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phase transitions between quantum Hall states represent some of
the best examples of disordered quantum critical phenomena
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a puzzling feature of these phase transitions is their apparent
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AB ~ TY"* where vz ~ 7/3
v is the correlation length exponent: £ ~ (B — B.)™"

z is the dynamical critical exponent: 7 ~ &°
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at integer quantum Hall plateau transitions, the product has been
factorized

v~ T/3

z ~ 1

&

e

=

&

iz

5

oh

=
b

025 FEaaas (b) —
| | ] | |
-02 -01 0 0.1 0.2
B-Bc (T
c(T) B(T)
Koch, Haug, von Klitzing, & Ploog Wei, Engel, & Tsui

AB ~ L~1/¥ AR ~ Fl/v(+1)



scaling of the dc resistivity near these apparently continuous
gquantum phase transitions implies: Sondhi, Girvin, Carini, & Shahar
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(a) labels the particular phase transition, e.g., 1 -0 or 1/3 — 2/5

In this talk, I will assume these measurements imply

v and z are the same at all phase transitions |

Detween

Abelian quantum Hall states of spin-polarized electrons

Critical states are distinguished by their critical

conductivities, i.e., f(4)(0) and g(,)(0)

Shahar, Tsui, Shayegan, Bhatt,

& Cunningham



superuniversality is the sharing of critical indices among distinct

critical pOIﬂtS Laughlin, Cohen, Kosterlitz, Levine, Libby,
& Pruisken; Jain, Kivelson, & Trivedi;
Kivelson, Lee, & Zhang; Lutken & Ross;

such behavior is su I"pr‘iSing . Fradkin & Kivelson; Shimshoni, Sondhi, &
Shahar; Burgess & Dolan; Geraedts &

Motrunich; Goswami & Chakravarty;
Goldman & Fradkin

(i) “conventional” symmetry-breaking phase transitions are NOT
superuniversal (below their critical dimensionality)

(ii) the basic theoretical framework for the integer and fractional
quantum Hall effects are different: interactions are crucial to lifting
the degeneracy of a partially filled Landau level
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“composite bosons” (and “composite fermions™)

|
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Girvin & MacDonald; Read;; Hansson, Kivelson, & Zhang;
Lopez & Fradkin; Halperin, Lee, & Read; Kalmeyer & Zhang

from D. Arovas’ Ph.D thesis

heuristic picture:
electrons at 1/3 filling = “composite bosons” in zero effective field
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“composite bosons” provide a useful theoretical picture that unites
the integer and fractional quantum Hall phenomena

Loy =@ (100 — i(ow + A) + 5-— (05 — ila + 4;)*)¢ — ¢l + ——ada

2M

ada = e""Pay, 0,00
o : “statistical” gauge field
A : electromagnetic gauge field

m : number of flux quanta “attached” to ¢

m = 1 gives IQHE;
m = 3 gives 1/3 Laughlin state

a quantum Hall transition is mapped to a magnetic field-tuned
“superconductor” to “insulator” transition of composite bosons



“composite bosons” provide a useful theoretical picture that unites
the integer and fractional quantum Hall phenomena
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superuniversality obtains if exponents don’t depend on m

Kivelson, Lee, & Zhang

in mean-field theory, this occurs (obviously)

going beyond mean-field theory, prior field theoretic works, studying
quantum Hall transitions tuned by a periodic potential, have
computed exponents in a large flavor expansion, i.e.,

N Fisher, Weichman, Grinstein, & Fisher;

f Wen & Wu; Chen, Fisher, & Wu;

see also numerical works by Lee, Geraedts, &
Motrunich

F(m) ~ O(1) > 0 and depends strongly on m



structure of the talk

I'll provide some theoretical optimism for superuniversality using
new effective theories for a class of quantum Hall phase transitions
between states whose quasiparticles have Abelian statistics

see also the recent work by
Geraedts & Motrunich and Goldman & Fradkin

these descriptions have an emergent U(N) gauge symmetry with N > 1

1. I'll provide a description for an integer quantum Hall transition

2. I'll use this description to generate transitions between a class of
Abelian quantum Hall states using modular transformations

3. I'll show that correlation length exponents at distinct quantum
Hall transitions are the same in a controlled 't Hooft large N limit

4. I'll argue that these results hold away from the controlled ‘t Hooft
large N limit using non-Abelian bosonization conjectures

Note: I will not get realistic critical exponents for a GaAs 2DEG;
additional physical ingredients are presumably necessary



the starting point

Ligur(A) = i) Patp — ing” [ada — §za3} — %Tr[a]db ~

bdb — ibdA
27

U(1) -> U(N) generalization of the theory in
Seiberg, Senthil, Wang, & Witten

N: integer greater than 1

a: U(N) Chern-Simons gauge field

b: U(1) Chern-Simons gauge field

A: electromagnetic gauge field

y: Dirac fermion with 2 spinor components
in the fundamental rep of U ()



quantization conditions

1 1 2 1 N +1 1
Liqur(A4) = i) Dyt — 54—Tr [ada — gza?’] — %Tr[a]db — 41 bdb — %bdA

in the absence of matter fields, like the Dirac fermion, only integral
linear combinations of the terms below give well defined
contributions to a 2+ 1D effective action Deser, Jackiw, Templeton; Polychronakos

1 2
—Tr [ada — —zaﬂ
A 3

1 Tr|a|dTr|al,
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the first two terms in LiguT contribute well defined terms in the 1PI action
Niemi & Semenoff; Redlich; Witten



ultraviolet regularization: Yang-Mills term for a is implicitly assumed

] 11 ) 1 N+1
Lrour(A) = i) Path — = —Tr [ada _ gmﬂ — Tela)db — 2T
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this means we augment,

Liqut — LI1QHT

decomposing U(N) ~ SU(N) x U(1)

the “classical” SU(N) Chern-Simons level gets a one-loop exact shift:
1 1 Witten; Chen, Semenoff, & Wu

kSU(N) — —5 —> —5 — N



Liout realizes an integer quantum Hall phase transition
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Liout realizes an integer quantum Hall phase transition
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fractional qguantum Hall transitions via modular transformations

modular group, PSL(2,7): group of 2 x 2 matrices with integer entries and unit determinant

complexified zero-temperature dc conductivity

O = Ogy + 10z

Wpa——q’ for (£ 4 c PSL(2,7)
ro + s TS

O




lifting the modular group to a Lagrangian L£(®, A)

Witten; Leigh & Petkou

1 1 0 1
generators: T = (O 1) and S = (_1 O>

1
T:L(P,A) — L(DP,A) A 1 AdA,
T
1
S:L(P,A)— L(D,c) 5 cdB
7

T:0—~0c+1
S:o— —1/0




we can decompose a subset of modular transformations into two groups:

(i) addition of a Landau level: T

and

(ii) attachment of m units of flux: S™'7 ™S8

e.g.,
o =1 — 0 transition
some modular N i
transformation
o = > 0 transition
(m+1)

via ST1T ™S



from a theory for the 0 =1 — 0 transition
we can generate a class of fractional quantum Hall transitions,
e.g,o0c=1/(m+1) —0

Liqur(A)

some modular S i

transformation
L = Liqur(c) + Lmod(A)
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focusing on the 0 = 1/(m + 1) — 0 transition,

we wish to calculate:

Tl =1-— Y-

2 = 1 automatically, since theory is relativistic

[ will argue that 7z, is independent of m
in the 't Hooft large N limit

pmm




for this perturbative calculation, it's helpful to rewrite the Lagrangian in a less
precise, but simpler form
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next, we set the background E&M field to zero and decompose:

a = Asuwv) + Au)l

(Trla] — A)d(Trla] — A)

- k 2 k
Ls =11 Dot A SZQN) Tr| AsynydAsu vy — gZA%U(N)} | 27(:) Av)dAu 1)
1 N? —N — Nm
k — N and k =
SU(N) U(1) 2(N + 1+ m)




some Intuition

ky

_ k 2
i) Do - SZQN) Tr| AsuvydAsu(ny — giA%U(N) | 47(:)AU(1)dAU(1)
a = «ASU(N) + .AU(l)]I
1 N? - N — Nm
SUN) = Ty T MM T (N T T+ m)

since |k (1)] oc NV as N — oo
fluctuations of Ay (1) can be made arbitrarily weak,

if Asyr(ny could be ignored



't Hooft large N limit

N — o0
with
N N
and finite
ksu () k1)

note: non-trivial even at infinite N!

In this limit, leading non-zero contributions to anomalous dimension are

N “ y )
)
\

(1-loop vertex and 1- and 2-loop fermion self-energies are finite)



't Hooft large N limit

example: fermion self-energy




't Hooft large N limit




as long as |ky(1)| ~ N
leading 't Hooft large N limits of U(NN) and SU(N) are the same perturbatively

N

kst (n)

Vb = 01( )2 +O(1/N) f(m)

in perturbation theory, Ay () first contributes at O(1/N)

i.e., dependence on m in 1/(m + 1) — 0 transition occurs at O(1/N)

this is superuniversality in the 't Hooft large N limit!



the value of the 2-loop planar contribution to the mass anomalous dimension is
known: Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin

Yy = 0+ O((k’sff\im )3>

v =1
in perturbation theory, this result holds for all m

higher-order terms in perturbation theory may change the value for the
anomalous dimension (or exponent), but will not invalidate the m independence



to what extent do these results hold away from the controlled 't Hooft large N
limit?

consistency of various dualities implies that

11 ) 1 N+ 1 1
Liqur(4) = i) Pat) — 5 —Tr ada - §za3} — Tylaldb — 2 pap — —bdA
T

2T 47

Is in the same universality class as the theory of a free Dirac fermion for any N > 0!
= 1
Tr

For N=1:Son; Senthil & Wang; Metlitski & Vishwanath; Seiberg,

Senthil, Wang, & Witten; Karch & Tong; Kachru, MM, Torroba, &

th' t _ O Wang; Geraedts, Zaletel, Mong, Metlitski, Vishwanath, & Motrunich;
IS Means atm = Shankar & Murthy; Mross, Alicea, & Motrunich; Balram & Jain

Yy = 0
within a formal perturbative expansion, the planar contribution must vanish at large N

using this large N limit, this should likewise hold when m > 0, since m only enters at
sub-planar order 1n perturbation theory!



the argument for the N-independent duality to a free fermion goes as follows:

Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin;
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the argument for the N-independent duality to a free fermion goes as follows:

Giombi, Minwalla, Prakash, Trivedi, Wadia, & Yin;
1 Aharony, Gur-Ari, & Yacoby; Aharony; Hsin & Seiberg;

‘DA¢‘2 — ‘¢|4 | T AdA Seiberg, Senthil, Wang, & Witten
e
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things to do:

(i) understand nonperturbative corrections at m >0

(ii) compare large flavor and 't Hooft expansions

(iii) calculate electrical and thermal conductivities

(iv) add disorder and the Coulomb interaction

(v) study possible applications to transitions tuned by a
periodic potential in graphene

(vi) deform our models to more faithfully represent
transitions in a GaAs 2D electron gas

Lee, Geraedts, & Motrunich

Lee, Wang, Zaletel,
Vishwanath, & He;
experiments by Young et al.
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