
ME19a. SOLUTIONS. Nov. 10, 2009. Due Nov. 17

PROBLEM 21

Water is sloshing back and forth between two infinite vertical walls separated by a distance L:
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The flow is assumed to be planar, incompressible, inviscid potential flow. The free surface is devoid of surface
tension and is at constant atmospheric pressure. Its position is described by h(x, t) as indicated in the sketch. The
wave height, h(x, t), is small so that the assumptions of linear water wave theory may be used. An appropriate
velocity potential for this flow is

φ = Aeky cos kx sinωt

where A, k and ω are undetermined constants.

(a) What are the four boundary conditions which a solution to this flow must satisfy ?

(b) Find the series of values which are possible for the wavelength, λ (λ = 2π/k), of the free surface waves.
Each of these wavelengths corresponds to a particular mode of sloshing.

(c) Use the kinematic condition on the free surface to determine the shape of the free surface, h(x, t), as a
function of A, k, ω, x and t.

(d) Use the dynamic condition on the free surface to determine the frequency, f (f = ω/2π), for each of the
modes of sloshing. Denote the acceleration due to gravity by g.

SOLUTION 21

(a) The flow must satisfy the following four boundary conditions,

1. u = 0 at x = 0,

2. u = 0 at x = L,

3. On the free surface (y = h),

v|y=h =
∂h

∂t

but for small amplitude waves, v|y=h ≈ v|y=0, so the kinematic condition is

v|y=0 =
∂h

∂t
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4. The dynamic condition on the free surface, namely that the pressure is constant and is equal to the
atmospheric pressure.

(b) The velocity potential is given as
φ = Aeky cos kx sinωt

where A, k and ω are undetermined constants. The velocity in the x-direction, u, is

u =
∂φ

∂x
= −Akeky sin kx sinωt

The boundary condition at x = 0 is automatically satisfied by the above equation, but for u = 0 at x = L,

kL = nπ

where n is an integer. From the relationship between the wave number, k, and the wavelength, λ,

λ =
2π
k

=
2L
n
, n = integer

Thus, there can be a half wave (n = 1), full wave (n = 2), etc. trapped between the walls.

(c) The velocity v in the y-direction is,

v =
∂φ

∂y
= Akeky cos kx sinωt

and the kinematic condition gives

∂h

∂t
= v|y=0 = Ak cos kx sinωt

Integrating the above equation yields

h(x, t) = −Ak
ω

cos kx cosωt

where the constant of integration, some unknown function f(x), becomes a constant since this is linear
wave theory and is taken to be zero (so that the x-axis extends through the center of the waves).

(d) The unsteady Bernoulli equation requires

ρ
∂φ

∂t
+ p+

1
2
ρ
(
u2 + v2

)
+ ρgy = const.

On the free surface, the dynamic condition gives that pressure p is constant. The kinetic energy terms
( 1
2ρu

2 and 1
2ρv

2) are of higher order than the other terms and are thus negligible. Finally, substituting the
height for y yields,

ρ
∂φ

∂t

∣∣∣∣
y=h

+ ρgh = const.

The small amplitude assumption allows the approximation,

∂φ

∂t

∣∣∣∣
y=h

≈ ∂φ

∂t

∣∣∣∣
y=0

= Aω cos kx cosωt

which, when substituted into Bernoulli’s equation yields

Aω cos kx cosωt− Agk

ω
cos kx cosωt = const
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The only constant which will satisfy this equation is zero (due to the oscillating time and distance terms).
This can be confirmed by evaluating these properties at one of the nodes.

Aω cos kx cosωt− Agk

ω
cos kx cosωt = 0,

yields,

Aω − Agk

ω
= 0

→ ω =
√
gk

Thus, the frequency, f (f = ω/2π) is given by

f =
1

2π

(nπg
L

)1/2

PROBLEM 22
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The flow in the neighborhood of a corner in a rectangular ventilation duct is to be modelled as a planar potential
flow of an incompressible, inviscid fluid and is therefore given by the streamfunction, ψ = Axy, where A is
assumed known:

This flow is then changed by withdrawing fluid through pipes connected to the walls at the origin, O; fluid is
thereby withdrawn at a volumetric rate of q per unit depth normal to the sketch. Construct the velocity potential
for the modified flow and find expressions for the velocity components in terms of x, y, A and q.

A piece of thread is attached by one end to a point, C, which is at a distance, H, from the origin. The flow will
extend the free end of this thread either toward the origin or toward x =∞. Find the condition under which it
will extend toward the origin.

SOLUTION 22

The stream function for the corner flow, ψc, is given as

ψc = Axy

The stream function and velocity potential of a given potential flow are related by

u =
∂φ

∂x
=
∂ψ

∂y
, v =

∂φ

∂y
= −∂ψ

∂x
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Using this relationship to calculate the velocity potential of the corner flow from the known stream function
yields

∂ψc
∂x

= Ay = −∂φc
∂y

φc = −1
2
Ay2 + f(x),

and

∂ψc
∂y

= Ax =
∂φc
∂x

φc =
1
2
Ax2 + g(y)

Combining the two equations yields

φc =
1
2
A
(
x2 − y2

)
where the constant that arises is taken to be zero.

The velocity potential for a sink, is defined as

φs = k ln r

where the strength k of the sink is to be determined. The volumetric rate per unit depth removed from the flow
is given as q which can be related to k by integrating over the corner for which the sink acts

q =
∫
A

u · dA

−q =
∫ π

2

0

urrdθ

where
ur =

∂φ

∂r
=
k

r

Thus,

k = −2q
π

Substituting k into the expression for the velocity potential of the sink yields

φs = −2q
π

ln r = − q
π

ln r2 = − q
π

ln
(
x2 + y2

)

The velocity for the entire flow is the velocity potential of the corner flow, φc, plus the velocity potential of the
sink, φs,

φ =
1
2
A
(
x2 − y2

)
︸ ︷︷ ︸
Corner Flow

− q
π

ln
(
x2 + y2

)
︸ ︷︷ ︸

Sink
The string will be pushed toward the origin as long as the velocity vector of the flow along the wall points toward
the origin (i.e. u|y=0 < 0). The velocity of the flow in the x-direction is

u =
∂φ

∂x
= Ax− 2qx

π (x2 + y2)
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x = H2q�ΠAL1�2

Evaluating this expression along the wall gives

u|y=0 = Ax− 2q
πx

Solving for when the velocity changes sign (uy=0 = 0)

Ax =
2q
πx

x2 =
2q
πA

∴ x =
(

2q
πA

)1/2

Since the string is positioned at x = H, the string will extend toward the origin if

H <

(
2q
πA

)1/2

.

PROBLEM 23

A hurricane can be visualized as a planar incompressible flow consisting of a rotating circular core surrounded
by a potential flow:

A particular hurricane has a core of radius 40 m and air is sucked into this core at a volume flow rate per unit
depth perpendicular to the diagram of 5000 m2/s. Furthermore the pressure difference between the air far away
from the hurricane and the air at the edge of the core is 1500 kg/m2 s. The velocity of the air far from the core
is assumed to be negligible. The density of the air is assumed uniform and constant at 1.2 kg/m3. Find the
angular rate of rotation of the hurricane and the velocity of the wind at the edge of the core.

SOLUTION 23
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Find the angular rate of rotation of the hurricane and the velocity of the wind at the edge of the core. The
properties of the problem are:

R = 40 m Q = 5000
m2

s
p∞ − pR = ∆p = 1500

kg

m2s
ρ = 1.2

kg

m3

The flow outside of the core of the hurricane can be modelled as the combination of a sink and a vortex.

φ = − Q
2π

ln r︸ ︷︷ ︸
Sink

+
Γ
2π
θ︸︷︷︸

Vortex

The velocity components will then be:

ur =
∂φ

∂r
= − Q

2πr
uθ =

1
r

∂φ

∂θ
=

Γ
2πr

Evaluating the velocity at the edge of the core (r = R):

ur = − Q

2πR
uθ =

Γ
2πR

⇒ |u|2r=R = ur
2 + uθ

2 =
Q2

4π2R2
+

Γ2

4π2R2

Since the flow is irrotational outside of the core, we can apply Bernoulli’s Equation. We apply the equation at
the edge of the core and evaluate the constant far from the core (r →∞):

1
2
ρ|u|2R + pR =

1
2
ρ|u∞|2 + p∞

1
2
ρ|u|2R = p∞ − pR = ∆p

|u|2r=R =
2∆p
ρ

= 50
m

s

Now solve for Γ:

2∆p
ρ

=
Q2

4π2R2
+

Γ2

4π2R2

Γ =

√
8π2R2∆p

ρ
−Q2

=

√√√√8π2(40 m)2(1500 kg
m2s )

1.2 kg
m3

−
(

5000
m2

s

)2

= 11500
m2

s
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The angular rate of rotation of the hurricane:

ω =
uθ
R

=
Γ

2πR2
= 1.147

rad

s

PROBLEM 24

A planar incompressible potential flow is generated by superposition of:

A
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1. A uniform stream with velocity potential Ux.

2. A doublet with velocity potential UR2 cos θ/r at the point A in the sketch above.

3. A potential vortex at the point A with circulation, Γ, and velocity potential, Γθ/2π.

This generates the flow around a cylinder of radius, R, whose center is at A; the cylinder is also spinning in
the counterclockwise direction. Find the velocity and pressure on the surface of the cylinder as a function of
angular position, θ. Neglecting shear stresses and considering only the pressures on the surface of the cylinder,
find the total force on the cylinder per unit depth normal to the sketch. This is probably most readily done
by separately evaluating the drag (the component of the force in the direction of the uniform stream, in other
words the direction x) and the lift (the component of the force in the direction, y, perpendicular to the uniform
stream). Denote the fluid density by ρ and the pressure far from the cylinder by p∞.

SOLUTION 24

Flow around a cylinder of radius, R, is generated by the superposition of a uniform stream, doublet, and potential
vortex:

φ = Ur cos θ︸ ︷︷ ︸
Uniform Stream

+U
R2

r
cos θ︸ ︷︷ ︸

Doublet

+
Γθ
2π︸︷︷︸

Vortex
The velocity components will be:

ur =
∂φ

∂r
= U

(
1− R2

r2

)
cos θ

uθ =
1
r

∂φ

∂θ
= −U

(
1 +

R2

r2

)
sin θ +

Γ
2πr

On the surface of the cylinder (r = R):

ur|r=R = U

(
1− R2

R2

)
cos θ = 0

uθ|r=R = −2U sin θ +
Γ

2πR
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The radial velocity is naturally zero since there is no flow through the cylinder. To find the corresponding
pressure on the surface of the cylinder, we apply Bernoulli’s Equation (since the flow is irrotational):

1
2
ρ|u(R, θ)|2 + p(R, θ) =

1
2
ρ|u∞|2 + p∞

∴ p(R, θ) =
1
2
ρ

(
U2 −

[
−2U sin θ +

Γ
2πR

]2)
+ p∞

The total force on the cylinder per unit depth normal to the sketch is given as the integral of the pressure over
the surface. The components of the force in the horizontal and vertical directions, the drag and lift, respectively,
will be given by:

D = Fx = −
∫ 2π

0

p(R, θ) cos θRdθ

L = Fy = −
∫ 2π

0

p(R, θ) sin θRdθ

Evaluating the drag:

D = −
∫ 2π

0

[
1
2
ρU2R

(
cos θ − 4 sin2 θ cos θ +

2Γ
πUR

sin θ cos θ − Γ2

4π2R2U2
cos θ

)
+ p∞R cos θ

]
dθ

= −
[

1
2
ρU2R

(
sin θ

[
1− Γ2

4π2R2U2

]
− 4

3
sin3 θ +

Γ
πUR

sin2 θ

)
+ p∞R sin θ

]2π
0

= 0

since sin 0 = sin 2π = 0. Evaluating the lift:

L = −
∫ 2π

0

[
1
2
ρU2R

(
sin θ − 4 sin3 θ +

2Γ
πUR

sin2 θ − Γ2

4π2R2U2
sin θ

)
+ p∞R sin θ

]
dθ

= −
[

1
2
ρU2R

(
− cos θ

[
1− Γ2

4π2R2U2

]
+

4
3

sin2 θ cos θ +
8
3
cosθ +

Γ
πUR

θ − Γ
2πUR

sin 2θ
)
− p∞R cos θ

]2π
0

= −ρΓU

The lack of drag can be seen by looking at the symmetry of the streamlines front to back on the cylinder.
Since the pressure is directly linked to the velocity through Bernoulli’s equation, symmetric streamlines imply
that there is no pressure imbalance front to back and thus no force (d’Alembert’s paradox). For the lift, the
circulation, Γ, breaks the top to bottom symmetry of the streamlines and creates a net force, the lift. The
presence of lift based on the magnitude of the circulation is consistent with the Kutta-Joukowski Theorem.
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