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EXAMPLE PROBLEM 1

A laboratory wind tunnel has a square test section with side length L. Boundary-layer velocity profiles are
measured at two cross-sections and displacement thicknesses are evaluated from the measured profiles. At section
1, where the free-stream speed is U1, the displacement thickness is δD1. At section 2, located downstream from
1, the displacement thickness is δD2.

(a) Calculate the free-stream velocity ratio U2/U1 as a function of the known parameters.

(b) Calculate the change in static pressure between sections 1 and 2. Express the result as a fraction of the
free-stream dynamic pressure at section 1, i.e., find (p1 − p2)/ 1

2ρU
2
1 .

(c) ...and just for fun, write down the displacement thickness, δD, and the momentum thickness, δM in integral
form. What are the results for these from the laminar Blasius solution? What is the physical significance
of the disturbance thickness (or boundary layer height), δ, and the other two thicknesses δD and δM?

SOLUTION 1

[Note: This problem illustrates a basic application of the displacement-thickness concept. It is somewhat unusual
in that, because the flow is confined, the reduction in flow area caused by the boundary layer leads to the result
that the pressure in the inviscid flow region drops (only slightly). In most applications the pressure distribution
is determined from the inviscid flow and then applied to the boundary layer. We saw a similar phenomenon in
Problem B15, where we discovered that the centerline velocity at the entrance of the circular duct increases due
to the boundary layer “squeezing” the effective flow area.]
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(a) The idea here is that at each location, the boundary layer displacement thickness effectively reduces the
area of uniform flow. Location 2 has a smaller effective flow area than location 1 (because δD2 > δD1).
From mass conservation, this tells us that the uniform velocity at 2 will be higher.

U1A1 = U2A2,

U1(L− 2δD1)2 = U2(L− 2δD2)2,

so
U2

U1
=
A1

A2
=

(L− 2δD1)2

(L− 2δD2)2
.
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(b) Since U2 > U1, Bernoulli’s equation should tell us that the pressure at 2 is lower than the pressure at 1.

p1 +
1
2
ρU2

1 = p2 +
1
2
ρU2

2 ,

p1 − p2 =
1
2
ρ(U2

2 − U2
1 ) =

1
2
ρU2

1

[(
U2

U1

)2

− 1

]
,

giving
p1 − p2
1
2ρU

2
1

=
(
U2

U1

)2

− 1 =
(
A1

A2

)2

− 1 =
(L− 2δD1)4

(L− 2δD2)4
− 1.

(c) The disturbance thickness, δ, is usually defined as the vertical distance from the surface of the plate at
which the velocity is within 1% of the free stream. That is, the point at which u ≈ 0.99U . The other
two definitions are based on the notion that the boundary layer retards the fluid, so the mass flux and
momentum flux are both less than they would be in the absence of the boundary layer. We imagine that
the flow remains at uniform velocity U , but the surface of the plate is moved upwards to reduce either the
mass or momentum flux by the same amount that the boundary layer actually does.

(a) Displacement thickness,   D (b) Disturbance thickness, (c) Momentum thickness,   M
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The displacement thickness, δD, is the distance the plate would be moved so that the loss of mass flux (due
to reduction in uniform flow area) is equivalent to the loss the boundary layer causes. For a semi-infinite
plate, the mass flux in the absence of a boundary layer would be

∫∞
0
ρUbdy, where b is the width of the

plate perpendicular to the flow (into the page). Since the boundary layer induces a velocity profile, u, the
actual mass flux is

∫∞
0
ρubdy. Hence, the loss due to the boundary layer is the difference,

∫∞
0
ρ(U −u)bdy.

If we imagine keeping the velocity at a constant U , and instead move the plate up a distance δD (as shown
in the figure above, on the left), the loss of mass flux would be ρUbδD. Setting these losses equal gives

ρUbδD =
∫ ∞

0

ρ(U − u)bdy,

so that for incompressible flow

δD =
∫ ∞

0

(
1− u

U

)
dy ≈

∫ δ

0

(
1− u

U

)
dy.

Since u ≈ U at y = δ, the integrand is essentially zero for all y ≥ δ. The Blasius solution for laminar
flow over a flat plate gives

δD = 1.72
(νx
U

)1/2

.

Similarly, the momentum thickness, δM , is the distance the plate would be moved so that the loss of
momentum flux is equal to the loss the boundary layer actually causes. The momentum flux if we had no
boundary layer would be

∫∞
0
ρuUbdy (the actual mass flux is

∫∞
0
ρubdy and the momentum per unit mass
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flux of the uniform flow is U itself). The actual momentum flux of the boundary layer is
∫∞
0
ρu2bdy. The

loss of momentum in the boundary layer is therefore,
∫∞
0
ρu(U −u)bdy. If we imagine keeping the velocity

constant at U , and instead move the plate up a distance δM (as shown in the figure above, on the right),
the loss of momentum flux is

∫ δM

0
ρU2bdy = ρU2bδM . Equating the losses gives

ρU2δM =
∫ ∞

0

ρu(U − u)dy,

and

δM =
∫ ∞

0

u

U

(
1− u

U

)
dy ≈

∫ δ

0

u

U

(
1− u

U

)
dy.

The Blasius solution for laminar flow over a flat plate gives

δM = 0.664
(νx
U

)1/2

.

For completeness, the simplifying assumptions usually made for engineering analyses of boundary-layer
development are:

1. u→ U at y = δ.

2. ∂u/∂y → 0 at y = δ.

3. v � U within the boundary layer.

4. Pressure variation across the thin boundary layer is negligible. The free-stream pressure distribution
is impressed on the boundary layer.

EXAMPLE PROBLEM 2

This isn’t really a problem, but it is something you should definitely read and understand. The Karman
Momentum Integral Equation (KMIE) has appeared on every problem set since the midterm. It is very
important that you understand where this comes from and the significance of each term. It also offers a perfect
opportunity to combine a control-volume approach using the mass and momentum integral equations from the
first half of the term to the boundary-layer analysis from the second half.

That said, please carefully read the additional document posted with this review at,
http://www.its.caltech.edu/ ∼mefm/me19b/handouts/scan fox9-4 momentumintegraleqn.pdf.
The material was scanned from Fox, R.W., McDonald, A.T., and Pritchard, P.J., Introduction to Fluid Mechanics,
6th ed., John Wiley & Sons, 2004, §9-4, pp. 415-420. It is very well written, easy to understand, and presented
in a manner that is easy to follow.

SOLUTION 2

Go read the document!
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EXAMPLE PROBLEM 3

A fluid, with density ρ, flows with speed U over a flat plate with length L and width w (assume that L > w).
At the trailing edge, the boundary-layer thickness is δte. Assume the velocity profile within the boundary layer
is linear, as shown, and that the flow is two-dimensional (flow conditions are independent of z).

teδ

U U

x

y

a b

cd

(a) Using control volume abcd, shown by dashed lines, compute the mass flow rate across surface ab. Determine
the drag force on the upper surface of the plate. Explain how this (viscous) drag can be computed from
the given data even though we do not know the fluid viscosity.

(b) The flat plate is turned so that w is now the length parallel to the flow, and L perpendicular to it (recall
L > w). Is the boundary-layer thickness at the trailing edge greater or less than the previous case? Should
we expect the drag to increase or decrease?

(c) Now, assuming we know the fluid viscosity, ν = µ/ρ, compute the drag using boundary layer equations.

SOLUTION 3

(a) The general integral form of the continuity equation is (remember this from the first half of the term!)

∂

∂t

∫
cv

ρdV +
∮
cs

ρ~u · n̂dA = 0.

Applying this to abcd and noting steady, two-dimensional flow yields∮
cs

ρ~u · n̂dA = 0 = ṁda + ṁab + ṁbc,

so
ṁab = −ṁda − ṁbc,

where

ṁda = −
∫ δte

0

ρUwdy = −ρUwδte,

ṁbc =
∫ δte

0

ρ

(
Uy

δte

)
wdy =

1
2
ρUwδte,

to give

ṁab = −(−ρUwδte)−
1
2
ρUwδte =

1
2
ρUwδte.

The drag force can be found from the balance of momentum flux. The general integral form of the
momentum conservation equation applied to a control volume is∑

~F =
∂

∂t

∫
cv

ρ~udV +
∮
cs

ρ~u(~u · n̂)dA,
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where
∑ ~F represents the sum of the forces acting on the control volume or control surface (which means

they act on the fluid). Applying this to abcd and noting that there are no pressure forces (since dU/dx = 0),
so the only force acting on the control volume is equal and opposite the drag on the plate, D,

−D =
∮
cs

ρ~u(~u · n̂)dA = Uṁda + Uṁab +
∫ δte

0

ρ

(
Uy

δte

)2

wdy.

Substituting the results from above

−D = −ρU2wδte +
1
2
ρU2wδte +

1
3
ρU2wδte

= −1
6
ρU2wδte.

So the drag force on the upper surface of the plate is simply

D =
1
6
ρU2wδte.

The force imparted on the plate by the fluid tends to pull the plate in the direction of the flow, hence D
is in the positive x direction. The fluid viscosity appears implicitly through the boundary-layer thickness
δte. The higher the viscosity, the larger the boundary layer.

(b) If we rotate the plate, and assume w < L, then the boundary-layer thickness at the trailing edge will be
less than the original case. The drag depends on the dimension of the plate perpendicular to the flow as
well as the height of the boundary layer. We must evaluate this height as a function of distance along the
plate to determine if the drag increases or decreases. The KMIE gives

τw
ρ

=
d

dx
(U2δM ) + δDU

dU

dx
,

which simplifies for this flow to
τw
ρ

= U2 dδM
dx

.

Since the drag is given by D =
∫
τwdA over the surface of the plate, we can integrate both sides of the

above equation
D

ρ
=
∫
τwdA

ρ
=
∫
U2 dδM

dx
dA,

or

D1 = ρU2

∫ L

0

dδM
dx

wdx and D2 = ρU2

∫ w

0

dδM
dx

Ldx,

where the subscripts refer to the two different cases (1 for the dimension L parallel to the flow, and 2
for w parallel to the flow, along the x direction). The resulting integrations give D1 = ρU2wδM (L) and
D2 = ρU2LδM (w). Taking the ratio of the two drag forces

D1

D2
=
w

L

δM (L)
δM (w)

.

The laminar Blasius solution gives a drag ratio of

D1

D2
=
w

L

L1/2

w1/2
=
(w
L

)1/2

< 1 for w < L,

so the drag in the second case (side of dimension w aligned with the flow) will result in a higher drag on
the plate.
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(c) Using the result from part (b) from the KMIE, and assuming the original orientation of the plate, the drag
is given by

D = ρU2wδM (L) = ρU2w

[
0.664

(
νL

U

)1/2
]

= 0.664ρ1/2µ1/2U3/2wL1/2

where we have substituted the laminar-flow result from the Blasius solution, δM = 0.664(νx/U)1/2. Alter-
natively, you could have assumed a turbulent boundary layer since this was not specified in the problem.
The second orientation would cause a change in the positions of w and L in the equation.

EXAMPLE PROBLEM 4

Heated air at 1 atm and 35◦C is to be transported in a 150 m long circular duct at a rate of 0.35 m3/s. If the
head loss in the pipe is not to exceed 20 m, determine the minimum diameter of the duct.

SOLUTION 4

The flow rate and the head loss in the duct are given. The diameter of the duct is to be determined.

Assumptions:

1. The flow is steady and incompressible.

2. The entrance effects are negligable and the pipe is smooth.
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3. The duct involves no components such and bends or valves.

4. Air is an ideal gas.

5. The flow is intially assumed to be turbulent. This should be verified at the end of the problem.

Properties: The density, dynamic, and kinematic viscosity of air at 35◦C and 1 atm are ρ = 1.145 kg/m3,
µ = 1.895× 10−5 kg/(m · s), and ν = 1.665× 10−5 m2/s.

We can solve this problem by iteration using the Moody chart. First, assume a pipe diameter and use this to
calculate the volume-averaged flow velocity in the pipe and the Reynolds number. Use the Reynolds number
to estimate a friction factor. Then use these numbers to calculate the head loss, and compare the result to the
actual head loss. Repeat the calculation until the calculated head loss matches the specified value.

U =
Q

A
=

Q

πd2/4

Red =
Ud

ν

hL = f
L

d

U2

2g

The iteration should lead to a solution of d ≈ 0.267 m.
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