
ME19b. SOLUTIONS. Jan. 21, 2010. Due Jan. 28

PROBLEM B8

Consider the laminar, viscous, planar flow of an incompressible fluid contained between two parallel plates
a distance H apart. The coordinates x and y are measured parallel to and perpendicular to these plates,
respectively. We shall take y = 0 at the static plate and y = H at the moving plate for convenience. The plate
at y = H moves with a steady velocity, U , in the x direction. However, unlike simple Couette flow, a pressure
gradient, dp/dx, is also applied to the fluid. Find:

[1] The velocity distribution, u(y), in the flow as a function of y, U , H, dp/dx and the viscosity of the fluid, µ.

[2] The magnitude and direction of the particular pressure gradient for which there would be zero net volume
flow in the x direction.

SOLUTION B8

[1] Since the flow is steady, planar, and incompressible the continuity equation is:

∂u

∂x
+
∂v

∂y
= 0

The velocity in the vertical direction, v, is zero at both boundaries and thus everywhere in the flow, so the
continuity equation dictates that:

∂u

∂x
= 0

so u is only a function of y, u = u(y).

The Navier-Stokes equation in the y-direction reduces to

∂p

∂y
= 0

and therefore the pressure can only be a function of x.

The Navier-Stokes equation in the x-direction is:

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −dp

dx
+ µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
Since the flow is steady, planar, v = 0, and u = u(y), this becomes:

d2u

dy2
=

1
µ

dp

dx

Integrating twice with respect to y and noting that dp/dx is a simple constant for this operation (because p does
not depend on the integration variable y):

u(y) =
1

2µ
dp

dx
y2 + c1y + c2

We now use the boundary conditions to evaluate the constants c1, c2 :

u(0) = c2 = 0
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u(H) =
1

2µ
dp

dx
H2 + c1H = U

Therefore
c1 =

U

H
− H

2µ
dp

dx

Inserting these values for the constants, the velocity distribution is:

u(y)
U

=
y

H
− H2

2µU
dp

dx

y

H

(
1− y

H

)

[2] Find the magnitude and direction of the particular pressure gradient for which there would be zero net volume
flow in the x direction. Evaluating the volume flow rate, Q, per unit depth normal to the sketch:

Q =
∫ H

0

u(y)dy

=
∫ H

0

{
U
y

H
+

1
2µ

dp

dx

(
y2 −Hy

)}
dy

=
1
2
UH − 1

12µ
dp

dx
H3

Therefore the particular pressure gradient, d̂p
dx , for which there will be no net volume flow (Q = 0) will be:

d̂p

dx
=

6µU
H2

The pressure gradient is positive, so the pressure will need to increase in the positive x-direction to offset the
effect of the moving upper plate.

PROBLEM B9

In cylindrical coordinates, (r, θ, z), the Navier-Stokes equations of motion for an incompressible fluid of constant
dynamic viscosity, µ, and density, ρ, are

ρ

[
Dur
Dt
− u2

θ

r

]
= −∂p

∂r
+ fr + µ

[
∇2ur −

ur
r2
− 2
r2
∂uθ
∂θ

]

ρ

[
Duθ
Dt

+
uθur
r

]
= −1

r

∂p

∂θ
+ fθ + µ

[
∇2uθ −

uθ
r2

+
2
r2
∂ur
∂θ

]

ρ
Duz
Dt

= −∂p
∂z

+ fz + µ∇2uz

where ur, uθ, uz are the velocities in the r, θ, z cylindrical coordinate directions, p is the pressure, fr, fθ, fz are
the body force components in the r, θ, z directions and the operators D/Dt and ∇2 are

D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂z2
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****************************************************

Now consider the steady, planar, incompressible, viscous flow between two concentric cylinders. The inner
cylinder has radius, a, and is rotating with angular velocity, Ω (radians/second). The outer cylinder has radius,
b, and is static. There is no flow in the direction parallel to the axis of the cylinders so only the velocity, uθ, is
non-zero. Body forces are to be neglected. The density of the fluid is denoted by ρ. Find:

(a) The velocity distribution, uθ(r), in the gap between the two cylinders.

(b) The difference between the pressure on the outer surface of the inner cylinder and the pressure on the inner
surface of the outer cylinder.

Note: The solution of the ordinary differential equation

d2y

dx2
+

1
x

dy

dx
− y

x2
= 0 is y = A/x+Bx

where A and B are constants.

SOLUTION B9

(a) With the prescription of the flow in this problem, the Navier-Stokes equations become

−ρu
2
θ

r
= −dp

dr

0 = µ

(
d2uθ
dr2

+
1
r

duθ
dr
− uθ
r2

)
The note at the end of the problem provides the solution to the differential equation,

d2X

dr2
+

1
r

dX

dr
− X

r2
= 0

namely

X = Ar +
B

r

where A and B are integration constants. In the present problem this yields

uθ = Ar +
B

r

We now apply the boundary conditions to determine the values of A and B. At r = b (the surface of the outer,
stationary cylinder) uθ = 0 by the no-slip condition, so that

0 = Ab+
B

b
=⇒ B = −Ab2

Also at r = a (the surface of the inner, rotating cylinder) uθ = Ωa, where Ω is the angular velocity of the inner
cylinder, so that

Ωa = Aa+
B

a
= A

(
a− b2

a

)
=⇒ A = − Ωa2

b2 − a2

Substituting these expressions for A and B into the flow solution yields

uθ(r) =
Ωa2

b2 − a2

(
b2

r
− r
)
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(b) Using this solution, the first equation yields

dp

dr
= ρ

u2
θ

r
= ρ

Ω2a4

(b2 − a2)2

(
b4

r3
− 2

b2

r
+ r

)
and integrating this gives

p(r) = ρ
Ω2a4

(b2 − a2)2

(
− b4

2r2
− 2b2 ln r +

r2

2

)
+ C

where C is an integration constant. This can be used to find the pressure difference between the surfaces of the
two cylinders, namely

p(b)− p(a) =

[
ρ

Ω2a4

(b2 − a2)2

(
−b

2

2
− 2b2 ln b+

b2

2

)]
−

[
ρ

Ω2a4

(b2 − a2)2

(
− b4

2a2
− 2b2 ln a+

a2

2

)]
which simplifies to

p(b)− p(a) = ρ
Ω2a4

(b2 − a2)2

[
b4

2a2
− 2b2 (ln b− ln a)− a2

2

]
and further

p(b)− p(a) = ρ
Ω2a2

(b2 − a2)2

[
1
2
(
b4 − a4

)
− 2a2b2 ln

b

a

]
or

p(b)− p(a) = ρ
Ω2a2

(b2 − a2)

[
1
2
(
b2 + a2

)
− 2a2b2

(b2 − a2)
ln
b

a

]

PROBLEM B10

Both the mammalian respiration system and the mammalian blood circulation system are networks of tubes in
which the flow from one large tube (respectively the trachea and the aorta) branches into parallel flows in tubes
of smaller size. This branching continues through a number of stages:

Stage 1 Stage 2 Stage 3 Etc.

x

If, for each stage, the number of tubes is denoted by n and the cross-sectional area for each and every tube in
that stage is denoted by An, find the relation between An and n such that the pressure gradient, dp/dx, is the
same for each stage. How does the average velocity depend on n? Assume steady, fully-developed Poiseuille flow
in all tubes even though this may not be the case in the actual systems.

If the diameter of the aorta is 3 cm and the diameter of the microcirculation (the smallest tubes) is 8× 10−6 m,
calculate the number of tubes at the microcirculation stage which would be present if the above property were
to exist. The actual number is much smaller than this. Where, then, does most of the pressure drop occur in
the blood circulation system?
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SOLUTION B10

Consider the volume flow rate for a stage with n tubes:

Q = nAnun

From the solution for laminar Poiseuille flow it follows that:

u =
R2

8µ

(
dp

dx

)
and therefore,

A1
R2

1

8µ

(
dp

dx

)
= nAn

R2
n

8µ

(
dp

dx

)
Since,

An = πR2
n

it follows that
A2

1 = nA2
n

and therefore the desired relation between An and n is

An =
A1√
n

From the continuity relation
A1u1 = nAnun

and therefore the desired relation between the velocity and n is

un =
u1√
n

Using the numerical values given

π(0.015)2 =
π(4× 10−6)2√

n

and hence
n = 1.98× 1014

The actual number is much smaller than this, which implies that the velocity (and therefore, the pressure drop)
is greater in the microcirculation stages.

PROBLEM B11

A semi-infinite domain of fluid is bounded only by a single infinite flat plate. The fluid is incompressible with a
constant and uniform viscosity, µ, and density, ρ. The plate is then set in accelerating motion, moving in its own
plane with an accelerating velocity, Uekt, where U and k are constants and t is time. If the fluid only reacts by
moving parallel with the plate with a velocity, u(y, t), where y is the distance from the plate and if the velocities
in the other directions are zero, write down the simplified form of the Navier-Stokes equation that govern this
flow and must be solved to find u(y, t). Note that p is uniform; that the velocity far from the plate is zero; and
neglect gravitational effects. The result is a partial differential equation for u(y, t) that only includes u, y, t and
µ/ρ.
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Using separation of variables (or otherwise) solve this equation to find u(y, t) and the vorticity, ω(y, t), in terms
of y, t, U , k, and the fluid properties. If we define a boundary layer next to the plate as the region within which
the velocity is at least 10% of the plate velocity, derive an expression for the thickness of the boundary layer as
a function of time.

SOLUTION B11

Continuity:
∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)
∂z

= 0

Since the flow is planar and incompressible this simplifies to:

∂u

∂x
+
∂v

∂y
= 0

Since the velocity, v, normal to the plate is zero everywhere in the flow it follows from continuity that

∂u

∂x
= 0

so u is only a function of y and t, u = u(y, t).

Navier-Stokes:
x-direction:

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −∂p

∂x
+ µ

[
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

]
Since the flow is planar, since v = 0 and u = u(y, t), and since the pressure is constant, this becomes:

ρ
∂u

∂t
= µ

∂2u

∂y2

We use separation of variables to solve this partial differential equation. Assume

u(y, t) = Y (y)T (t)

Substituting this into the partial differential equation and rearranging, the result can be written as a term which
is a function only of y equal to a term which is a function only of t. It follows that both must be equal to a
simple constant, λ:

1
T

dT

dt
=
µ

ρ

1
Y

d2Y

dy2
= λ

The equation for t is then:
dT

dt
= λT

and the solution to this is:
T (t) = c1e

λt

The equation for y is:
d2Y

dy2
− ρλ

µ
Y = 0

and the solution to this is:
Y (y) = c2e

√
ρλ/µ y + c3e

−
√
ρλ/µ y

The boundary condition at the plate gives

u(0, t) = U(t) = Uekt
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and the condition as y →∞ gives
u(y →∞, t) = 0

The second condition yields c2 = 0. It follows that the solution for u(y, t) is:

u(y, t) = c4e
−
√
ρλ/µ y eλt

where c4 = c1c3. Applying the no-slip boundary condition at the surface of the plate:

u(0, t) = c4e
λt = Uekt

so the values of the unknown constant c4 = U and λ = k are now determined. This yields a velocity profile:

u(y, t) = Uekte−
√
k/ν y

where ν is the kinematic viscosity ν = µ/ρ. The vorticity, ~ω(y, t), is given by (note that ~u = u(y, t)̂i)

~ω(y, t) = ∇× ~u = −∂u
∂y

k̂

~ω(y, t) = U

√
k

ν
ekte−

√
k/ν yk̂

The boundary layer thickness, δ, is defined as that distance from the plate where the velocity is 10% of the plate
velocity:

0.1 Uekt = Uekte−
√
k/ν δ

0.1 = e−
√
k/ν δ

δ = ln(10)
√
ν

k
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