Probing Excitations in Pyrochlore Iridates with Resonant Inelastic X-ray Scattering

J.P. Clancy¹, H. Gretarsson¹, J. Kim², M.H. Upton², D. Casa², T. Gog³, A.H. Said², B.-G. Jeon³, B. Lee³, K.H. Kim³, and Y.J. Kim¹

¹University of Toronto, ²Argonne National Laboratory, ³Seoul National University

Novel Physics in Pyrochlore Iridates

- The pyrochlore iridates A₂Ir₂O₇ (A = Y or lanthanide) have attracted considerable attention due to the potential for exotic physics driven by the interplay between electronic correlations, band topology, geometric frustration, and strong 5d spin-orbit coupling [1].

- Proposed ground states for these materials include: fractional topological insulators/topological Mott insulators [2,3], topological (or Weyl) semi-metals [4-6], axion insulators [6,7], and chiral spin liquids [8].

- Previous experimental work has shown that the electronic and magnetic properties of these materials are very sensitive to A-site cation size [9-11]. Physical behaviour can be tuned via chemical composition.

Resonant Inelastic X-ray Scattering

- **Resonant Inelastic X-ray Scattering (RIXS) is a second-order scattering process which can be used to probe elementary excitations involving spin, orbital, charge, and lattice degrees of freedom [16].**

- **RIXS is particularly well-suited to the study of iridates (17-20).**

- **Element specific probe of magnetic and electronic properties.**

- **Small sample volumes required (<10 mg).**

- **Large resonant enhancement at hν absorption edge (2hν = δS₂ₓₓₓₓₓₓ at E = 11.21 keV).**

- **These materials are not amenable to conventional inelastic neutron scattering due to strong neutron absorption across section and difficulty of growth.**

- **In hν-edge RIXS measurements carried out using the Advanced Photon Source at Argonne National Lab.**

d-d Excitations in A₂Ir₂O₇ (A = Y, Eu, Pr)

- **Compare experimental data with ab initio calculations by L. Hsieh et al [12].**

- **Multiconfiguration self-consistent field (MCSCF) and multiconfiguration interaction (MCI) calculations performed on finite cluster (6 adjacent IrO₆ octahedra and neighbouring A-site cations).**

- **Good agreement between experimental and theoretical values.**

- **Model Eₗ and Eₜ with simple single-ion Hamiltonian: Hₑ = 3Jₑₛ – δₓ².**

- **Obtain reasonable values for spin-orbit coupling (δ), but surprisingly large trigonal crystal field splitting (Δ).**

- **A remains large, even for calculations with idealised crystal structure/no distortion of IrO₆ octahedra.**

- **A must originate from long-range anisotropy – trigonal field produced by neighbouring A-site ions and IrO₆ cations.**

Magnetic Excitations in A₂Ir₂O₇ (A = Eu)

- **Investigate low-lying inelastic scattering in single crystal Eu₂Ir₂O₇ using high-resolution experimental set-up (U ~ 35 meV).**

- **Temperature dependence, incident energy dependence, and Q-dependence indicate that this feature is magnetic in origin.**

Acknowledgements

The authors would like to acknowledge valuable collaborations with H. Hozoi and J. van den Brink (Fm Dresden), Y. Vashukhan and P. Fulde (MPI Dresden), and E.K.H. Lee, S. Bhattacharjee, and Y.B. Kim (University of Toronto).

Funding for this work was provided by NSEC of Canada, the Banting Postdoctoral Fellowship Program, the Ontario Postdoctoral Fellowship Program, and the Canada Research Chair Program.

Use of the Advanced Photon Source is supported by the U.S. Dept. of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
