Superuniversality and non-Abelian bosonization in 2+1 dimensions

Michael Mulligan UC Riverside

in collaboration with Aaron Hui and Eun-Ah Kim (Cornell U.)

arXiv: 1712.04942 and 1710.11137

phase transitions between quantum Hall states represent some of the best examples of disordered quantum critical phenomena

a puzzling feature of these phase transitions is their apparent

similarity

 ν is the correlation length exponent: $\xi \sim (B-B_c)^{-\nu}$

z is the dynamical critical exponent: $\tau \sim \xi^z$

at integer quantum Hall plateau transitions, the product has been

factorized

$$z \sim 1$$

Koch, Haug, von Klitzing, & Ploog

$$\Delta B \sim L^{-1/\nu}$$

$$\Delta B \sim E^{1/\nu(z+1)}$$

scaling of the dc resistivity near these apparently continuous quantum phase transitions implies:

Sondhi, Girvin, Carini, & Shahar

$$\rho_{xx} = \frac{h}{e^2} f_{(a)} \left(\frac{B - B_c^{(a)}}{T^{1/\nu z}} \right)$$

$$h \quad (B - B_c^{(a)})$$

$$\rho_{xy} = \frac{h}{e^2} g_{(a)} \left(\frac{B - B_c^{(a)}}{T^{1/\nu z}} \right)$$

(a) labels the particular phase transition, e.g., $1 \to 0$ or $1/3 \to 2/5$

In this talk, I will assume these measurements imply ν and z are the same at all phase transitions between Abelian quantum Hall states of spin-polarized electrons

Critical states are distinguished by their critical conductivities, i.e., $f_{(a)}(0)$ and $g_{(a)}(0)$

superuniversality is the sharing of critical indices among distinct critical points

Laughlin, Cohen, Kosterlitz

such behavior is surprising:

Laughlin, Cohen, Kosterlitz, Levine, Libby, & Pruisken; Jain, Kivelson, & Trivedi; Kivelson, Lee, & Zhang; Lutken & Ross; Fradkin & Kivelson; Shimshoni, Sondhi, & Shahar; Burgess & Dolan; Geraedts & Motrunich; Goswami & Chakravarty; Goldman & Fradkin

- (i) "conventional" symmetry-breaking phase transitions are NOT superuniversal (below their critical dimensionality)
- (ii) the basic theoretical framework for the integer and fractional quantum Hall effects are different: interactions are crucial to lifting the degeneracy of a partially filled Landau level

"composite bosons" (and "composite fermions")

Girvin & MacDonald; Read;; Hansson, Kivelson, & Zhang; Lopez & Fradkin; Halperin, Lee, & Read; Kalmeyer & Zhang

from D. Arovas' Ph.D thesis

heuristic picture:

electrons at 1/3 filling = "composite bosons" in zero effective field

"composite bosons" (and "composite fermions")

Girvin & MacDonald; Read;; Hansson, Kivelson, & Zhang; Lopez & Fradkin; Halperin, Lee, & Read; Kalmeyer & Zhang

from D. Arovas' Ph.D thesis

heuristic picture:

electrons at 1/3 filling = "composite bosons" in zero effective field

$$B_{\text{eff}} = B - 6\pi n_e$$

"composite bosons" provide a useful theoretical picture that unites the integer and fractional quantum Hall phenomena

$$\mathcal{L}_{cb} = \varphi^* \Big(i(\partial_t - i(\alpha_t + A_t) + \frac{1}{2m_e} (\partial_j - i(\alpha_j + A_j))^2 \Big) \varphi - |\varphi|^4 + \frac{1}{m} \frac{1}{4\pi} \alpha d\alpha$$

$$\alpha d\alpha = \epsilon^{\mu\nu\rho} \alpha_{\mu} \partial_{\nu} \alpha_{\rho}$$

 α : "statistical" gauge field

A: electromagnetic gauge field

m: number of flux quanta "attached" to φ

$$m = 1$$
 gives IQHE;

$$m=3$$
 gives $1/3$ Laughlin state

a quantum Hall transition is mapped to a magnetic field-tuned "superconductor" to "insulator" transition of composite bosons

"composite bosons" provide a useful theoretical picture that unites the integer and fractional quantum Hall phenomena

$$\mathcal{L}_{cb} = \varphi^* \left(i(\partial_t - i(\alpha_t + A_t) + \frac{1}{2m_e} (\partial_j - i(\alpha_j + A_j))^2 \right) \varphi - |\varphi|^4 + \frac{1}{m} \frac{1}{4\pi} \alpha d\alpha$$

superuniversality obtains if exponents don't depend on m

Kivelson, Lee, & Zhang

in mean-field theory, this occurs (obviously)

going beyond mean-field theory, prior field theoretic works, studying quantum Hall transitions tuned by a periodic potential, have computed exponents in a large flavor expansion, i.e.,

$$\nu = 1 - \frac{1}{N_f} F(m)$$

Fisher, Weichman, Grinstein, & Fisher; Wen & Wu; Chen, Fisher, & Wu; see also numerical works by Lee, Geraedts, & Motrunich

$$F(m) \sim \mathcal{O}(1) > 0$$
 and depends strongly on m

structure of the talk

I'll provide some theoretical optimism for superuniversality using new effective theories for a class of quantum Hall phase transitions between states whose quasiparticles have Abelian statistics

> see also the recent work by Geraedts & Motrunich and Goldman & Fradkin

these descriptions have an emergent U(N) gauge symmetry with N > 1

- 1. I'll provide a description for an integer quantum Hall transition
- 2. I'll use this description to generate transitions between a class of Abelian quantum Hall states using modular transformations
- 3. I'll show that correlation length exponents at distinct quantum Hall transitions are the same in a controlled 't Hooft large N limit
- 4. I'll argue that these results hold away from the controlled 't Hooft large N limit using non-Abelian bosonization conjectures

Note: I will not get realistic critical exponents for a GaAs 2DEG; additional physical ingredients are presumably necessary

the starting point

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

U(1) -> U(N) generalization of the theory in Seiberg, Senthil, Wang, & Witten

N: integer greater than 1

a: U(N) Chern-Simons gauge field

b: U(1) Chern-Simons gauge field

A: electromagnetic gauge field

 ψ : Dirac fermion with 2 spinor components

in the fundamental rep of U(N)

quantization conditions

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

in the absence of matter fields, like the Dirac fermion, only integral linear combinations of the terms below give well defined contributions to a 2+1D effective action

Deser, Jackiw, Templeton; Polychronakos

$$\frac{1}{4\pi} \operatorname{Tr} \left[ada - \frac{2}{3} ia^{3} \right],$$

$$\frac{1}{4\pi} \operatorname{Tr} [a] d\operatorname{Tr} [a],$$

$$\frac{1}{2\pi} \operatorname{Tr} [a] db,$$

$$\frac{1}{4\pi} bdb$$

the first two terms in \mathcal{L}_{IQHT} contribute well defined terms in the 1PI action

ultraviolet regularization: Yang-Mills term for a is implicitly assumed

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

this means we augment,

$$\mathcal{L}_{\text{IQHT}} \to \mathcal{L}_{\text{IQHT}} - \frac{1}{4g^2} \text{Tr}[F_a^2]$$

decomposing $U(N) \approx SU(N) \times U(1)$

the "classical" SU(N) Chern-Simons level gets a one-loop exact shift:

$$k_{SU(N)} = -\frac{1}{2} \mapsto -\frac{1}{2} - N$$

Witten; Chen, Semenoff, & Wu

 $\mathcal{L}_{\mathrm{IQHT}}$ realizes an integer quantum Hall phase transition

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

tune the fermion mass $m_{\psi} \bar{\psi} \psi$ and integrate out ψ

$$\mathcal{L}_{\text{eff}} = \frac{\operatorname{sign}(m_{\psi}) - 1}{2} \frac{1}{4\pi} \operatorname{Tr} \left[ada - \frac{2}{3}ia^{3} \right] - \frac{1}{2\pi} \operatorname{Tr}[a]db - \frac{N+1}{4\pi}bdb - \frac{1}{2\pi}bdA$$

 $\mathcal{L}_{\mathrm{IQHT}}$ realizes an integer quantum Hall phase transition

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} bdb - \frac{1}{2\pi} bdA$$

tune the fermion mass $m_{\psi}\bar{\psi}\psi$ and integrate out ψ

$$\mathcal{L}_{\text{eff}} = \frac{\text{sign}(m_{\psi}) - 1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3}ia^{3} \right] - \frac{1}{2\pi} \text{Tr}[a]db - \frac{N+1}{4\pi}bdb - \frac{1}{2\pi}bdA$$

 $m_{\psi} < 0$: integer quantum Hall effect

 $m_{\psi} > 0$: insulator

$\mathcal{L}_{\text{IOHT}}$ realizes an integer quantum Hall phase transition

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} bdb - \frac{1}{2\pi} bdA$$

tune the fermion mass $m_{\psi}\psi\psi$ and integrate out ψ

$$\mathcal{L}_{\text{eff}} = \frac{\operatorname{sign}(m_{\psi}) - 1}{2} \frac{1}{4\pi} \operatorname{Tr} \left[ada - \frac{2}{3}ia^{3} \right] - \frac{1}{2\pi} \operatorname{Tr}[a]db - \frac{N+1}{4\pi}bdb - \frac{1}{2\pi}bdA$$

$$m_{\psi} < 0$$
:

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3}ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a]db - \frac{N+1}{4\pi}bdb - \frac{1}{2\pi}bdA$$

Naculich & Schnitzer; – Nakanishi & Tsuchiya; Hsin & Seiberg

$$\begin{array}{l} \text{rank/level duality} \\ \text{aculich \& Schnitzer;} \\ \text{akanishi \& Tsuchiya;} \\ \text{sin \& Seiberg} \end{array} = \left(\frac{N}{4\pi} - \frac{N+1}{4\pi}\right)bdb - \frac{1}{2\pi}bdA \\ = -\frac{1}{4\pi}bdb - \frac{1}{2\pi}bdA \end{array}$$

 $\mathcal{L}_{\mathrm{IQHT}}$ realizes an integer quantum Hall phase transition

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

tune the fermion mass $m_{\psi} \bar{\psi} \psi$ and integrate out ψ

$$\mathcal{L}_{\text{eff}} = \frac{\operatorname{sign}(m_{\psi}) - 1}{2} \frac{1}{4\pi} \operatorname{Tr} \left[ada - \frac{2}{3}ia^{3} \right] - \frac{1}{2\pi} \operatorname{Tr}[a]db - \frac{N+1}{4\pi}bdb - \frac{1}{2\pi}bdA$$

$$m_{\psi} > 0$$
:
$$\mathcal{L}_{\text{eff}} = -\frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

$$\Longrightarrow b = 0 \text{ and}$$

$$\mathcal{L}_{\text{eff}} = 0$$

 $\mathcal{L}_{\mathrm{IQHT}}$ realizes an integer quantum Hall phase transition

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

tune the fermion mass $m_{\psi}\bar{\psi}\psi$ and integrate out ψ

$$\mathcal{L}_{\text{eff}} = \frac{\text{sign}(m_{\psi}) - 1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3}ia^{3} \right] - \frac{1}{2\pi} \text{Tr}[a]db - \frac{N+1}{4\pi}bdb - \frac{1}{2\pi}bdA$$

 $m_{\psi} < 0$: integer quantum Hall effect

 $m_{\psi} > 0$: insulator

fractional quantum Hall transitions via modular transformations

modular group, $PSL(2,\mathbb{Z})$: group of 2×2 matrices with integer entries and unit determinant

complexified zero-temperature dc conductivity

$$\sigma = \sigma_{xy} + i\sigma_{xx}$$

$$\sigma \mapsto \frac{p\sigma + q}{r\sigma + s}$$
, for $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in PSL(2, \mathbb{Z})$

lifting the modular group to a Lagrangian $\mathcal{L}(\Phi, A)$

Witten; Leigh & Petkou

generators:
$$\mathcal{T} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathcal{S} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

$$\mathcal{T}: \mathcal{L}(\Phi, A) \mapsto \mathcal{L}(\Phi, A) + \frac{1}{4\pi}AdA,$$

$$\mathcal{S}: \mathcal{L}(\Phi, A) \mapsto \mathcal{L}(\Phi, c) - \frac{1}{2\pi}cdB$$

$$\mathcal{T}: \sigma \mapsto \sigma + 1$$

$$S: \sigma \mapsto -1/\sigma$$

we can decompose a subset of modular transformations into two groups:

(i) addition of a Landau level: \mathcal{T}

and

(ii) attachment of m units of flux: $S^{-1}T^{-m}S$

some modular transformation
$$\sigma = 1 \to 0 \text{ transition}$$

$$\sigma = \frac{1}{(m+1)} \to 0 \text{ transition}$$

$$\text{via } \mathcal{S}^{-1}\mathcal{T}^{-m}\mathcal{S}$$

from a theory for the $\sigma=1\to 0$ transition we can generate a class of fractional quantum Hall transitions, e.g., $\sigma=1/(m+1)\to 0$

$$\begin{array}{c} \mathcal{L}_{\mathrm{IQHT}}(A) \\ \text{some modular} & \downarrow \\ \text{transformation} \\ \mathcal{L} = \mathcal{L}_{\mathrm{IQHT}}(c) + \mathcal{L}_{\mathrm{mod}}(A) \end{array}$$

$$\mathcal{L}_{\text{IQHT}}(c) = i\bar{\psi} \, \mathcal{D}_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} bdb - \frac{1}{2\pi} bdc$$

$$\mathcal{L}_{\text{mod}}(A) = -\frac{1}{2\pi} cdg - \frac{m}{4\pi} gdg - \frac{1}{2\pi} gdA$$

focusing on the $\sigma = 1/(m+1) \to 0$ transition, we wish to calculate:

$$\nu^{-1} = 1 - \gamma_{\bar{\psi}\psi}.$$

z=1 automatically, since theory is relativistic

I will argue that $\gamma_{\bar{\psi}\psi}$ is independent of m in the 't Hooft large N limit

for this perturbative calculation, it's helpful to rewrite the Lagrangian in a less precise, but simpler form

$$\mathcal{L}_{s} = i\bar{\psi} \not\!\!{D}_{a}\psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^{3} \right] + \frac{1}{N+1+m} \frac{1}{4\pi} (\text{Tr}[a] - A) d(\text{Tr}[a] - A)$$

next, we set the background E&M field to zero and decompose:

$$a = \mathcal{A}_{SU(N)} + \mathcal{A}_{U(1)} \mathbb{I}$$

$$\mathcal{L}_{s} = i\bar{\psi} \, \mathcal{D}_{a}\psi + \frac{k_{SU(N)}}{4\pi} \text{Tr} \left[\mathcal{A}_{SU(N)} d\mathcal{A}_{SU(N)} - \frac{2}{3} i \mathcal{A}_{SU(N)}^{3} \right] + \frac{k_{U(1)}}{4\pi} \mathcal{A}_{U(1)} d\mathcal{A}_{U(1)}$$

$$k_{SU(N)} = -\frac{1}{2} - N \text{ and } k_{U(1)} = \frac{N^2 - N - Nm}{2(N+1+m)}$$

some intuition

$$\mathcal{L}_{s} = i\bar{\psi} \mathcal{D}_{a}\psi + \frac{k_{SU(N)}}{4\pi} \text{Tr} \left[\mathcal{A}_{SU(N)} d\mathcal{A}_{SU(N)} - \frac{2}{3} i\mathcal{A}_{SU(N)}^{3} \right] + \frac{k_{U(1)}}{4\pi} \mathcal{A}_{U(1)} d\mathcal{A}_{U(1)}$$

$$a = \mathcal{A}_{SU(N)} + \mathcal{A}_{U(1)}\mathbb{I}$$

$$k_{SU(N)} = -\frac{1}{2} - N$$
 and $k_{U(1)} = \frac{N^2 - N - Nm}{2(N+1+m)}$

since $|k_{U(1)}| \propto N$ as $N \to \infty$

fluctuations of $\mathcal{A}_{U(1)}$ can be made arbitrarily weak, if $\mathcal{A}_{SU(N)}$ could be ignored

't Hooft large N limit

$$N o \infty$$
 with
$$\frac{N}{k_{SU(N)}} \text{ and } \frac{N}{k_{U(1)}} \text{ finite}$$

note: non-trivial even at infinite N!

in this limit, leading non-zero contributions to anomalous dimension are

(1-loop vertex and 1- and 2-loop fermion self-energies are finite)

't Hooft large N limit

$$Su(n): N = \underset{n'}{\overset{n}{\longrightarrow}} \underset{n'}{\overset{n}{\longrightarrow}} \propto \frac{1}{k_{su(n)}}$$

$$U(1): N = ---- \propto \frac{1}{k_{u(n)}}$$

example: fermion self-energy

$$m = m = m + \frac{1}{k_{sucn}}$$

$$\frac{N}{k_{sucn}} + \frac{1}{k_{uci}}$$

't Hooft large N limit

as long as $|k_{U(1)}| \sim N$

leading 't Hooft large N limits of U(N) and SU(N) are the same perturbatively

$$\gamma_{\bar{\psi}\psi} = c_1 \left(\frac{N}{k_{SU(N)}}\right)^2 + \mathcal{O}(1/N)f(m)$$

in perturbation theory, $A_{U(1)}$ first contributes at $\mathcal{O}(1/N)$

i.e., dependence on m in $1/(m+1) \to 0$ transition occurs at $\mathcal{O}(1/N)$

this is superuniversality in the 't Hooft large N limit!

the value of the 2-loop planar contribution to the mass anomalous dimension is known:

Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin

$$\gamma_{\bar{\psi}\psi} = 0 + \mathcal{O}\left(\left(\frac{N}{k_{SU(N)}}\right)^3\right)$$

or

$$\nu = 1$$

in perturbation theory, this result holds for all m

higher-order terms in perturbation theory may change the value for the anomalous dimension (or exponent), but will not invalidate the m independence

to what extent do these results hold away from the controlled 't Hooft large N limit?

consistency of various dualities implies that

$$\mathcal{L}_{\text{IQHT}}(A) = i\bar{\psi} \not\!\!D_a \psi - \frac{1}{2} \frac{1}{4\pi} \text{Tr} \left[ada - \frac{2}{3} ia^3 \right] - \frac{1}{2\pi} \text{Tr}[a] db - \frac{N+1}{4\pi} b db - \frac{1}{2\pi} b dA$$

is in the same universality class as the theory of a free Dirac fermion for any N > 0!

$$i\bar{\Psi} \not\!\!\!D_A \Psi + \frac{1}{8\pi} AdA$$

this means at m = 0

For N=1:Son; Senthil & Wang; Metlitski & Vishwanath; Seiberg, Senthil, Wang, & Witten; Karch & Tong; Kachru, MM, Torroba, & Wang; Geraedts, Zaletel, Mong, Metlitski, Vishwanath, & Motrunich; Shankar & Murthy; Mross, Alicea, & Motrunich; Balram & Jain

$$\gamma_{\bar{\psi}\psi} = 0$$

within a formal perturbative expansion, the planar contribution must vanish at large N using this large N limit, this should likewise hold when m > 0, since m only enters at sub-planar order in perturbation theory!

the argument for the N-independent duality to a free fermion goes as follows:

$$|D_A\phi|^2 - |\phi|^4 + \frac{1}{4\pi}AdA$$

Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin; Aharony, Gur-Ari, & Yacoby; Aharony; Hsin & Seiberg; Seiberg, Senthil, Wang, & Witten

$$\uparrow$$

$$\bar{\psi} \not\!\!D_a \psi - \frac{1}{8\pi} \text{Tr}[ada - \frac{2}{3}ia^3] - \frac{1}{2\pi} \text{Tr}[a]dA - \frac{N-1}{4\pi}AdA$$

the argument for the N-independent duality to a free fermion goes as follows:

$$|D_A\phi|^2 - |\phi|^4 + \frac{1}{4\pi}AdA$$

Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin; Aharony, Gur-Ari, & Yacoby; Aharony; Hsin & Seiberg; Seiberg, Senthil, Wang, & Witten

$$\downarrow$$

$$\bar{\psi} \not\!\!D_a \psi - \frac{1}{8\pi} \text{Tr}[ada - \frac{2}{3}ia^3] - \frac{1}{2\pi} \text{Tr}[a]dA - \frac{N-1}{4\pi}AdA$$

applying \mathcal{ST}^{-2} to both sides:

$$-\frac{1}{2\pi}cdA$$

the argument for the N-independent duality to a free fermion goes as follows:

$$|D_A\phi|^2 - |\phi|^4 + \frac{1}{4\pi}AdA$$

Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin; Aharony, Gur-Ari, & Yacoby; Aharony; Hsin & Seiberg; Seiberg, Senthil, Wang, & Witten

$$\uparrow$$

$$\bar{\psi} \not\!\!D_a \psi - \frac{1}{8\pi} \text{Tr}[ada - \frac{2}{3}ia^3] - \frac{1}{2\pi} \text{Tr}[a]dA - \frac{N-1}{4\pi}AdA$$

applying \mathcal{ST}^{-2} to both sides:

$$i\bar{\Psi} \not\!\!\!D_A \Psi + \frac{1}{8\pi} AdA$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bar{\psi} \not\!\!D_a \psi - \frac{1}{8\pi} \text{Tr}[ada - \frac{2}{3}ia^3] - \frac{1}{2\pi} \text{Tr}[a]dc - \frac{N+1}{4\pi}cdc$$

$$-\frac{1}{2\pi}cdA$$

things to do:

- (i) understand nonperturbative corrections at m >0
- (ii) compare large flavor and 't Hooft expansions
- (iii) calculate electrical and thermal conductivities
- (iv) add disorder and the Coulomb interaction
- (v) study possible applications to transitions tuned by a periodic potential in graphene
- (vi) deform our models to more faithfully represent transitions in a GaAs 2D electron gas

Lee, Geraedts, & Motrunich

Lee, Wang, Zaletel, Vishwanath, & He; experiments by Young et al.

