Wave Function and Emergent SU(2) Symmetry in $v_T = 1$ Quantum Hall Bilayer

Biao Lian Princeton University

B. Lian, S-C. Zhang, PRL 120, 077601 (2018)

Bilayer Quantum Hall system in lowest Landau levels (LLLs):

Layer distance d

Magnetic length $\ell = \sqrt{\hbar c/eB}$

Coulomb interaction

$$V_{11}(r) = V_{22}(r) = \frac{e^2}{\epsilon r}$$
, $V_{12}(r) = \frac{e^2}{\epsilon \sqrt{r^2 + d^2}}$

Interlayer hopping Δ_{SAS} (small, set to 0 hereafter)

2) Exciton Condensate at $v_T = \frac{1}{2} + \frac{1}{2} = 1$

Via a PH transformation in LLL of layer 2, one has an exciton superfluid forms at $d/\ell < 1.8$,

$$\langle c_1^{\dagger}(r)c_2(r)\rangle \neq 0$$
.

Equivalently, by defining layer indices 1 & 2 as pseudospin \uparrow & \downarrow , the superfluid can be viewed as an in-plane ferromagnet.

3) Charge gap level crossing at $d/\ell \approx 1.1$

Conjecture:

The level crossing is due to an emergent SU(2) symmetry.

4) An exact SU(2) symmetric point: $d/\ell = 0$

 $V_{11}(r) = V_{22}(r) = V_{12}(r)$ indicates SU(2) pseudospin symmetry. The ground state is the **Halperin (111) state**:

$$\Psi_{111} = \mu(z, w) \prod_{i < i}^{N} (z_i - z_j) \prod_{k < i}^{M} (w_k - w_l) \prod_{i, k}^{N, M} (z_i - w_k)$$

After PH-transformation in LLL of layer 2, Ψ_{111} becomes

$$\Psi_0 = \det M_{ij}$$
 , $M_{ij} = e^{-\left(|z_i|^2 + |w_j|^2 - 2z_i w_j^*\right)/4\ell^2} = e^{-|z_i - w_j|^2/4\ell^2 + i\phi_{ij}}$

Physical picture: condensate of free excitons

Free due to SU(2) symmetry:

$$V_E = V_{11} + V_{22} - 2V_{12} = 0$$

5) Emergent SU(2) symmetry of CBs at $d/\ell \approx 1.1$

Define a composite boson (CB) as an electron bound with an intralayer flux.

Interaction $V'_{ij}(r)$ between CBs: $V'_{11}(r) < V_{11}(r)$ as screened by fluxes $V'_{12}(r) \approx V_{12}(r)$ for interlayer CBs

Conjecture: $V'_{11}(r) \approx V'_{12}(r)$ at $d/\ell \approx 1.1$.

This indicates formation of a condensate of free CB excitons.

A trial wave function in electron-hole basis:

$$\Psi_{1,1/2} = \prod_{i < j} (z_i - z_j) (w_i^* - w_j^*) \text{ perm } M'_{ij}$$
,

$$M'_{ij} = e^{-\left(|z_i|^2 + \left|w_j\right|^2 - z_i w_j^*\right)/4\ell^2} = \underbrace{e^{-\left|z_i - w_j\right|^2/8\ell^2} - \frac{|z_i|^2/8\ell^2 - |w_i|^2/8\ell^2 + i\phi_{ij}}_{\frac{1}{2}}}_{\text{filling per layer}}$$

Numerical evidences:

Correlation functions compared with DMRG at $d/\ell \approx 1.1$

Overlap with ED (4-electron)

6) Possible crossing levels at $d/\ell \approx 1.1$:

meron-antimeron bound states of total charge $\pm e$

Bound state (BS) energy: $V_{ij}(r)/4 + \eta \ln r$ Interlayer BS & intralayer BS becomes degenerate when $V'_{11} = V'_{12}$ (level crossing).

Discussion:

Free excitons at $d/\ell \approx 1.1$ possibly indicates a vanishing Goldstone mode velocity. Is it a phase transition point?

It suggests intralayer meron BS has lower energies at $d/\ell > 1.1$, and may play a key role in superfluid metal transition at $d/\ell \approx 1.8$.