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• Entanglement can often detect universal properties of 
a phase, given only the ground state wavefunction.

“Which phase is it?” 

• This talk:

RG Flows from Quantum Entanglement

“Is the phase stable?” 

“If not, what are its instabilities?”



Entanglement Entropy
• Divide system into two parts...

A

• Zero if and only if product state:  = �A ⌦ �A

�% = 8VEGI%|����|

Reduced density-matrix for A:

7R = � �
R�� log(8VEGI�R

%)

• von-Neumann entropy:

• Renyi entropies:

7 = −8VEGI(ρ% log ρ%)

7 = log(�) JSV�)46 WMRKPIX |�� = | �� � | �� � | �� � | ��



Entanglement & Universality

1D:  S ~ c log(L) + O(1/L)  

2D:  S ~ L - !  + O(1/L)

3D:  S ~  L2 + a log(L) + O(1/L)

Entanglement = “Order parameter” for phases and phase 
transitions

Phase 
Transitions

(Conformal 
Field Theories)

Phases
Fermi Surface: S ~ k LD-1 log(L)

Topologically Ordered Phase: S ~ L - !  

[
[



Entanglement & Renormalization Group

Universal part of quantum entanglement for CFTs 
decreases under RG!

1D:  Sline segement ~ c log(L)   
c-theorem (Zamolodchikov):  “c” descreases under RG.

3D:  Ssphere ~  L2 + a log(L)
a-theorem (Cardy):  “a” decreases under RG.

2D:  Scircle ~ L - !
! -theorem (Casini, Huerta, Klebanov et al):  “! ” decreases under 

RG



A 1D Example

Tricritical
Ising

Critical
IsingGapped

c = 7/10 c = 1/2c = 0

No other possibility!

Applications of entanglement monotonicity (“ ! -

theorem”) to 2+1-d condensed matter systems?



Question: Nature of transition? Balents et al 2011;
Wen et al 2011

Application I: Entanglement 
monotonicity &

Quantum Phase Transitions

J1-J2 Square Lattice

naive Landau-Ginzburg reasoning:  O(3) Wilson-Fisher.

P. Mendels



A No-Go Theorem for
Quantum Phase Transitions

Contradiction with entanglement monotonicity!     
O(3) Transition impossible!

O(3) 
Critical

Gaussian Fixed Point

AntiferromagnetTopologically
Ordered

RG flow assuming O(3) transition

�
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Obvious generalizations (SF      FQH, Nematic Z� 7TMR�PMUYMH�©




Lesson

Phase transitions out of topologically ordered phases 
necessarily lie beyond Landau-Ginzburg paradigm

Non-Landau

TG 2013



CFT-1

Topological Ordered
 Phase

CFT-2

Contrast: 1D   Vs   2D

• In 1+1-D, with no symmetries, 
unique gapped CFT (c = 0)

• All c > 0 CFTs can be taken to 
this unique massive CFT.

• In 2+1-d, more than one gapped CFT.
Distinct “Topological Ordered Phases”.

F-theorem ⇒ A gapless theory may not be 

deformable to a given massive theory in 2+1-d!

1+1-D

2+1-D



Appetizer: Entanglement & Kitaev’s 
Honeycomb Model

B = (1,1,1)

� = �(MVEG� �� �
�.��

+ �Z� 8STSPSKMGEP� �� �
log(�)

� -WMRK�8STSPSKMGEP� �� �
log(�)

Again consistent with entanglement monotonicity.

(Yao, Qi 2010)



However, many instabilities in two dimensions!
Classic problem from 1970’s:

Stability of gauge theories 
against confinement or

symmetry breaking?

Introduction
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Resistivity (polycrystalline samples)
Ln2Ir2O7

Ir4+: 5d5 Conduction electrons

Ln3+: (4f)n Localized moment
Magnetic frustration

Itinerant electron system 
on the pyrochlore lattice 

Ir[t2g]+O[2p] conduction band

Metal Insulator Transition
(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho)

K. Matsuhira et al. : J. Phys. Soc. Jpn. 76 (2007) 043706.
(Ln=Nd, Sm, Eu)

IrO6

Ln

O!

pyrochlore oxides

1
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A

 Quantum Spin Ice
Hermele, Balents, Fisher, Savary, 

Lee, Ross, Onoda, Gaulin.

Emergent fermions and photons 
in frustrated bosonic systems. 

“Gapless Spin-liquids” 

Spin Ice. 
Castelnovo, Moessner, 

Sondhi 2008. 

3+1-d...

(Corboz et al 2012)

(Xiao-Gang Wen 2000)

Application II: Entanglement 
Monotonicity &

Stability of Spin-Liquids



Phase Diagram of Algebraic 
Spin-liquids

L5)(�� =

2J�

E=�

�E [�M�µ (�µ + MEµ)] �E +
�
�K�

*µ�*µ�

Low-energy description of Algebraic Spin-Liquids:

Confined Phase
(e.g. Neel AFM) Algebraic spin-liquid

Nf

Nfc

Critical value of Nf  above which ASL stable?
Hermele et al 2005

= spinon,  a = emergent photon.
Nf  determined by spinon band-structure.
ψ “QED-3”



Vafa-Witten theorem in 2+1-d:
Massless particles in IR when Nf > 6!

Entanglement Monotonicity & 
Stability of ASL

What are these massless particles?

One guess: 
Goldstone modes due to confinement.

NfNfc

Confined Deconfined



Entanglement Monotonicity & 
Stability of ASL

But, these are too many to satisfy entanglement 
monotonicity when 

Nf > Nfc where one can put exact upper bound on Nfc

�5)(�� � 2J �+SPHWXSRI�4LEWI � 2�
Jwhile

� � �*VII�(MVEG�*IVQMSR
�*VII�6IEP�7GEPEVRough estimate:  Nfc ≃

Confinement generates N2f Goldstone modes

TG 2012



Rigorous bound: “Sandwich” Interacting 
theory between better-understood 

theories

�9: � 2J

�-6 � 2�J

Assumption:
��� > �

at QED-3 fixed point



Rigorous bound: “Sandwich” Interacting 
theory between better-understood 

theories
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Deconfinement for Nf > 13

�75)(�� > �+SPHWXSRI
Jafferis, Klebanov,

Pufu, Safdi, Sachdev

TG 2013



• Confinement without massless particles (not 
possible for Nf > 6, Vafa-Witten)

• Confinement with massless Goldstone modes (not 
possible for Nf > 13, Entanglement monotonicity)

• Deconfinement with mass gap (not possible for Nf > 
6, Vafa-Witten)

• Deconfinement with massless fermions

Deconfinement with massless fermions for Nf > 13

Entanglement Monotonicity & 
Deconfinement in QED-3

Four Possible Scenarios...

“When you have eliminated the impossible, whatever remains, however 
improbable, must be the truth.”



A Better Bound?

Free photons 
& Fermions

Interacting
QED-3N > N

fc
Interacting

QED-3

Free photons
 & Fermions

Goldstone Modes
(Chiral Sym. Breaking)

N < Nfc

�9: � 2J

�-6 � 2�J

Deconfinement for Nf > 7

?



Exciting Future Directions...

• Entanglement monotonicity for non-relativistic 
systems? Instabilities of Fermi and non-Fermi liquids?

• Constraining nature of phase transitions in symmetry 
protected topological phases?

• Derivation of entanglement monotonicity from 
wavefunction renormalization? (MERA, tensor-
networks,...)?

• A whole new field to explore...

“Ground State Ontology” (stability of phases via 
entanglement) as opposed to “Ground State 
Epistemology” (diagnosing quantum phases via 
entanglement).
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