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Systems of interest

Our research focus is on the infrared behavior of three-dimensional gauge
theories coupled to N flavors of massless two-component Dirac fermions
using non-perturbative lattice regularization. For QEDs3, the continuum
systems we have studied are

e Trivially parity-invariant QED3g with even-valued N fermion flavors:
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e A non-trivially parity-invariant QED3 with N = 1 massless fermion with
charge ¢, and two flavors of infinitely massive fermions of charge ¢/2 each
inducing a gauge action (q/2)°CS(a):
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In the above equations, ¢'(ga) is the UV regulated two-component Dirac
operator of charge . We set the scale using g% = 1.
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The lattice setup

e Consider the theory on periodic three-torus of physical volume ¢ dis-
cretized to L3 lattice points.

e Non-compact gauge action = No magnetic monopoles in path-
integral.
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e Continuum limit: At fixed physical sizes ¢ of three-torus, keep in-
creasing number of lattice point L and take L — oo limit.

e IR limit: After taking L. — oo at different finite ¢, take the £ — o0
limit.
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Lattice Dirac operators

Fermions couple to compact gauge fields U4 through lattice Dirac operators
which are 2L3 x 213 matrices.

e Wilson-Dirac operator ¢y;/(U?) uses the naively discretized Dirac
operator ¢,,(U9) and Wilson term B(UY) ~ V2 to avoid doublers:

Cw(UT) = Cn(U) + BUT) — Myy.
Drawback = My = 0 is not exactly massless at finite L, therefore

requires tuning. This is rectified by using the Overlap operator.

e Overlap Dirac operator is obtained by mapping the 3d fermion de-
terminant det @', to a Slater determinant corresponding to the overlap
between the ground-states of two appropriately chosen 34+1d many-body
Hamiltonians. The overlap operator ¢, (M, U4) with fermion mass M in
lattice units is
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where Vg = Cw (¢W$W) is a unitary operator. Under parity,
f
ng — qu.

\

Chern-Simons as the induced action 2.4,

Consider the following limits:

e Zero physical mass (M = 0)
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e Infinite negative physical mass (M = —1):
= det @' (M = —1) = det Vo = 20 Ay
e Infinite positive physical mass (M = +1):

= det @',(M = +1) = 1.

The phase of det @',(M,a) normalized by CS(a) is shown
as a tunction of M on the right, for a specific background
field. It flows from 0 at M = +1 to 241 (&~ CS(a) at finite
L)at M = —1.
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A smooth background field:
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which has CS(c) = ¢?/2.

Constructing parity-invariant theories on the lattice

Theory-1 with N =2
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Parity anomaly cancellation is exact even at finite L.

det(l + Vg)

Theory-1I with ¢ =1
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Anomaly cancellation is inexact since 2.4 = 241 —2.A4, /9 18

not exactly zero (mod 27) on rough configurations present
in the path-integral at any finite L.
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Anomaly cancellation in the continuum limit of Theory-11

We simulated theory-II using p(0) = e—500) |det(1 + V)]
measure and considered e*4 as an observable. The distribu-
tions of A wrt p4(6) are shown below.
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e The distributions get sharper around zero at fixed ¢ in
the L — oo limit showing anomaly cancellation.

e Fiven on relatively coarser lattices at £ = 200, no two-peak
structure around A = 0 and 7. This shows the absence
of topological zero modes in three-torus of any size and
hence a positive measure.
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We computed the fermionic topological current in lattice
units,
Jim) = -
: 06;(n)
We show Eq = (J9.J9), and their mismatch £ = E1— Ey /9
below as a function of lattice spacing ¢/L.
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k1 — Ly j9 goes to zero by two-powers of £ /L faster than
Eq and £y /25 again showing that parity-invariance is re-
stored in the continuum limit.
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Spontaneous symmetry breaking of parity in Theory-I11

We use low-lying eigenvalues 0 < A1 < A9 < ... of Dirac
operator, to probe the IR. Due to non-zero eigenvalue den-
sity of Dirac operator at A = 0 in case of SSB
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e Universality: Distributions of £3\;% (symbols) and z;
from a GUE-type Random Matrix Theory (curves)

match.
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An exact agreement of the two distributions is seen by using
i- and /-dependent values X;(£) for the matching. In the plot
below, we show the extrapolation of ¥;(¢) to £ — oo leads
to same non-zero value ¥ = 1.2(2) x 107°. This is the

estimate of the condensate (1)) = Z% + O(m).

1071 .

0.0 x 109 | '
0 - 0.005 - 0.01

0 0.05 0.1 0.15 0.2 0.25
1/¢

_




