Quantum Entanglement & Stability of Gapless Spin-Liquids

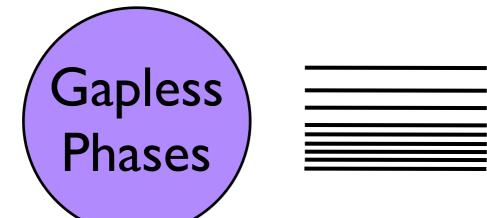
Tarun Grover

KITP, Santa Barbara

quantum entanglement is a Good Thing...

Holzhey, Larsen, Wilczek; Cardy Calabrese; Casini, Huerta

Characterize ID & 3D CFTs



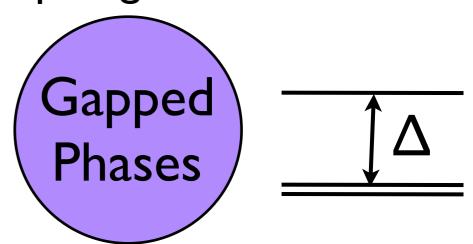
Detect Fermi Surfaces

> Gioev, Klich; Wolf.

Characterize
Symmetry-Broken
Phases

Melko, Hastings, Singh; Metlitski, TG Levin, Wen; Preskill, Kitaev; Zhang et al.

Detect and Characterize Topological Order



Detect
Edge & Surface
States

Li, Haldane; Qi, Ludwig, Katsura; Turner, Berg, Pollman; Fidkowski, Kitaev; Chen, Gu, Wen Entanglement can often detect universal properties of a phase, given only the ground state wavefunction.

"Which phase is it?"

This talk:

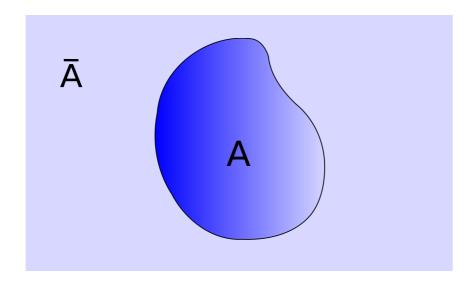
RG Flows from Quantum Entanglement

"Is the phase stable?"

"If not, what are its instabilities?"

Entanglement Entropy

Divide system into two parts...



Reduced density-matrix for A:

$$\rho_{\rm A} = {\rm Trace}_{\overline{\rm A}} |\psi\rangle\langle\psi|$$

- von-Neumann entropy: $S = -\text{Trace}(\rho_A \log \rho_A)$
- Renyi entropies: $S_n = -\frac{1}{n-1} \log(\text{Trace} \rho_A^n)$
- Zero if and only if product state: $\psi = \phi_A \otimes \phi_{\overline{A}}$

$$S = \log(2)$$
 for EPR singlet $|\psi\rangle = |\uparrow\rangle \otimes |\downarrow\rangle - |\downarrow\rangle \otimes |\uparrow\rangle$

Entanglement & Universality

Entanglement = "Order parameter" for phases and phase transitions

(Conformal Field Theories)

Phase Transitions

(Conformal Field Theories)

(D: $S \sim c \log(L) + O(1/L)$ 2D: $S \sim L - \Box + O(1/L)$ 3D: $S \sim L^2 + a \log(L) + O(1/L)$

Fermi Surface: $S \sim k L^{D-1} log(L)$ Topologically Ordered Phase: $S \sim L - \square$

Entanglement & Renormalization Group

Universal part of quantum entanglement for CFTs decreases under RG!

```
ID: Sline segement \sim c \log(L) c-theorem (Zamolodchikov): "c" descreases under RG.
```

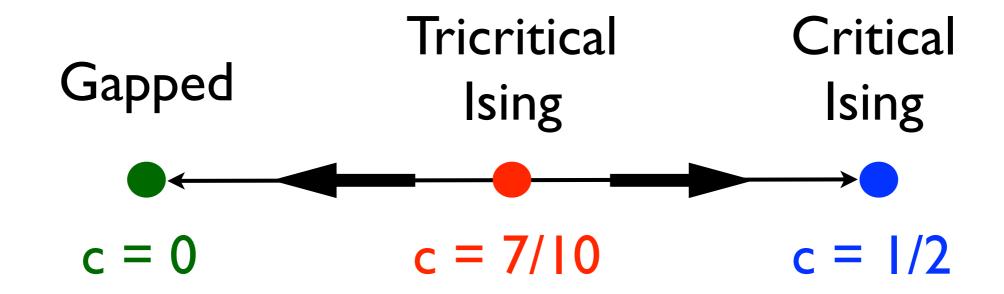
3D: Ssphere $\sim L^2 + a \log(L)$ a-theorem (Cardy): "a" decreases under RG.

2D: Scircle ~ L -

Theorem (Casini, Huerta, Klebanov et al): "I decreases under

RG

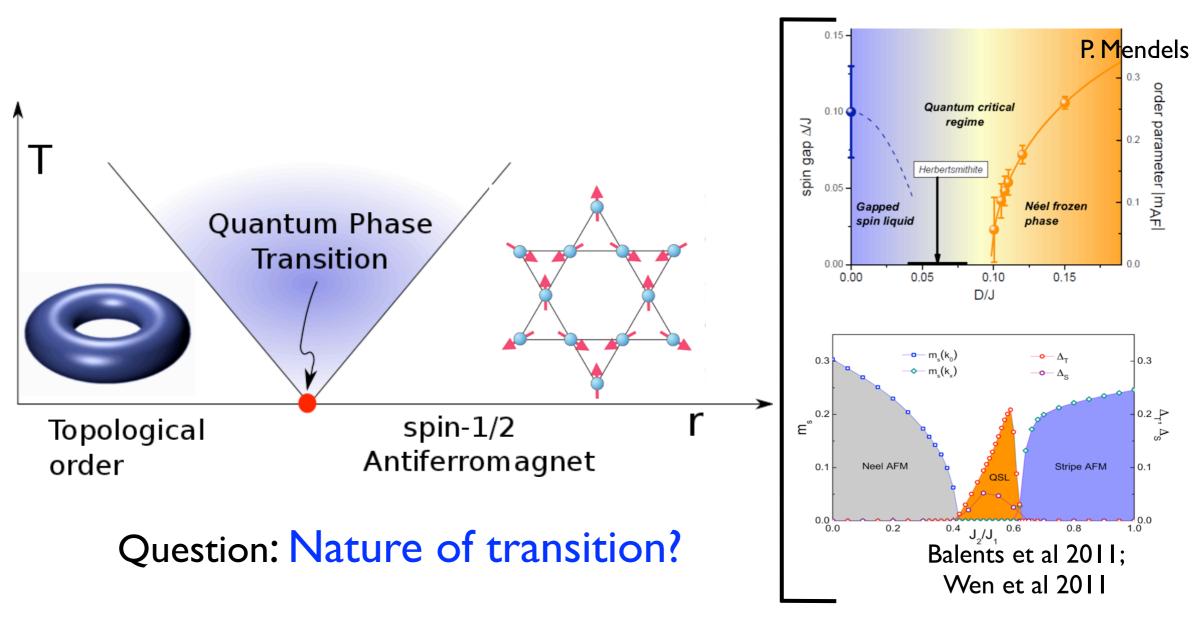
A ID Example



No other possibility!

Applications of entanglement monotonicity ("Ltheorem") to 2+1-d condensed matter systems?

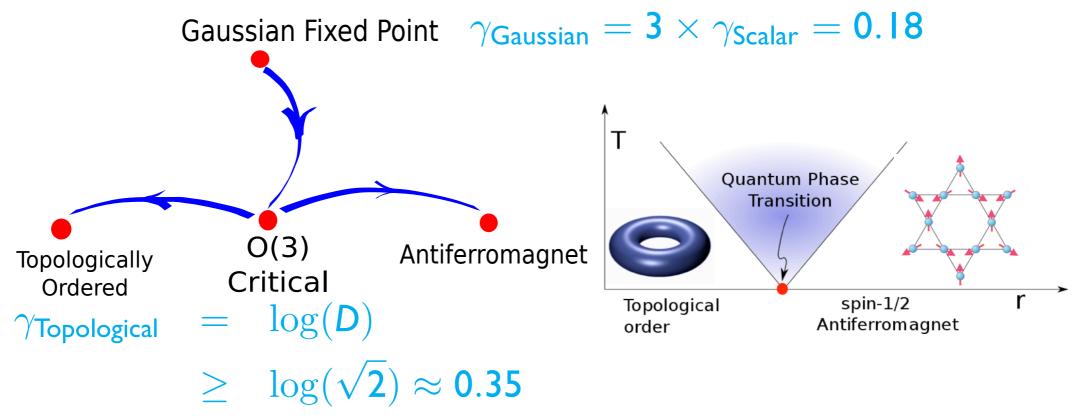
Application I: Entanglement monotonicity & Quantum Phase Transitions



naive Landau-Ginzburg reasoning: O(3) Wilson-Fisher.

A No-Go Theorem for Quantum Phase Transitions

RG flow <u>assuming</u> O(3) transition

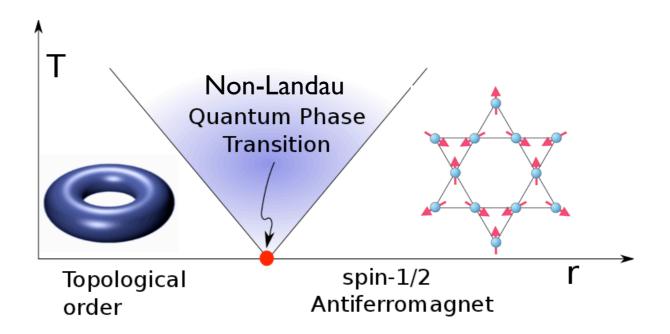


Contradiction with entanglement monotonicity! \Rightarrow O(3) Transition impossible!

Obvious generalizations (SF \longleftrightarrow FQH, Nematic $\longleftrightarrow \mathbb{Z}_2$ Spin liquid ...)

Lesson

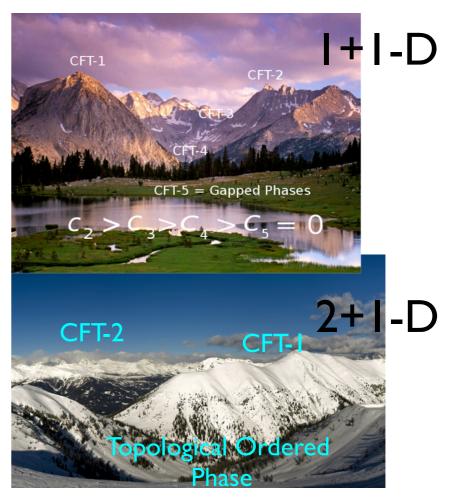
Phase transitions out of topologically ordered phases necessarily lie beyond Landau-Ginzburg paradigm



TG 2013

Contrast: ID Vs 2D

- In I+I-D, with no symmetries, unique gapped CFT (c = 0)
- All c > 0 CFTs can be taken to this unique massive CFT.

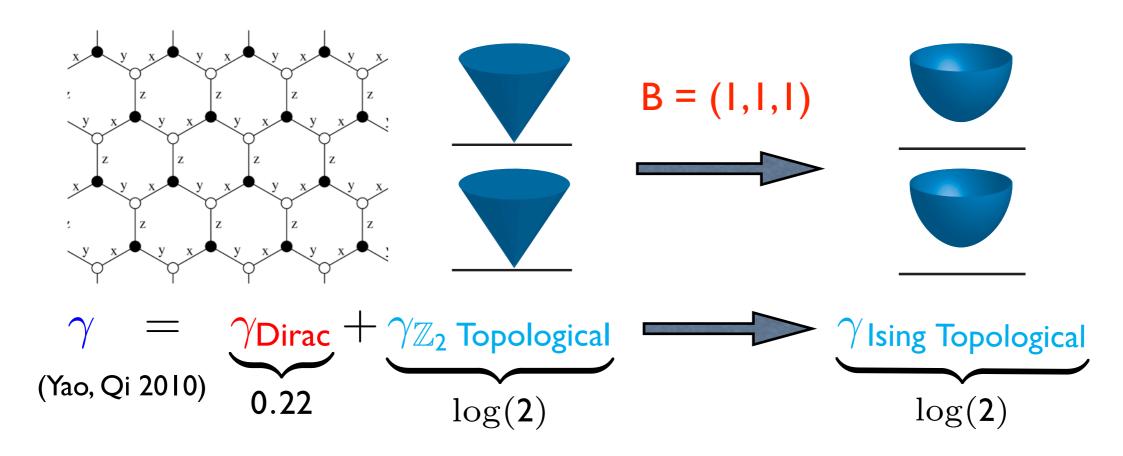


In 2+1-d, more than one gapped CFT.

Distinct "Topological Ordered Phases".

F-theorem \Rightarrow A gapless theory may not be deformable to a given massive theory in 2+1-d!

Appetizer: Entanglement & Kitaev's Honeycomb Model



Again consistent with entanglement monotonicity.

Application II: Entanglement Monotonicity & Stability of Spin-Liquids

Emergent fermions and photons in frustrated bosonic systems. "Gapless Spin-liquids"

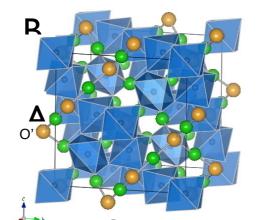
(Xiao-Gang Wen 2000)

However, many instabilities in two dimensions!

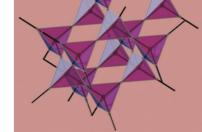
Classic problem from 1970's:

Stability of gauge theories against confinement or symmetry breaking?

3+1-d...



(Corboz et al 2012)



Quantum Spin Ice

Hermele, Balents, Fisher, Savary, Lee, Ross, Onoda, Gaulin.

Spin Ice.

Castelnovo, Moessner, Sondhi 2008.

Phase Diagram of Algebraic Spin-liquids

Low-energy description of Algebraic Spin-Liquids:

$$\mathcal{L}_{QED-3} = \sum_{a=1}^{N_f} \overline{\psi}_a \left[-i \gamma_\mu \left(\partial_\mu + i a_\mu \right) \right] \psi_a + \frac{1}{2g^2} F_{\mu\nu} F_{\mu\nu}$$
 "QED-3"
$$\psi = \text{spinon, a} = \text{emergent photon.}$$
 "QED-3"
$$N_f \text{ determined by spinon band-structure.}$$

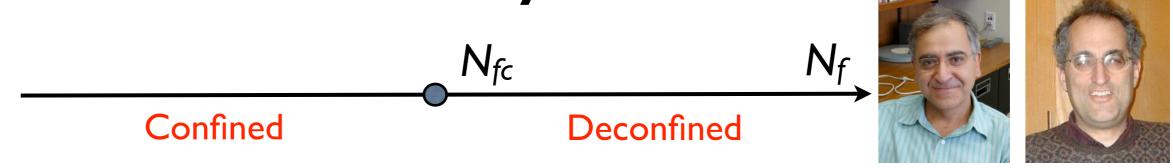
Confined Phase (e.g. Neel AFM)

 N_{fc} Algebraic spin-liquid N_{f}

Hermele et al 2005

Critical value of N_f above which ASL stable?

Entanglement Monotonicity & Stability of ASL



Vafa-Witten theorem in 2+1-d:

Massless particles in IR when $N_f > 6!$

What are these massless particles?

One guess:

Goldstone modes due to confinement.

Entanglement Monotonicity & Stability of ASL

Confinement generates N²_f Goldstone modes

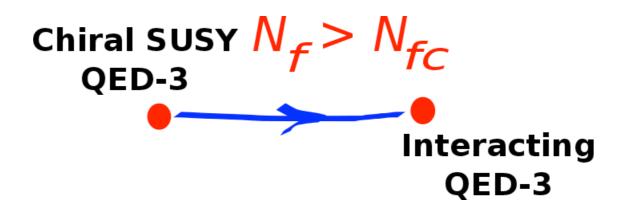
But, these are too many to satisfy entanglement monotonicity when

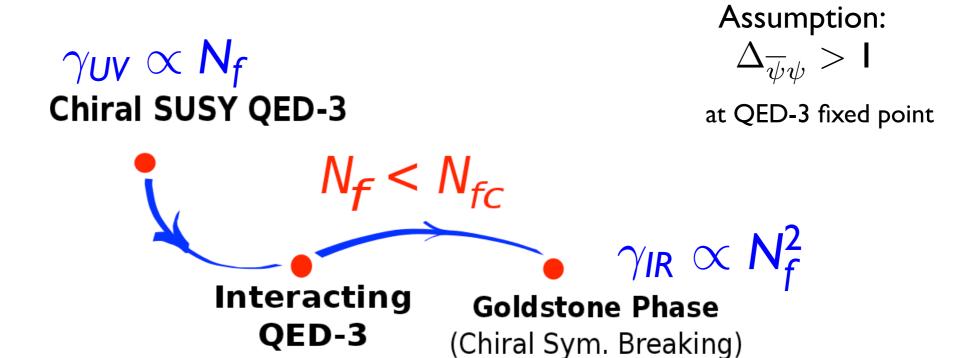
 $N_f > N_{fc}$ where one can put exact upper bound on N_{fc}

$$\gamma_{
m QED-3} \propto N_f$$
 while $\gamma_{
m Goldstone\ Phase} \propto N_f^2$

Rough estimate:
$$N_{fc} \simeq 2 \times \frac{\gamma_{\text{Free Dirac Fermion}}}{\gamma_{\text{Free Real Scalar}}}$$

Rigorous bound: "Sandwich" Interacting theory between better-understood theories





Rigorous bound: "Sandwich" Interacting theory between better-understood theories

 $\gamma_{\text{SQED-3}} > \gamma_{\text{Goldstone}}$

$$\gamma_{\text{SQED}-3} = N_f \log(2) + \frac{1}{2} \log\left(\frac{N_f \pi}{2}\right)$$

$$+ \left(\frac{-1}{4} + \frac{10}{3\pi^2}\right) \frac{1}{N_f} + O(N_f^{-2})$$
Jafferis, Klebanov, Pufu, Safdi, Sachdev

$$\gamma_{\mathrm{Goldstone}} = 2 N_{\mathrm{f}}^2 \gamma_{\mathrm{scalar}} + \gamma_{\mathrm{scalar}}$$

Deconfinement for $N_f > 13$

Entanglement Monotonicity & Deconfinement in QED-3

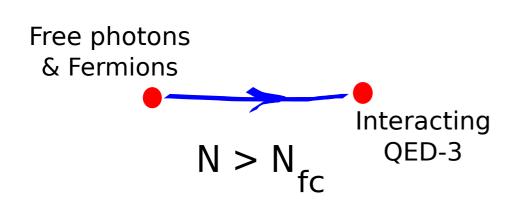
Four Possible Scenarios...

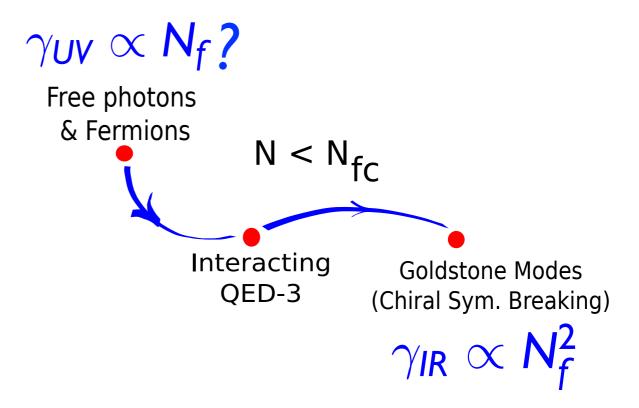
- Confinement without massless particles (not possible for $N_f > 6$, Vafa-Witten)
- Confinement with massless Goldstone modes (not possible for $N_f > 13$, Entanglement monotonicity)
- Deconfinement with mass gap (not possible for N_f > 6, Vafa-Witten)
- Deconfinement with massless fermions

Deconfinement with massless fermions for $N_f > 13$

"When you have eliminated the impossible, whatever remains, however improbable, must be the truth."

A Better Bound?





Deconfinement for $N_f > 7$

Exciting Future Directions...

- Entanglement monotonicity for non-relativistic systems? Instabilities of Fermi and non-Fermi liquids?
- Constraining nature of phase transitions in symmetry protected topological phases?
- Derivation of entanglement monotonicity from wavefunction renormalization? (MERA, tensornetworks,...)?
- A whole new field to explore...
 - "Ground State Ontology" (stability of phases via entanglement) as opposed to "Ground State Epistemology" (diagnosing quantum phases via entanglement).

Acknowledgements

Thank you to

Igor Klebanov, Joe Polchniski, Leon Balents, Max Metlitski, Nabil Iqbal & Vijay Kumar for useful conversations.