
ME19b. SOLUTIONS. Feb. 25, 2010. Due Mar. 4

PROBLEM B23

In 1844, to commemorate a visit by the Tsar of Russia, the Duke of Devonshire, the greatest landowner in
Britain, wished to construct the tallest fountain ever built in the grounds of his great house at Chatsworth in
Derbyshire. He employed the renowned engineer Joseph Paxton to build what was to become known as the
Emporer Fountain. That fountain remains the tallest, gravity-fed fountain in the world, with a maximum height
of 90.2 m above the pond into which it falls. What Paxton did was to excavate a massive eight acre lake on a
nearby hill such that the lake surface was 120 m above the afore-mentioned pond. The pipe to the fountain was
800 m long and had an internal diameter of 0.381 m. (Paxton knew that to maximize the height of the fountain
he would have to make the pipe diameter large.) The result was that the maximum flow rate through the pipe
(when the control valve was fully opened) was 15000 liters/min. Questions:

1. Using the above information find the friction factor for Paxton’s pipe.

2. Find the Reynolds number for the flow in Paxton’s pipe assuming a water temperature of 15◦C so that
the kinematic viscosity of the water 1.16× 10−6 m2/s.

3. What kind of flow is occuring in Paxton’s pipe?

4. Using the answers to the first two questions estimate the typical height of the roughnesses in the interior
surface of Paxton’s pipe.

5. Assuming the same friction factor, what would the maximum height of the fountain have been if Paxton
had used a pipe with a half of the above diameter?
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SOLUTION B23

120 m

90.2 m

1

2

3

1. Taking point 2 as our zero height, Bernoulli’s equation shows that the difference in pressure between points
1 and 2 is

p1 + ρgh1 = p2 +
1
2
V 2

2

p1 − p2 =
1
2
ρV 2

2 − ρgh1

where the velocity at point 2, V2, is an unknown velocity of the jet (not the velocity in the pipe). Since
the pressure at points 2 and 3 are the same (atmospheric) Bernoulli’s equation can be used to find the
unknown velocity term.

p2 +
1
2
V 2

2 = p3 + ρgh3

1
2
V 2

2 = ρgh3

where p2 = p3 = pa. Thus the pressure loss in the pipe is given by

p1 − p2 = ρg(h3 − h1)

Assuming all of this loss occurs in the supply pipe it follows that the friction factor, f , in the pipe is

f =

(
− dp
dx

)
d

1
2ρV

2

=

(
ρg(h1−h3)

L

)
d

1
2ρV

2

=
2g(h1 − h3)d

LV 2

=
2(9.81 m/s2)(120 m− 90.2 m)(0.381 m)

(800 m)V 2

where V is the velocity of the flow in the pipe. Since the pipe cross-sectional area is 0.114 m2 and the flow
rate is 15000 L/min (or 0.25 m3/s), the velocity, V = 2.2 m/s. Therefore

f = 0.058.
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2. The Reynolds number of the flow in the pipe is

Red =
V d

ν

=
(2.2 m/s)(0.381 m)
1.16× 10−6 m2/s

= 7.2× 105

3. For pipes, flows with a Reynolds number less than about 2000 are laminar and above 4000 are turbulent.
With this Reynolds number, the flow is well into the turbulent limit. Moreover, referring to the Moody
chart, the pipe flow is also fully rough since, at this Reynolds number, the friction factor is well above that
for smooth-walled turbulent flow.

4. Again, referring to the Moody chart it would appear that at this Reynolds number, a friction factor of
0.058 will occur when the roughness has a typical height of 0.03d or 1.1 cm.

5. With the same friction factor but a pipe diameter of 0.19 m the head loss would be double that of the
actual pipe. The maximum height of the fountain would have been 120 m − 2 × 29.8 m or 60 m—much
less impressive.

PROBLEM B24

Consider a turbulent boundary layer on a flat plate (constant and uniform velocity and pressure in the flow
outside the boundary layer). The plate is very rough, the size of the roughnesses, ε, being very much greater
than the laminar sub-layer thickness which would occur in the absence of the roughness. It is anticipated that
the velocity distribution within the turbulent part of the boundary layer can be approximated by

u∗ = C(y/ε)
1
7

where C is some constant, y is the distance from the wall, u∗ = ū/uτ , where ū is the mean velocity and the
friction velocity, uτ = (τw/ρ)

1
2 , τw being the wall shear stress and ρ the fluid density. Using approximate

boundary layer methods find an expression for the boundary layer thickness, δ, as a function of x, the distance
along the plate from the leading edge. Assume initial conditions δ = 0 at x = 0; the result includes ε, C and the
profile parameter α = 0.0972.

SOLUTION B24

Since u∗ = ū/uτ , the velocity distribution can be written as

ū = Cuτ

(y
ε

)1/7

Given a constant and uniform velocity, denoted as U , in the flow outside the boundary layer, we know that
ū = U at y = δ and it follows that

U = Cuτ

(
δ

ε

)1/7

uτ =
(
τw
ρ

)1/2

=
U

C

( ε
δ

)1/7
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But the Karman Momentum Integral Equation for a case in which U is independent of x (so dU/dx = 0) is

τw
ρ

= αU2 dδ

dx

and elimnating τw/ρ from the last two equations and solving for dδ/dx

dδ

dx
=

ε2/7

αC2δ2/7

Separating variables and integrating

δ2/7dδ =
ε2/7

αC2
dx

7
9
δ9/7 =

ε2/7

αC2
x+ c

and applying δ = 0 at x = 0 gives c = 0 so

δ =
(

9ε2/7

7αC2
x

)7/9

PROBLEM B25

The sketch below defines the geometry of an axisymmetric underwater body that is quite streamlined in the
sense that L/R is large. This body travels through the incompressible water at a velocity, U , parallel to the axis.

U A

B

B

C

C

R

L

It is to be assumed:

• that the velocity distribution over the spherical nose, BAB, is the same as in potential flow, that is to say
the velocity outside the boundary layer is 3

2U sin θ.

• that the flow separates at the sharp trailing edge, C, so that the pressure coefficient acting on the circular
base, CC, is

Cp = −0.5

Remember that the pressure coefficient is defined as, Cp = (p− p∞)/ 1
2ρU

2 where p is the pressure, p∞ is
the pressure far upstream and ρ is the fluid density.

• that the skin friction forces on the spherical nose are negligible.

If the drag coefficient is defined as the drag divided by 1
2ρU

2 and the frontal projected area (πR2) find:

1. The contribution of the form drag to the total drag coefficient (denote this by CDF ).
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2. An estimate of the contribution of the skin friction on the cylindrical surface of the body (between B and
C) to the total drag coefficient, assuming the boundary layer remains laminar. This should be in terms of
the Reynolds number, Re = 2UR/ν, where ν is the kinematic viscosity of the fluid.

3. For what aspect ratio, L/R, will the drag be comprised of equal parts of form and skin friction drag if
Re = 10000?

SOLUTION B25

1. Find the form drag contribution, CDF , to the total drag coefficient.

To find the form drag, we must examine the pressure distribution on the nose and the flat trailing portion
of the body. Since we can consider the flow over the nose to be described by potential flow, u(θ) = 3

2U sin θ,
we can use Bernoulli’s equation to get the corresponding pressure distribution over the surface.

p∞ +
1
2
ρU2 = p(θ) +

1
2
ρ[u(θ)]2

⇒ p(θ)− p∞ =
1
2
ρU2

[
1− 9

4
sin2 θ

]
This leads to a pressure coefficient on the nose that varies with θ

Cp,N =
p(θ)− p∞

1
2ρU

2
= 1− 9

4
sin2 θ

Since the flow separates at the sharp trailing edge, we can consider the pressure to be constant on the
circular base with a constant pressure coefficient.

Cp,T = −0.5

Our goal is the drag coefficient due to form effects, CDF .

CDF =
DF

1
2ρU

2πR2

where DF is the form drag. We calculate this drag by finding the difference between the pressure integrated
over the nose and the base of the streamlined body.

DF =
∫
pNdA−

∫
pT dA =

∫
(pN − p∞)dA−

∫
(pT − p∞)dA

Dividing this equation by 1
2ρU

2πR2 gives us the form drag coefficient in terms of integrals of the pressure
coefficients over the nose and tail.

CDF =
∫
Cp,NdA

πR2
−
∫
Cp,T dA

πR2

The second integral is trivial since the pressure coefficient is constant.∫
Cp,T dA

πR2
=
−0.5πR2

πR2
= −0.5
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The integral over the nose is slightly more involved.∫
Cp,NdA

πR2
=

∫ (
1− 9

4 sin2 θ
)

πR2

=
1

πR2

∫ π/2

0

∫ 2π

0

(
1− 9

4
sin2 θ

)
R2 sin θ cos θdφdθ

= 2
∫ π/2

0

(
1− 9

4
sin2 θ

)
sin θ cos θdθ

= 2
∫ 1

0

(
sin θ − 9

4
sin3 θ

)
d(sin θ)

= 2
(

1
2

sin2 θ − 9
16

sin4 θ

)∣∣∣∣1
0

= −1
8

The form drag coefficient is the difference between these integrals.

CDF =
∫
Cp,NdA

πR2
−
∫
Cp,T dA

πR2
= −1

8
+

1
2

=
3
8

Note: The form drag coefficient could also have been evaluated as a single integral, more akin to what was
done in class. As was shown in class, it is sufficient to integrate over the projected area.

2. Find the skin friction (on the cylindrical surface) contribution, CDS , to the total drag coefficient.

Since we assume that the boundary layer remains laminar, we can use the Blasius solution to calculate the
skin friction drag, DS , on the cylindrical surface.

DS =
∫
τ0dA

=
∫ L

0

1
2
ρU2

(
0.664

√
ν

Ux

)
2πRdx

=
1
2
ρU22πR

∫ L

0

0.664
√

ν

Ux
dx

=
1
2
ρU22πRL · 1.328

√
ν

UL

This leads to a drag coefficient due to skin drag of:

CDS =
DS

1
2ρU

2πR2
=

2L
R
· 1.328

√
ν

UL

The skin friction drag coefficient can be rewritten in terms of a radius-based Reynolds number, Re = 2UR/ν
to give:

CDS = 1.328 · 2L
R

√
2Rν

2RUL
= 1.328 · 2

√
2

√
L

R

√
1
Re

Note: Here we used the original free stream velocity in the Blasius calculation of the shear stress. One
may argue that it may be more appropriate to use the accelerated value, 3

2U for the free stream. The flow
after the nose can no longer be considered potenial and the higher free stream value will decrease back to
U with distance along the body. Thus, there are likely regimes, based on the length of the body, in which
one assumption for the velocity is preferable to the other. But, after all, we only desire an estimate of the
contribution of the skin friction drag so either choice is fine.
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3. Calculate the aspect ratio, L/R, at Re = 10000 for which the total drag is composed of equal parts form
and skin friction drag.

Here we equate the two drag coefficients for the given Reynolds number.

CDF = CDS

3
8

= 1.328 · 2
√

2

√
L

R

√
1

10000

⇒
√
L

R
=

3
8

100
1.328 · 2

√
2

= 9.984

L

R
= 99.67

PROBLEM B26

Suppose that the lift force experienced by a spinning baseball is to be estimated by ρUΓa where ρ is the air
density (1 kg/m3), U is its forward velocity (say 40 m/s), a is its radius (0.03 m) and Γ is a circulation which is
estimated as 2πa2ω where ω is the velocity of spin (take ω = 200 rad/s). If the path of the baseball between the
pitcher’s mound and home plate (distance ≈ 20 m) is modeled as part of a circle, estimate the distance (in m)
between the home plate arrival locations with and without the spin, in other words estimate the distance, H:

Path with lift 
(circular)

U

Path without lift Home Plate

HPitcher

Neglect gravity (what!?). The mass of the baseball is 0.145 kg.

SOLUTION B26

If we assume a circular path, as the problem states, the lift force due to spin must be equal to the centripetal
force on the baseball.

ρUΓa =
mU2

R

With the given relationship for the circulation, Γ = 2πa2ω, the radius of the ball’s trajectory is:

R =
mU

2πρa3ω
=

(0.145 kg)(40 m/s)
(2π)(1 kg/m3)(0.03 m)3(200 rad/s)

= 170.9 m

From the geometry:
(R−H)2 + L2 = R2

⇒ H = R−
√
R2 − L2 = 1.174 m
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