
ME19b. SOLUTIONS. Feb. 11, 2010. Due Feb. 18

PROBLEM B14

Consider the long thin racing boats used in competitive rowing events. Assume that the major component of
resistance to motion is the skin friction drag on the hull of the boat. Estimate this drag force for any velocity,
U , by assuming that

1. the hull/water interface is like a flat plate with a length of 10 m and a width of 1 m.

2. the boundary layer on the hull remains laminar (even though in practice this would not be the case) and
unseparated.

The water density, ρ, and kinematic viscosity, ν = µ/ρ, are respectively 1000 kg/m3 and 10−6 m2/s.

If the boat is propelled by eight humans each capable of a rate of output of work of 0.1HP (1HP = 746 kg·m2/s3)
and if half of this energy is uselessly dissipated in the rowing process what would be the top speed of the boat?

SOLUTION B14

From the Blasius solution for a laminar boundary layer on a flat plate with zero pressure gradient, the drag on
one side of the flat plate is

D = ρU2w
[
(δM )trailing edge − (δM )leading edge

]
where w is the width of the plate and δM is the momentum thickness of the boundary layer defined as

δM =
∫ ∞

0

u

U

(
1− u

U

)
dy

Using the Blasius boundary layer solution, the momentum thickness evaluates to

δM = 0.664
(νx
U

)1/2

At the leading edge of the plate, x = 0 and therefore (δM )leading edge = 0. Substituting x = L at the trailing
edge, the first equation yields

D = 0.664ρw
(
νLU3

)1/2
which, after substituting ρ = 103 kg/m3, ν = 10−6 m2/s, L = 10 m, and w = 1 m, becomes

D ' 2.1U3/2 kg ·m/s2

The total power generated by the eight rowers at 50% efficiency (because half the power is uselessly dissipated)
is

P = 0.5 (8Pi)

Each rower can produce Pi = 0.1 HP , so that

P = 0.4 HP = 298.4 W

The power is related to the force necessary to move the boat by

P = D U = 2.1U5/2 W
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Thus, the boat can reach a top speed of
U = 7.26 m/s

PROBLEM B15

Air enters a long horizontal ventilation duct of circular cross-section (radius 0.25 m) with a velocity of 1.0 m/s.
At the entrance it is assumed that this velocity is uniform over the entire cross-section. However as the flow
proceeds down the duct a thin laminar boundary develops on the inside wall of the duct. If we first assume
that this is like the boundary layer on a flat plate and that the velocity away from the boundary layer remains
at 1.0 m/s find the displacement thickness, δD (in m), at a distance x (in m) from the entrance. Assume the
kinematic viscosity of the air is 2.5× 10−6 m2/s.

Having calculated this displacement thickness we recognize that the velocity outside the boundary layer cannot
remain precisely constant at 1 m/s. Using the above calculated displacement thickness find the uniform velocity
outside the boundary layer at a point 200 m from the entrance. What is the pressure difference between the
entrance and this point 200 m from the entrance?

SOLUTION B15

If the boundary layer is like that of a flat plate (for which dp/dx = 0) then the Blasius solution applies and

δD = 1.72
(νx
U

)1/2

= 1.72
(

2.5× 10−6 x

1.0

)1/2

m

= 2.7× 10−3 x1/2 m

The effect of this displacement thickness is to yield a volume flow rate in the tube which is the same as the
volume flow rate of a uniform stream in a tube of radius (R − δD) where R is the actual radius of the tube.
Therefore the velocity of the flow outside the boundary layer is not 1 m/s but Ux where

UπR2 = Uxπ (R− δD)2

At x = 200 m, where δD = 0.038 m this yields

Ux =
U

(1− δD/R)2
= 1.39 m/s

Since Bernoulli’s equation applies outside the boundary layer the pressure at x = 200 m is related to the pressure
at the inlet (x = 0 m) by

px=200 m − px=0 m =
1
2
ρ
[
U2 − U2

x

]
= −0.57 Pa

where ρ = 1.2 kg/m3.

In order to proceed to a more accurate solution that takes this pressure and velocity gradient into account, one
might approximately estimate the value of the Falkner-Skan m from

m =
x

U

dU

dx
≈ Ux=200 m

U
− 1 = 0.39
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and then use the Falkner-Skan solution for this value of m instead of the Blasius solution to evaluate the
displacement thickness.

PROBLEM B16

A laminar boundary layer forms on a porous flat plate. Fluid is removed through the porous flat plate at a
uniform velocity, V .

Porous plate

Velocity, V

(x)

x

y
U

U

In other words, the volume of fluid removed through the porous plate per unit plate length, per unit breadth
(perpendicular to figure) and per unit time is equal to V . The thickness of the boundary layer is denoted by
δ(x) and the velocity outside the boundary layer is a constant, U . Using approximate boundary layer methods
assuming similarity of the velocity profile (in other words that u/U = F (y/δ) where the function F is not a
function of x) find a relation between the coefficient of friction ( = τw/

1
2ρU

2 ) and the quantities V , U , dδ/dx
and α where α is the profile parameter

α =
∫ 1

0

F (1− F )d
(y
δ

)

SOLUTION B16

(x)
dx

udy udy
d

dx
udy dx

mtop (x+dx) 

Vdx

Control

Volume

We define a control volume between x and x + dx, bounded by the surface of the plate and extending to the
edge of the boundary layer. Continuity (conservation of mass) tells us that

ṁtop + ṁleft − ṁright − ṁbottom = 0

ṁtop +
∫ δ

0

ρudy −

(∫ δ

0

ρudy +
d

dx

[∫ δ

0

ρudy

]
dx

)
− ρV dx = 0
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This requires that the mass flow rate into the top of the control volume, ṁtop, is:

ṁtop =
d

dx

[∫ δ

0

ρudy

]
dx+ ρV dx

Now, applying the momentum thereom in the x direction, the sum of the forces acting on the control volume is
equal to the the net flux of momentum out of the control volume

∑
Fx = −ṁtopU −

∫ δ

0

ρu2dy +

(∫ δ

0

ρu2dy +
d

dx

[∫ δ

0

ρu2dy

]
dx

)

= −ṁtopU +
d

dx

[∫ δ

0

ρu2dy

]
dx

[Note that there is no x-direction momentum flux through the bottom plate surface.] After substituting for ṁtop

from continuity this becomes

∑
Fx = −

(
d

dx

[∫ δ

0

ρuUdy

]
dx+ ρV Udx

)
+

d

dx

[∫ δ

0

ρu2dy

]
dx

= −ρU2

(
d

dx

[∫ δ

0

u

U

(
1− u

U

)
dy

]
dx+

V

U
dx

)

= −ρU2

(
d

dx

[
δ

∫ 1

0

F (1− F ) dη
]
dx+

V

U
dx

)
= −ρU2

(
α
dδ

dx
+
V

U

)
dx

where the constant α:

α =
∫ 1

0

F (1− F ) dη

and η = y/δ.

Summing the forces on the control volume in the x-direction gives:∑
Fx = −τwdx−

dp

dx
δ(x)dx

and since there is no pressure gradient in the exterior flow (because dp/dx is proportional to dU/dx and U is
constant in this problem) and therefore no force due to a pressure difference it follows that

τw = ρU2

(
α
dδ

dx
+
V

U

)

The skin friction coefficient Cf is then given by:

Cf =
τw

1
2ρU

2
= 2

(
α
dδ

dx
+
V

U

)
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PROBLEM B17

A laminar boundary layer in a planar, incompressible flow experiences a velocity, U , external to the boundary
layer which increases with distance, x, measured along the surface as follows:

U = Ax1/2

where A is a known constant.

Approximate boundary layer methods (the Karman momentum integral equation) are to be used to find the
boundary layer thickness, δ. An approximate velocity profile is assumed and the profile parameters, α, β, and
γ, are calculated. Assume that this has been done and that α, β, and γ are known.

The answer is that the boundary layer thickness is given by

δ = Cxm

where C and m are constants. Determine the index m. Find the constant C as a function of A, α, β, γ, and the
kinematic viscosity, ν, of the fluid.

SOLUTION B17

The Karman Momentum Integral Equation is :

τw
ρ

=
d

dx

(
U2δM

)
+ δDU

dU

dx

where α, β and γ are the usual profile parameters, τw is the wall shear stress, U is the velocity exterior to the
boundary layer, δ is the boundary layer thickness, ν is the kinematic viscosity of the fluid and x is the streamwise
distance along the wall surface.

According to the definitions of β = d(u/U)
d(y/δ) and τw = µdudy , the left hand side of the Karman Momentum Integral

Equation (KMIE) can be expressed as:
τw
ρ

=
νUβ

δ

The definitions of α and γ give:
δM = αδ

δD = γδ

Substitute into the KMIE:
νUβ

δ
=

d

dx

(
U2αδ

)
+ γδU

dU

dx

= αU2 dU

dx
+ 2αδU

dδ

dx
+ γδU

dU

dx
νβ

αδ
= U

dδ

dx
+
(

2 +
γ

α

)
δ
dU

dx

Substituting U = Ax1/2 and δ = Cxm yields:

νβ

αCxm
= mACxm−1/2 +

(
1 +

γ

2α

)
ACxm−1/2

By matching powers of x,

m =
1
4

and

C =

[
4νβ

αA(5 + 2γ
α )

]1/2
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