ME19a.

HOMEWORK.
Oct. 20, 2009. Due Oct. 29

PROBLEM 13

The velocity, u, in the x direction for a planar incompressible shear flow near a wall as shown in the following sketch,

and is given by the expression

$$
u=U\left(\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right)
$$

where a is a constant. Find the corresponding expression for the velocity, v, assuming that $v=0$ at the wall, $y=0$.

PROBLEM 14

A particular planar, incompressible flow is given by:

$$
\psi=A x y t
$$

where A is constant in time and space.
(a) Sketch the streamlines for this flow at a particular instant in time (say $t=1$). What is the typical equation for such a streamline?
(b) Write down expressions for the velocity components, $u(x, y, t)$ and $v(x, y, t)$.
(c) Find the parametric equations, $x\left(x_{0}, y_{0}, t\right)$ and $y\left(x_{0}, y_{0}, t\right)$, for the pathline of a particle whose position at time $t=0$ is $\left(x_{0}, y_{0}\right)$.

PROBLEM 15

In spherical coordinates, (r, θ, ϕ), the equations of motion for an inviscid fluid, Euler's equations, become:

$$
\begin{gathered}
\rho\left(\frac{\mathrm{D} u_{r}}{\mathrm{D} t}-\frac{u_{\theta}^{2}+u_{\phi}^{2}}{r}\right)=-\frac{\partial p}{\partial r}+f_{r} \\
\rho\left(\frac{\mathrm{D} u_{\theta}}{\mathrm{D} t}+\frac{u_{\theta} u_{r}}{r}-\frac{u_{\phi}^{2} \cot \theta}{r}\right)=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta}
\end{gathered}
$$

$$
\rho\left(\frac{\mathrm{D} u_{\phi}}{\mathrm{D} t}+\frac{u_{\phi} u_{r}}{r}+\frac{u_{\theta} u_{\phi} \cot \theta}{r}\right)=-\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}+f_{\phi}
$$

where $u_{r}, u_{\theta}, u_{\phi}$ are the velocities in the r, θ, ϕ directions, p is the pressure, ρ is the fluid density and $f_{r}, f_{\theta}, f_{\phi}$ are the body force components. The Lagrangian or material derivative is

$$
\frac{\mathrm{D}}{\mathrm{D} t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

For an incompressible fluid the equation of continuity in spherical coordinates is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0
$$

An underwater explosion creates a purely radial flow ($u_{\theta}=u_{\phi}=0$ and $\partial / \partial \theta=0$ and $\partial / \partial \phi=0$) in water surrounding a bubble whose radius, denoted by $R(t)$, is increasing with time. Since the u_{r} velocity at the surface of the bubble must be equal to $\mathrm{d} R / \mathrm{d} t$ show that the equation of continuity requires that

$$
u_{r}=\frac{R^{2}}{r^{2}} \frac{\mathrm{~d} R}{\mathrm{~d} t}
$$

Assume that the water is incompressible. Also note that, since R is a function only of time, there is no ambiguity about its time derivative and hence $\mathrm{d} R / \mathrm{d} t$ is just an ordinary time derivative.

Now use the equations of motion to find the pressure, $p(r, t)$, at any position, r, in the water. Neglect all body forces. One integration step has to be performed which introduces an integration constant; this can be evaluated by assuming the pressure far from the bubble $(r \rightarrow \infty)$ is known (denoted by p_{∞}).

Finally show that, if one neglects surface tension so that the pressure in the bubble, p_{B}, is the same as the pressure in the water at $r=R$, then

$$
p_{B}-p_{\infty}=\rho\left[R \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}+\frac{3}{2}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}\right]
$$

This is known as the Rayleigh equation for bubble dynamics.

PROBLEM 16

The following is the streamfunction for a particular steady, planar, incompressible and inviscid flow:

$$
\psi=A\left(x^{2} y-y^{3} / 3\right)
$$

where A is a known constant.
(a) Find expressions for the velocity components u and v in this flow.
(b) Find an expression for the vorticity.
(c) Make a rough sketch of the streamlines of this flow.
(d) Find an expression for the pressure in this flow assuming that the pressure, p, at the origin is known. Denote the fluid density by ρ and neglect all body forces. What shape are the lines of constant pressure (isobars)?

