
ME19b. SOLUTIONS. Jan. 5, 2010. Due Jan. 14

PROBLEM B1

An incompressible, inviscid liquid flow (density, ρ) of depth, h1, and velocity, V , flows under the action of gravity
through a sluice gate:

Liquid
Surface

V
h1

Sluice
Gate

F
g

h2

The depth downstream of the sluice gate is denoted by h2. Determine the force per unit width (normal to
sketch), F , necessary to hold the plate in place in terms of ρ, g, h1 and h2.

SOLUTION B1

The continuity equation yields
ρV h1 = ρV2h2.

or
V2 = V

h1

h2
.

The x-momentum equation yields ∑
Fx = V ρ(−V )h1b+ V2ρ(V2)h2b

where b is the width of the gate in the direction normal to the sketch and
∑
Fx is the total force in the x-direction

on the gate.

Two forces act on the control volume: (1) the net force due to the pressures acting on the ends of the control
volume, Fp, and (2) the reaction force necessary to hold the gate in place, F . Thus, the x-momentum equation
becomes

Fp − F = ρV 2
2 h2b− ρV 2h1b

where

Fp = Fp1 − Fp2 = ρgb

∫ h1

0

ydy − ρgb
∫ h2

0

ydy =
1
2
ρgb

(
h2

1 − h2
2

)
Substituting

F

b
=

1
2
ρg
(
h2

1 − h2
2

)
+ ρV 2h1 − ρV 2

2 h2

where F/b is the reaction force on the gate in the x-direction per unit width of the gate.
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To eliminate the velocities from this relation, we use Bernoulli’s equation

1
2
ρV 2 + pA + ρgh1 =

1
2
ρV 2

2 + pA + ρgh2,

and using the continuity equation

V 2 =
2gh2

2

h1 + h2
,

Substituting into the expression for F/b leads to

F

b
=

1
2
ρg

(h1 − h2)3

h1 + h2

PROBLEM B2

An axisymmetric body (a sphere if you wish) is mounted in a water tunnel which has a circular cross-section of
radius, R. The velocity far upstream, U , is fixed. When the pressure far upstream, po, is lowered sufficiently a
large vapor-filled wake or cavity forms behind the body:

Wall

Body

CavityU, pO

R

R

RC

The pressure in the cavity is simply given by the vapor pressure, pv, of the water at the operating water
temperature (po > pv). It is to be assumed that the effect of friction, the effect of gravity, the density of the
vapor and the amount of water vaporized at the free surface are all negligible. A parameter called the cavitation
number, σ, is defined as

σ =
po − pv
1
2ρU

2

where ρ is the water density.

(a) Find the relation between Rc/R and σ for very long cavities whose asymptotic radius is Rc.

(b) Find the drag on the body in terms of U , R, σ and ρ.

SOLUTION B2

(a) Applying Bernoulli’s equation between a point upstream (point 0) and a point on the surface of the cavity
at its maximum radius of R = Rc (point 1) (neglecting gravity)

1
2
ρU2 + po =

1
2
ρu2

1 + p1

where p1 = pv in order to produce a long, cylindrical cavity. Rearranging

po − pv =
1
2
ρU2

[(u1

U

)2

− 1
]
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Substituting into the definition of the cavitation number, σ:

po − pv
1
2ρU

2
= σ =

(u1

U

)2

− 1

and therefore
u1 = U

√
1 + σ

Conservation of mass requires that

UA0 = u1A1 or UπR2 = u1π
(
R2 −R2

c

)
where it is assumed that a negligible amount of mass has been vaporized. Substituting this expression for u1

leads to
UπR2 =

(
U
√

1 + σ
)
π
(
R2 −R2

c

)
or

√
1 + σ =

R2

R2 −R2
c

and solving for σ yields

σ =
(

R2

R2 −R2
c

)2

− 1 =

[
1

1−
(

Rc

R

)2
]2

− 1

or inversely
Rc

R
=

√
1− 1√

1 + σ

(b) Using a control volume surrounding all the liquid, the body and the cavity, the momentum theorem in the
x-direction yields

Fx = ρu1A1(u1) + ρUAo(−U) = ρπR2U2
(√
σ + 1− 1

)
where Fx is the total force on the control volume in the x-direction. Two forces contribute: (1) the net pressure
force, Fp, on the control volume and (2) the external force, −Fd, applied to the body to keep it stationary within
the control volume (imposed through an imaginary strut not shown in the sketch). This second contribution is
the force imposed on the fluid by the body, which is equal and opposite to the drag, Fd. Thus

Fx = Fp − Fd

Now the pressure force, Fp, is given by

Fp = poπR
2︸ ︷︷ ︸

pressure force acting
on left side of CV

− pvπR
2︸ ︷︷ ︸

pressure force acting
on right side of CV

= (po − pv)πR2

where it is understood that the pressure downstream, pv is constant across the entire cross section when the
cavity has reached an asymptotic radius, Rc (otherwise the shape of the cavity would still be changing). Using
this it follows that

Fd = (po − pv)πR2 − ρπR2U2
(√
σ + 1− 1

)
Substituting for po − pv yields

Fd =
1
2
ρU2σπR2 − ρπR2U2

(√
σ + 1− 1

)
which upon simplification yields

Fd = πρU2R2
(σ

2
−
√
σ + 1 + 1

)
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PROBLEM B3

A wedge with a vertex angle of 2θ is inserted into a jet of water (density, ρ) of width, b, and velocity, U , as
shown in the sketch below.

U
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b
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pressure
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b

The angle of attack, α, of the wedge is also defined in the sketch. The result is that the single incident jet is
divided into two jets both of which leave the back edges of the wedge with the velocity, U . The widths of the
two departing jets are βb and (1− β)b as indicated in the figure. It is assumed that the flow is planar and that
the pressure in surrounding air is everywhere atmospheric.

1. Find the lift and drag on the wedge per unit length normal to the sketch as functions of ρ, U , b, β, α and
θ. Note that drag and lift are defined as the forces on the wedge which are respectively parallel to and
perpendicular to the direction of the incident jet.

2. If the angle of attack, α, is varied while ρ, U , b, β and θ remain fixed, find the angle of attack at which the
lift is zero.

3. If, on the other hand, the wedge is moved in a direction perpendicular to the incident jet while ρ, b, U ,
θ and α remain fixed then β will change. There is one such position at which the lift is zero; what is the
value of β at this position in terms of θ and α ? If the wedge were free to move in such a way would this
position represent a position of stable or unstable equilibrium?

SOLUTION B3

1. We define a control volume that includes the wedge and denote the drag and lift forces on the wedge parallel
and normal to the U direction by D and L as shown in the sketch:

Applying the momentum theorem in the x or U direction yields

Fx = −D = ρU2βb cos(θ − α) + ρU2(1− β)b cos(θ + α)− ρbU2

D = ρU2b [1− β cos(θ − α)− (1− β) cos(θ + α)]

Similarly, using the momentum theorem in the normal direction yields

L = ρU2b [(1− β) sin(θ + α)− β sin(θ − α)]

2. Therefore the angle of attack for which L is zero is

α = tan−1 [(2β − 1) tan(θ)]
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b

3. Also the β for zero lift is

β =
1
2

[1 + tan(α) cot(θ)]

Finally to determine whether this position is stable with respect to β, we require that, for stability, the lift must
increase if the wedge is shifted downward. This requires that the lift increase as β is increased. But

∂L

∂β

∣∣∣∣
at zero lift

= ρbU2 [− sin(θ + α)− sin(θ − α)]

= a negative quantity for (θ + α) < π and θ > α > 0

Thus we have a unstable equilibrium. If β is increased (body is moved down) the lift becomes negative and
further pushes the body down.

PROBLEM B4

A turbojet engine in a wind tunnel ingests air at a velocity of 100 m/s and a density of 1 kg/m3. The velocity is
uniform and the cross-sectional area of the approaching stream which enters the engine is 0.1 m2. The velocity
of the exhaust jet from the engine, however, is not uniform but has a velocity which varies over the cross-section
according to

u(r) = 2U
(

1− r2

r20

)
where the constant U = 600 m/s and r0 is the radius of the jet cross-section. The radial position within the
axisymmetric jet is denoted by r and the density of the exhaust jet is assumed to be uniform. It is readily shown
that the above formula implies that U is the average velocity of the exhaust jet (the volume flow divided by the
cross-sectional area of the jet).

(a) Find the thrust of the turbojet engine.

(b) Find what the thrust would be if the exhaust jet had a uniform velocity, U .

Assume the pressures in both the inlet and exhaust jets are the same as the surrounding air and that mass is
conserved in the flow through the engine (roughly true in practice).

SOLUTION B4

Though you were not asked to do this, I show first that U is indeed the average velocity, ū, of the emerging jet:

ū =
1
πr20

∫ r0

0

u(r)2πrdr =
4U
r20

[
r2

2
− r4

4r20

]r0

0

= U
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(a) Now consider a control volume beginning with a cut far upstream across the streamtube entering the engine,
sides along that streamtube around the outside of the engine and then a cut downstream across the exhaust jet.
Since the pressure on all these surfaces is stated to be atmospheric, there is no net force on the control volume
due to the external pressures acting on it. Thus the only force is that acting on the control volume transmitted
through the structure connecting the engine to the airplane. This force is equal to the thrust, T , and is a force
acting on the control volume in the direction of the flow.

Before applying the momentum thereom to the problem we consider the areas and velocities entering and exiting
the control volume at the upstream and downstream boundaries. Denoting the area, the velocity and the density
of the incoming streamtube by Ai, ui and ρi it follows from conservation of mass that

ρiuiAi = ρeūπr
2
0

where ρe is the density of the exhaust jet.

Applying the linear momentum thereom in the axial direction it follows that T must be equal to the net flux of
axial momentum out of the control volume and therfore

T =
∫ r0

0

ρe(u(r))22πrdr − ρiu
2
iAi

T =
∫ r0

0

ρe4U2[1− r2/r20]22πrdr − ρiu
2
iAi

T =
4π
3
ρer

2
0U

2 − ρiu
2
iAi

T = ρiuiAi

[
4
3
U − ui

]
using the conservation of mass relation.

With ρi = 1 kg/m3, ui = 100 m/s, Ai = 0.1 m2, and U = 600 m/s it follows that the thrust

T = 7000 kg ·m/s2

(b) On the other hand with a uniform exit velocity distribution the thrust would be

T = ρiuiAi [U − ui] = 5000 kg ·m/s2
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