
ME19a. SOLUTIONS. Nov. 3, 2009. Due Nov. 10

PROBLEM 17

A manufacturer advertises a line of centrifugal pumps of various sizes given by the radius of the impeller (the
rotating part) denoted by R. These can be run by a motor at any rotating speed, N (in radians per sec). The
manufacturer also states that the “operating condition” for this line of pumps is given by specific values of the
“flow coefficient” and “head coefficient”. The flow coefficient, φ, is defined by φ = Q/πNR3 where Q is the
volume flow rate and the head coefficient, ψ, is defined by ψ = ∆p/ρN2R2 where ∆p is the total pressure rise
across the pump and ρ is the fluid density. We denote the manufacturer’s specific design values for the operating
condition by φD and ψD and regard them as given constants.

We now wish to choose one of these pumps for a system in which we want a particular flow rate, Q, with
a particular total pressure rise, ∆p. How do we decide on the necessary size of pump (R) and the necessary
speed, N?

SOLUTION 17

The flow coefficient, φ, and the head coefficient, ψ, are defined as

φ =
Q

πNR3
, ψ =

∆p
ρN2R2

.

The pump is designed such that these two coefficients are known and are equal to φD and ψD, respectively

φD =
Q

πNR3
, ψD =

∆p
ρN2R2

.

The two unknowns in these two equations are the size of the pump R and the rotating speed N. By manipulating
the equations, these parameters can be expressed in terms of the known variables. From the equation for the
flow coefficient, it is known that

NR3 =
Q

πφD
. (1)

The equations for the head coefficient gives

N2R2 =
∆p
ρψD

. (2)

Squaring equation 1 and dividing it by equation 2 gives

R4 =
Q2

π2φ2
D

∆p
ρψD

.

Simplifying this result to solve for R

R =
(

Q

πφD

) 1
2
(
ρψD
∆p

) 1
4

. (3)

Plugging equation 3 into equation 1 gives an expression for the rotating speed N

N

(
Q

πφD

) 3
2
(
ρψD
∆p

) 3
4

=
Q

πφD
.

Rewriting and solving for N gives
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N =
(
πφD
Q

) 1
2
(

∆p
ρψD

) 3
4

.

PROBLEM 18

A wind tunnel is constructed primarily of 6 m diameter piping arranged with four 90◦ elbows as shown in the
sketch below.
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The working section is 3 m in diameter and is preceded by a nozzle and followed by a diffuser. A fan is installed
to create the flow and is 80% efficient. If the tunnel is to achieve an air velocity of 80 m/s in the working section,
find the power which must be provided to the fan (in HP where 1 HP = 746 kg m2/s3). Air at these speeds
can be assumed essentially incompressible with a density of 1.2 kg/m3. Assume the following losses occur in the
tunnel:

1. A loss in each of the four corner bends equivalent to a length of 20 diameters of the large piping.

2. A friction factor, f , of 0.02 in the 138 m of 6 m diameter pipe.

3. A total loss in the nozzle, working section and diffuser equivalent to one fifth of the velocity head (the 1
2ρu

2)
in the working section.

SOLUTION 18

The total pressure losses in the circuit are composed of several contributions:

• Pressure loss due to the bends in the pipe ∆pb

• Pressure loss due to length of pipe ∆pl
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• Pressure loss in nozzle, working section and diffuser ∆pws

The power provided to the fan, P , must offset the total pressure losses, ∆p = ∆pb + ∆pl + ∆pws and account
for the efficiency of the fan itself.

The pressure loss in the bends of the pipe can be quantified by the effective length

L?b = 4 bends · 20Dpipe = 80Dpipe = 480 m

where Dpipe = 6 m. The pressure loss due to the length of the pipe has contributions

Ll = 48 + 30 + 30 + 12 + 18 = 138 m

so that the total pressure loss due to the bends and length of pipe is given as

∆pb + ∆pl =
f(L?b + Ll)
Dpipe

(
1
2
ρU2

)
= 1.03ρU2

The total pressure loss in the nozzle, working section and diffuser can be calculated as

∆pws =
(

1
5

)(
1
2
ρu2

)
(4)

where the velocity in working section u = 80 m/s. Mass conservation requires constant flow rate

Q = uAws = UApipe = 180π m3/s

where the velocity in the pipe U is found from the above relation as

U =
D2
ws

D2
pipe

u =
u

4
.

Rewriting equation 4 in terms of the velocity U gives

∆pws =
8
5
ρU2 = 1.6ρU2

such that the total pressure loss is

∆p = ∆pb + ∆pl + ∆pws = (1.03 + 1.6)ρU2 = 2.63ρU2

The total power input, P , to the fan is given by

P =
Q∆p
η

= 8.923× 105 kg m2/s2

with flow rate Q, total pressure loss ∆p and efficiency η = 0.8. We know 1 HP = 746 kg m2/s2 such that the
total power input is

P = 1.196× 103 HP

PROBLEM 19

The tailrace (discharge pipe) of a hydro-electric turbine installation is at an elevation, h, below the water level
in the reservoir:
The frictional losses in the penstock (the pipe leading to the turbine) and the tailrace are represented by the loss
coefficient, k, based on the mean velocity, U , in those pipes (which have the same cross-sectional area, A). The
flow discharges to atmospheric pressure at the exit from the tailrace. The water density is denoted by ρ and the
acceleration due to gravity by g.
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(a) What is the drop in total head across the turbine in terms of U , h, k and g?

(b) What is the power developed by the turbine assuming that it is 90% efficient? (Answer in terms of U , h, k,
ρ, A and g.)

(c) What is the optimum velocity, U , which will produce the maximum power output from the turbine assuming
that h, k, A, ρ and g are constant? (Answer in terms of h, k, and g.)

SOLUTION 19

(a) Labelling a point on the reservoir surface as 1 and the discharge from the tailrace as 2, we can use Bernoulli’s
equation

pa
ρg

+ h =
pa
ρg

+
U2

2g
+ Head losses from 1 to 2

to obtain the total head loss

Head losses from 1 to 2 = h− U2

2g
The total head loss is a combination of losses due to friction in the pipes and a head drop across the turbine

Head losses from 1 to 2 = h− U2

2g
= Head loss in pipes due to friction + Head drop through the turbine

Noting that the head loss due to friction in the pipes is equal to kU2/2g it follows that

Head drop through the turbine = h− U2

2g
(1 + k)

(b) If the turbine were 100% efficient the power it would produce would be the total pressure drop through the
turbine (total head drop times ρg) multiplied by the volume flow rate through the turbine, namely UA. However,
since the turbine is only 90% efficient we only obtain a fraction of that power

P = 0.9ρgUA
[
h− U2

2g
(1 + k)

]

(c) Differentiating the above expression for the power gives

∂P

∂U
= 0.9ρgA

[
h− 3U2

2g
(1 + k)

]
Maximum power will occur when ∂P

∂U = 0 which can be solved for the optimum velocity

U =
[

2gh
3(k + 1)

] 1
2
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PROBLEM 20

Find the speed of propagation, c , of small amplitude, traveling water waves of wavelength, λ, on an ocean of
infinite extent but finite depth, H. The answer is an expression involving H, λ, and the acceleration due to
gravity, g.

SOLUTION 20

Find the speed of propagation, c, of small amplitude, traveling water waves of wavelength, λ, on an ocean of
infinite extent but finite depth, H. The answer is an expression involving H, λ, and the acceleration due to
gravity, g.
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Solutions to the wave equation need to satisfy Laplace’s equation

∇2φ = 0

The wave of interest is a traveling wave (as opposed to a standing wave). A wave traveling to the right with
velocity c can be described by

φ =
(
Aeny +Be−ny

)
cos (n(x− ct))

with wave number n = 2π/λ. This equation can be verified by substituting it into the Laplace equation. There
are two constants (A and B) in this equation and an unknown velocity c which needs to be determined by
boundary conditions.

There are several appropriate boundary conditions needed for water with a finite depth. The first boundary
condition is formed by the requirement that the velocity component in the y-direction must go to zero at the
channel bottom

v = 0 at y = 0 (5)

Furthermore, the kinematic condition tells us that the velocity at the water surface is approximately the rate of
change of the wave amplitude

v =
∂h

∂t
at y = H

where the amplitude of the wave h(x, t) is small such that h << H. In these equations (and the ones to follow),
we recall that the velocity vector is u = ∇φ, such that the velocity components are u = ∂φ/∂x and v = ∂φ/∂y.
We know the flow is irrotational (because we’re using a velocity potential!), so we can use Bernoulli’s equation to
obtain another boundary condition. The dynamic boundary condition is obtained from the non-steady Bernoulli
equation and tells us that the pressure at the surface is constant

ρ
∂φ

∂t

∣∣∣∣
y=H

+pa +
1
2
ρ|~u|2

∣∣∣∣
y=H

+ρg(H + h) = f(t) at y = H
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If the wave amplitude is small, we can neglect the kinetic energy term involving |~u|2 relative to the other terms,
namely the potential energy (because a fluid particle is being displaced only a very small amount). Also, because
this equation is true on the surface at any time, the function f(t) must be a constant. Hence, we obtain

ρ
∂φ

∂t

∣∣∣∣
y=H

+pa + ρg(H + h) = const at y = H (6)

Differentiation of equation 6 with respect to time gives

ρ
∂2φ

∂t2

∣∣∣∣
y=H

+ρg
∂h

∂t

∣∣∣∣
y=H

= 0

and we know from the kinematic condition that ∂h/∂t = v = ∂φ/∂y at y = H so that the equation above
becomes

ρ
∂2φ

∂t2

∣∣∣∣
y=H

+ρg
∂φ

∂y

∣∣∣∣
y=H

= 0 (7)

Equation 7 is the second boundary condition which needs to be satisfied (the first is equation 5).

By using the first boundary condition as described in equation 5, you will find

A−B = 0

hence B = A which leads to:
φ = A(eny + e−ny) cos (n(x− ct))

By using equation 7, it can be shown that the constant A is arbitrary and an expression for c can be found from

−An2c2(enH + e−nH) + gAn(enH − e−nH) = 0

where ρ and cos (n(x− ct)) have divided out of both terms. This can be rearranged to solve for the propagation
speed

c =

√
g

n

(
enH − e−nH
enH + e−nH

)
=
√
g

n
tanh(nH)

where it should be noted that

cosh(nH) =
enH + e−nH

2

sinh(nH) =
enH − e−nH

2
By filling in the expression for the wave number n = 2π/λ, the speed of propagation is given by

c =

√
gλ

2π
tanh

(
2πH
λ

)
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