
ME19b. MID. REVIEW SOLUTIONS. Feb. 7, 2010.

EXAMPLE PROBLEM 1

Write down the general forms of the conservation equations in integral and differential form, using vector notation.
Do not make any assumptions about the fluid or the flow (i.e., do not assume the fluid is Newtonian, or
incompressible, inviscid, etc. and do not assume the flow is steady, fully-developed, etc.). If you know the
general forms of the equations, you will be on your way to solving most problems you have seen thus far. These
equations should be the first thing you write down for each problem.

Now, assume only that the fluid is Newtonian so that the shear stress tensor is given by the relation

~~τ = µ∇~u. (1)

Rewrite the Navier-Stokes equation under this assumption.

SOLUTION 1

Let’s write the integral form of the conservation laws, which can be applied to a control volume. The continuity
or mass conservation equation is

conservation of mass :
∂

∂t

∫
cv

ρdV +
∮
cs

ρ~u · n̂dA = 0,

where the first term describes the rate of change of mass within the control volume (cv) and the second term
describes the mass transport across the boundaries of the control volume, i.e., the control surface (cs). The
normal to the control surface, n̂, is always pointing outward.

The force balance on the control volume gives the momentum conservation equation and is no different than
Newton’s first law, ~F = m~a = m(d~u/dt). If we consider this applied to a control volume, the result is

conservation of momentum :
∑

~F =
∂

∂t

∫
cv

ρ~udV +
∮
cs

ρ~u(~u · n̂)dA,

where
∑ ~F represents the sum of the forces acting on the control volume or control surface (which means they

act on the fluid). In general, we may have something like∑
~F = −

∮
cs

pn̂dA+ ~Fbody + ~Fτ ,

where the first term are the pressure forces acting on the control surface, the second includes body forces like
gravity, and the third includes shear forces acting parallel or tangent to the control surface.

The differential forms of the equations follow as

continuity 1 :
∂ρ

∂t
+∇ · (ρ~u) = 0,

or noting that ∇ · (ρ~u) = (~u · ∇)ρ+ ρ∇ · ~u, an equivalent expression is

continuity 2 :
Dρ

Dt
+ ρ∇ · ~u = 0,
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where D/Dt = ∂/∂t+ (~u · ∇) is the Lagrangian or material operator. The important thing to remember is that
D/Dt is conserved along particle paths. This operator also appears in the Navier-Stokes equation of motion

equation of motion : ρ
D~u

Dt
= −∇p+ ~Fbody +∇ · ~~τ .

Using the Newtonian-fluid stress relation with constant viscosity, this can be written as

equation of motion (Newtonian fluid) : ρ
D~u

Dt
= −∇p+ ~Fbody + µ∇2~u.

Remember that if the forces are conservative (like gravity), we can write ~Fbody = ∇φ, where φ is a potential.

EXAMPLE PROBLEM 2

A rocket is moving vertically with speed ur(t). The mass of the rocket system at time t can be denoted by M(t)
and includes the mass of the rocket itself, the unspent fuel, and the exhaust, prior to it exiting. At the nozzle
exit, the area is Ae and the pressure and density are pe and ρe, respectively. From stationary tests of the rocket
nozzle, the exit velocity of the exhaust is ue.

Find an expression for the rate of change of mass for the system, and an expression for the acceleration of the
rocket. The acceleration can be written in terms of the given parameters, atmospheric pressure pa, and the
drag D.

SOLUTION 2

Choose a control volume around the rocket, moving with velocity ur(t). Remember that all velocities must
be measured relative to the control volume in applying the conservation equations from Problem 1. From the
point-of-view of the stationary control volume, the exit velocity is ue.

Conservation of mass gives
dM

dt
= −ρeueAe,

where it is understood that
M =

∫
cv

ρdV.

Conservation of momentum in the direction of travel of the rocket gives

(pe − pa)Ae −Mg −D =
∂

∂t

∫
cv

ρur(t)dV − ρeu2
eAe

Since ur(t) is not spatially dependent, the integral on the right can be written as

∂

∂t

∫
cv

ρur(t)dV =
∂ur(t)
∂t

∫
cv

ρdV + ur(t)
∂

∂t

∫
cv

ρdV = M
dur
dt

+ ur
dM

dt
,

and the momentum equation simplifies to

(pe − pa)Ae −Mg −D = M
dur
dt

+ ur
dM

dt
+ ue

dM

dt
,

where the result from the continuity equation has been substituted in the last term. Solving for the acceleration
of the rocket

dur
dt

=
1
M

[
(pe − pa)Ae −Mg −D − (ue + ur)

dM

dt

]
.
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EXAMPLE PROBLEM 3

x

y

U  ,∞ p∞

d/2

d/2

u(y), p∞

A symmetrical wing is being tested at zero incidence in a wind tunnel. The upstream speed is U∞ and is uniform
across the tunnel, and the pressure is p∞ (also uniform). At a station far downstream of the wing, the pressure
is again uniform at p∞ and the velocity in the stream-wise direction is

u(y) = U∞, |y| > d/2; u(y) = U∞ − q(1 + cos(2πy/d)), −d/2 ≤ y ≤ d/2, (2)

where y is the distance from the wing centerline (which lies on the x-axis in Cartesian coordinates) and d and q
are the wake-defect length and velocity-scale parameters, respectively. Find the drag on the wing per unit meter
of span. You can assume that all along streamlines that pass through y = ±d/2 at the downstream station, the
pressure is p∞ and the shear stresses are negligible.

SOLUTION 3

This problem is essentially identical to Problem B6 on hw2, but we wanted to present a “better” way to approach
and solve it. Since we know there is no flow perpendicular to streamlines, it makes more sense to choose a control
volume with boundaries parallel to the streamlines around the outside of the wing.

x

y

U  ,∞ p∞

d/2

d/2

u(y), p∞

h/2

h/2

cv along streamlines

p∞

p∞

We do not know the height h, but we can solve for it since we know the mass flow between −h/2 and h/2 must
equal the mass flow out between −d/2 and d/2.

−ρU∞h+ ρ

∫ d/2

−d/2
[U∞ − q(1 + cos(2πy/d))] dy = 0,

which gives
−ρU∞h+ ρ(U∞ − q)d = 0,

and consequently

h =
(
U∞ − q
U∞

)
d.
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Using the integral momentum equation, the fact that no flow crosses the upper and lower boundaries, and given
the pressure is the same around the entire control volume, we arrive at

−D = −ρU2
∞h+ ρ

∫ d/2

−d/2
[U∞ − q(1 + cos(2πy/d))]2 dy.

So the drag per unit meter of span is found by performing the integration, substituting for h, and moving the
negative to the right-hand side of the equation

D = ρ

(
qU∞ −

3
2
q2
)
d.

EXAMPLE PROBLEM 4

u2

uj

h2

h1 u  =01

A

B C

D

On a horizontal slope, a large-amplitude surface wave (hydraulic bore or tsunami) is propagating to the right
at a constant speed uj . Far upstream of the bore the (undisturbed) fluid is at rest and is of height h1. The
pressure distribution in the fluid can be considered hydrostatic. Far downstream of the bore (to the left) the
fluid velocity distribution can be well approximated by uniform speed u2 and the pressure under the surface is
again hydrostatic. The flow in the region of sudden height change is extremely turbulent. Assume however, that
the fluid is incompressible and neglect viscosity.

(a) Using the stationary control volume ABCD and the conservation laws of mass and momentum in integral
form for this unsteady flow, show that the height ratio h2/h1 is given by

h2

h1
=

1
2

(√
1 + 8F 2

1 − 1
)
, (3)

where F1 = uj/
√
gh1 is the Froude number of the bore and g is the acceleration due to gravity. F1 is a

dimensionless number measuring the ratio of the speed of the bore to the speed of propagation of a long
wavelength, small amplitude wave on the surface of the fluid. [Hint: Consider the flow for two different
times separated by time ∆t.]

(b) Show that the stream-wise pressure-momentum balance for the control voume shown can be written in the
form f(h1) = f(h2), where

f(h) =
gh2

2
+
q2

h
, (4)

and q = h1uj = h2(uj − u2) is the volume flux.
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SOLUTION 4

(a) Conservation of mass tells us that

∂

∂t

∫
cv

ρdV +
∮
cs

ρ~u · n̂dA = 0.

Let M(t) =
∫
cv
ρdV be the mass in the control volume ABCD at an arbitrary time t. The mass in ABCD a time

∆t later is equal to M(t) plus the amount of mass carried in by the bore, so M(t+∆t) = M(t)+ρuj(h2−h1)∆t.
Therefore

∂

∂t

∫
cv

ρdV =
dM

dt
=
M(t+ ∆t)−M(t)

∆t
= ρuj(h2 − h1).

Using this in the conservation of mass relation, and replacing the surface integral with the amount of mass carried
in the left boundary gives

ρuj(h2 − h1)− ρu2h2 = 0,

and

u2 =
(
h2 − h1

h2

)
uj .

Conservation of momentum results in

ρg

(∫ h2

0

ydy −
∫ h1

0

ydy

)
= uj

dM

dt
− ρu2

2h2,

where after integration and substitution for dM/dt,

1
2
ρg(h2

2 − h2
1) = ρu2

j (h2 − h1)− ρu2
2h2.

Substituting for u2 and solving for h2/h1 follows:

1
2
ρg(h2

2 − h2
1) = ρu2

j (h2 − h1)− ρu2
j

(h2 − h1)2

h2
,

1
2
g(h2 + h1) = u2

j − u2
j

h2 − h1

h2
,

h2 + h1 = 2
u2
j

g

h1

h2
,

h2

h1
+ 1 = 2

u2
j

gh1

h1

h2
,

and now use F 2
1 = u2

j/(gh1)
h2

h1
+ 1 = 2F 2

1

h1

h2
,(

h2

h1

)2

+
h2

h1
− 2F 2

1 = 0,

so that solving the quadratic for the positive solution gives

h2

h1
=

1
2

(√
1 + 8F 2

1 − 1
)
.
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(b) The stream-wise momentum balance was obtained in the previous part

1
2
ρg(h2

2 − h2
1) = ρu2

j (h2 − h1)− ρu2
2h2,

and we know the volume flux is defined as q = h1uj = h2(uj − u2). Rearranging the momentum balance to
group all h1 terms on the left and all h2 terms on the right gives

u2
jh1 −

1
2
gh2

1 = (u2
j − u2

2)h2 −
1
2
gh2

2,

quj −
1
2
gh2

1 = q(uj + u2)− 1
2
gh2

2,

and after more algebra, you will find
gh2

2

2
+
q2

h2
=
gh2

2

2
+
q2

h2
,

or f(h2) = f(h1), where

f(h) =
gh2

2
+
q2

h
.

EXAMPLE PROBLEM 5

An incompressible Newtonian fluid is flowing in a long circular pipe of radius R. Write the simplified forms of the
continuity and Navier-Stokes equations for this flow assuming steady, fully-developed flow. Derive an expression
for the velocity distribution u and evaluate this to determine umax and the average velocity u.

The flow then encounters a 90◦ reducing elbow. At the inlet to the elbow, the pressure is pin, the radius is
still given by R, and the velocity follows from above. At the outlet, the radius is Rout < R and the velocity is
assumed to be uniform. The elbow discharges to atmospheric pressure. Determine the force required to hold the
elbow in place. You may neglect the weight of the elbow and the fluid.

SOLUTION 5

Using conventional cylindrical coordinates, our assumptions are:

(1) incompressible flow → ∇ρ = 0, i.e., there are no spatial gradients in fluid density;

(2) Newtonian fluid → ~~τ = µ∇~u, where µ is constant;

(3) steady → ∂/∂t = 0;

(4) fully-developed → ∂/∂x = 0, assuming the coordinate x is aligned with the axis of the pipe;

(5) due to symmetry, we expect no swirling and no variations with the coordinate θ, so uθ = 0 and ∂/∂θ = 0;

(6) neglect gravity and all other body forces;

The assumptions lead to the following simplified continuity equation,

1
r

∂

∂r
(rur) = 0,

which from a single integration produces, rur = const and we know from assumptions (4) and (5) ur = ur(r)
only. Our one boundary condition tells us that there cannot be any radial flow through the wall of the pipe, or
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ur = 0 at r = R. This gives const = 0 resulting in ur(r) = 0 for all r. We can use this result when writing the
simplified N-S equations.

r direction : 0 = −∂p
∂r
,

θ direction : 0 = −1
r

∂p

∂θ
,

x direction : 0 = −∂p
∂x

+ µ

(
∂2ux
∂r2

+
1
r

∂ux
∂r

)
.

The r and θ equations tell us p = p(x). In addition, assumptions (4) and (5) tell us that ux = ux(r) only. So
the x direction equation becomes

dp

dx
= µ

[
1
r

d

dr

(
r
dux
dr

)]
.

Two integrations later and you will arrive at

ux(r) =
1

4µ
dp

dx
r2 + c1 ln r + c2,

where c1 and c2 are constants. They are found through the boundary conditions ux(R) = 0 (no slip), and
dux/dr|r=0 = 0 (symmetry). These give c1 = 0 and c2 = [1/(4µ)](−dp/dx)R2. The resulting velocity distribution
is

ux(r) =
1

4µ

(
−dp
dx

)
(R2 − r2),

with ur = 0 and uθ = 0.

The maximum velocity will occur where dux/dr = 0 which gives r = 0. Therefore

umax =
R2

4µ

(
−dp
dx

)
,

where it is understood that −dp/dx is a positive quantity in order to drive the flow in the positive x direction.
The average velocity is

u =
1

πR2

∫ R

0

ux2πrdr =
R2

8µ

(
−dp
dx

)
=

1
2
umax.

Now the flow enters the 90◦ reducing elbow and we are asked to find the force required to hold the elbow in
place. Assume that the elbow turns the flow downward, in the −y direction. The area at the inlet is πR2, the
pressure is given as pin, and we just calculated the average velocity (so the volume flow rate is Q = uπR2). At
the outlet, we know the area, πR2

out, and the pressure is atmospheric, pa. The force can be found using a control
volume around the elbow to give a force balance in the x and y directions

pin

Fx

Fy

Rout

R

pa

papa

x

y
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x direction : (pin − pa)πR2 − Fx = −ρ
∫ R

0

u2
x2πrdr,

Fx = ρ
πR6

48µ2

(
−dp
dx

)2

+ (pin − pa)πR2,

where Fx is the force required to hold the elbow in place in the x direction and acts in the direction opposite
the incoming stream (assuming the flow is moving to the right, Fx acts to the left).

y direction : −Fy = −ρu2
outπR

2
out,

where the negative on the right comes from the fact that ~u = −uoutĵ (note that ~u · n̂ is positive at this
boundary because ~u and n̂ point in the same direction), and uout is assumed uniform and can be found from
mass conservation

mass conservation : uπR2 = uoutπR
2
out,

uout = u
R2

R2
out

=
R4

8µR2
out

(
−dp
dx

)
,

resulting in

Fy = ρ
πR8

64µ2R2
out

(
−dp
dx

)2

,

where Fy is the force required to hold the elbow in place in the y direction and acts in the direction of the bend
of the elbow, or downward as was assumed. So the force acting on the elbow is

~F = Fx(−î) + Fy(−ĵ) = −

[
ρ
πR6

48µ2

(
−dp
dx

)2

+ (pin − pa)πR2

]
î− ρ πR8

64µ2R2
out

(
−dp
dx

)2

ĵ.

EXAMPLE PROBLEM 6

A liquid flows down an inclined plane surface (at angle θ) due to gravity in a steady, fully-developed laminar
film of thickness h. Simplify the continuity and Navier-Stokes equations to model this flow assuming the fluid
is Newtonian. Obtain expressions for the velocity profile in the liquid and the shear stress distribution. Relate
the film thickness to the volume flow rate per unit depth of surface normal to the flow.

g

x

y

θ

h

SOLUTION 6

Consider the directions defined in the figure above. We will use a rotated coordinate system aligned with the
plane surface so that x is parallel to the surface and y is normal to it. Our assumptions are:
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(1) incompressible flow → ∇ρ = 0, i.e., there are no spatial gradients in fluid density;

(2) Newtonian fluid → ~~τ = µ∇~u, where µ is constant;

(3) steady → ∂/∂t = 0;

(4) fully-developed → ∂/∂x = 0;

(5) planar flow, so w = 0 and ∂/∂z = 0;

The assumptions lead to the following simplified continuity equation,

∂v

∂y
= 0,

and using the boundary condition that v = 0 at y = 0 requires v(y) = 0 for all y. The equations of motion are:

0 = ρg sin θ + µ
∂2u

∂y2
,

0 = −∂p
∂y
− ρg cos θ,

because we know v = w = 0 and u = u(y) only. The second equation can be solved for the pressure distribution,
which we are not interested in. Noting that ∂u/∂x = ∂u/∂z = 0, the first equation can be written as an ordinary
derivative and integrated to give

du

dy
= −ρgy

µ
sin θ + c1,

and again

u(y) = −ρgy
2

2µ
sin θ + c1y + c2.

The no-slip boundary condition requires u(0) = 0 and therefore c2 = 0. The second boundary condition is zero
shear at the free surface. This means du/dy = 0 at y = h and results in

c1 =
ρgh

µ
sin θ.

So the velocity distribution is

u(y) =
ρg

µ
sin θ

(
hy − y2

2

)
.

The shear follows as
τ = µ

du

dy
= ρg sin θ(h− y).

The volume flow per unit depth is

Q =
∫ h

0

udy=
ρg

µ
sin θ

∫ h

0

(
hy − y2

2

)
dy

=
ρg

µ
sin θ

(
h3

2
− h3

6

)
=
ρg

µ
sin θ

h3

3
.
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Rearranging to solve for the film thickness

h =
(

3µQ
ρg sin θ

)1/3

EXAMPLE PROBLEM 7

Consider a spherical cloud of gas of radius R(t) and total mass M . The cloud is expanding into a vacuum in
such a fashion that the mass density ρ remains spatially uniform, i.e., ρ = ρ(t) only. Neglect the influence of
gravity.

(a) Compute the divergence ∇ · ~u of the velocity field.

(b) Use this result to show that the fluid velocity within the cloud can be represented by

ur(r, t) = r
Ṙ

R
where Ṙ =

dR

dt
. (5)

Consider that the cloud remains spherically symmetric and the density is spatially uniform at all times.

(c) Find the location r at time t of a particle that was located at r0 at time t0 as a function of R(t) and R(t0).

(d) The pressure goes to zero at the outer edge of the cloud. Find the pressure distribution within the cloud
and the relationship between the pressure at the center of the cloud to the rate of expansion Ṙ.

SOLUTION 7

This problem will be solved using spherical coordinates. Our assumptions are:

(1) no spatial gradients in density → ∇ρ = 0, ρ = ρ(t) only;

(2) Newtonian fluid → ~~τ = µ∇~u, where µ is constant;

(3) due to symmetry, we expect uθ = uφ = 0 and ∂/∂θ = ∂/∂φ = 0;

(4) neglect gravity and all other body forces;

(a) The reduced continuity equation is
dρ

dt
+ ρ∇ · ~u = 0,

∇ · ~u = −1
ρ

dρ

dt
,

and now we can write the density as ρ = M/V where V = 4π[R(t)]3/3. Substituting

∇ · ~u = − 4π
3M

R3 d

dt

(
3M
4π

1
R3

)
= −R3 d

dt

(
1
R3

)
= 3

Ṙ

R
.

(b) Note that the divergence of the velocity in spherical coordinates simplifies to

∇ · ~u =
1
r2

∂

∂r
(r2ur),
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and equating this with the result in (a),
1
r2

∂

∂r
(r2ur) = 3

Ṙ

R
.

Solving for the velocity ur(r, t) gives

ur(r, t) =
Ṙ

R
r +

c1(t)
r2

,

and from symmetry we know ur(0, t) = 0, giving c1(t) = 0 to keep the solution bounded. Thus,

ur(r, t) =
Ṙ

R
r.

(c) The tricky thing here is to realize that ur = dr/dt, so

dr

dt
=
Ṙ

R
r,

or
1
r

dr

dt
=

1
R

dR

dt
.

Integrating from t0 to t, ∫ t

t0

1
r

dr

dt
dt =

∫ t

t0

1
R

dR

dt
dt.

ln
r(t)
r0

= ln
R(t)
R(t0)

,

so that solving for r(t) gives

r(t) =
R(t)
R(t0)

r0.

(d) The simplified Navier-Stokes equations are:

r direction : ρ

(
∂ur
∂t

+ ur
∂ur
∂r

)
= −∂p

∂r
+ µ

[
1
r2

∂

∂r

(
r2
∂ur
∂r

)
− 2
r2
ur

]
,

θ direction : 0 = −∂p
∂θ
,

φ direction : 0 = − ∂p
∂φ
.

The θ and φ equations tell us p = p(r). Since we found ur in part (b), the first equation reduces to a first-order
ODE for the pressure for which the boundary condition is p(R) = 0. Using the following equations

ur(r, t) =
Ṙ

R
r,

∂ur
∂t

=

(
R̈

R
− Ṙ2

R2

)
r,

∂ur
∂r

=
Ṙ

R
,

we make substitutions in the r direction equation and simplify to give

ρ

(
R̈

R
− Ṙ2

R2
+
Ṙ

R

Ṙ

R

)
r = −dp

dr
+ µ

[
2
r

Ṙ

R
− 2
r2
Ṙ

R
r

]
,

11



ρ

(
R̈

R

)
r = −dp

dr
.

Integration over r gives

p(r) = −ρ

(
R̈

R

)
r2

2
+ c1,

and using the boundary condition p(R) = 0, the pressure distribution is

p(r) = −ρ

(
R̈

R

)
r2

2
+ ρ

(
R̈

R

)
R2

2
= ρ

(
R̈

R

)(
R2

2
− r2

2

)
.

At the center of the cloud r = 0 and

p(0) =
1
2
ρRR̈ =

1
2
ρR

dṘ

dt
.

12


