
(1,1)			
(1,2)			
(2,1)			
(2,2)			

Economies of Scope, cont'd

• More often, EOS is local & depends on levels of q_1 , q_2 :

$$C_1(q_1) = 5 + 2q_1;$$
 $C_2(q_2) = 5 + 3q_2;$ $C(q_1, q_2) = 10 + 3q_1 + 2q_2$

(q_1, q_2)	$C_1(q_1)$	$C_2(q_2)$	$C(q_1,q_2)$
(1,1)			
(1,2)			
(2,1)			
(2,2)			

- What is AC for a multiproduct firm?
- Not straightforward to answer, except in special cases.
- Assume production of the different products $i=1,\ldots,N$ in **fixed proportions**, and let these proportions be $\lambda_1,\ldots,\lambda_N$, with $\sum_i \lambda_i = 1$
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.

- What is AC for a multiproduct firm?
- Not straightforward to answer, except in special cases.
- Assume production of the different products $i=1,\ldots,N$ in **fixed proportions**, and let these proportions be $\lambda_1,\ldots,\lambda_N$, with $\sum_i \lambda_i = 1$
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.

- What is AC for a multiproduct firm?
- Not straightforward to answer, except in special cases.
- Assume production of the different products $i=1,\ldots,N$ in **fixed** proportions, and let these proportions be $\lambda_1,\ldots,\lambda_N$, with $\sum_i \lambda_i = 1$.
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.

- What is AC for a multiproduct firm?
- Not straightforward to answer, except in special cases.
- Assume production of the different products $i=1,\ldots,N$ in **fixed** proportions, and let these proportions be $\lambda_1,\ldots,\lambda_N$, with $\sum_i \lambda_i = 1$.
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.

- What is AC for a multiproduct firm?
- Not straightforward to answer, except in special cases.
- Assume production of the different products $i=1,\ldots,N$ in **fixed** proportions, and let these proportions be $\lambda_1,\ldots,\lambda_N$, with $\sum_i \lambda_i = 1$.
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.

- What is AC for a multiproduct firm?
- Not straightforward to answer, except in special cases.
- Assume production of the different products $i=1,\ldots,N$ in **fixed** proportions, and let these proportions be $\lambda_1,\ldots,\lambda_N$, with $\sum_i \lambda_i = 1$.
- Let q_1, \ldots, q_N denote production of the different products, and $q = q_1 + q_2 + \ldots$
- Then define $\lambda_i = q_i/q$, the "proportion" of component i in the total production. Note that $q_i = \lambda_i q$.

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- More general: take λ as quantity shares of production: schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- ullet More general: take λ as quantity shares of production:
 - schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- ullet More general: take λ as quantity shares of production:
 - schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- ullet More general: take λ as quantity shares of production:
 - schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- ullet More general: take λ as quantity shares of production:
 - schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- ullet More general: take λ as quantity shares of production:
 - schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- ullet RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Strict eample: Shoe factory q_1 is number of right shoes q_2 is number of left shoes $\lambda_1 = 0.5, \ \lambda_2 = 0.5$
- ullet More general: take λ as quantity shares of production:
 - schools, restaurants, factory, etc.
- Define: Ray Average Costs

$$RAC(q) = \frac{C(\lambda_1 q, \dots, \lambda_N q)}{q}$$

- Example: Shoe factory $C(q_1, q_2) = 100 + 5q_1 + 5q_2$, • $RAC(q) = \frac{1}{q} * [100 + 5\lambda_1 q + 5\lambda_2 q] = \frac{100 + 5q}{q}$.
- RAC'(q) determines economies of scale for a multiproduct firm.
- Weakness: fixed proportions only approximate

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from information on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from information on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from information on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from information on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from information on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from information on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Classic example: common inputs (cow yields beef and leather)
- Marketing channels ("umbrella branding": Regular, Honey Nut, and Apple-Cinnamon Cheerios)
- Japanese keiretsu; Korean chaebol
 - Toyota, Sony, Sumitomo, Mitsubishi
 - Samsung, Hyundai, Kia
- Most major internet companies are involved in many products
 - Are Amazon, Google, Alibaba, Tencent, the "new keiretsu"??
 - retail, transportation, banking and finance, health insurance
 - Economies of scope arise from *information* on consumers?
 - Use consumer shopping information to better price insurance?
 - Hiring armies of machine learning specialists

- Short run: production technology given
- Long run: can adapt production technology to market conditions
- Long-run AC curve cannot exceed short-run AC curve: its the lower envelope
- Minimum efficient scale of a firm: smallest output which minimizes long-run AC.

- Short run: production technology given
- Long run: can adapt production technology to market conditions
- Long-run AC curve cannot exceed short-run AC curve: its the lower envelope
- **Minimum efficient scale** of a firm: smallest output which minimizes *long-run* AC.

- Short run: production technology given
- Long run: can adapt production technology to market conditions
- Long-run AC curve cannot exceed short-run AC curve: its the lower envelope
- Minimum efficient scale of a firm: smallest output which minimizes long-run AC.

- Short run: production technology given
- Long run: can adapt production technology to market conditions
- Long-run AC curve cannot exceed short-run AC curve: its the lower envelope
- **Minimum efficient scale** of a firm: smallest output which minimizes *long-run* AC.

- Division of labor requires high fixed costs (for example, assembly line requires high setup costs).
- Firm adopts division of labor only when scale of production (market demand) is high enough.
- Graph: Price-taking firm has "choice" between two production technologies.

- Division of labor requires high fixed costs (for example, assembly line requires high setup costs).
- Firm adopts division of labor only when scale of production (market demand) is high enough.
- Graph: Price-taking firm has "choice" between two production technologies.

- Division of labor requires high fixed costs (for example, assembly line requires high setup costs).
- Firm adopts division of labor only when scale of production (market demand) is high enough.
- Graph: Price-taking firm has "choice" between two production technologies.

"The division of labor is limited by the extent of the market" (Adam Smith) $\,$

- Division of labor requires high fixed costs (for example, assembly line requires high setup costs).
- Firm adopts division of labor only when scale of production (market demand) is high enough.
- Graph: Price-taking firm has "choice" between two production technologies.

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- **Normal profit** of a product is its selling price minus opportunity cost. Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus *production cost* < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus *production cost* < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus production cost < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus production cost < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus production cost < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus production cost < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus production cost < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

- The opportunity cost of a product is the value of the best forgone alternative use of the resources employed in making it.
- Normal profit of a product is its selling price minus opportunity cost.
 Quit when normal profit < 0.
- (vs. accounting profits: quit when revenue minus production cost < 0)
- Example:
 - Car factory: a worker would make \$5 an hour
 - Two brothers, who make one lamp each hour, with \$7 prod cost
 - What is opportunity cost of lamp?
 - Normal profit when market price of lamp is \$11? \$10? \$9?
 - Accounting profit when market price of lamp is \$11? \$10? \$9?
- Economics as "dismal science"

Summary

- Define: cost function
- Economies of Scale
- Economies of Scope
- Long-run vs. short-run
- Accounting vs. opportunity cost