ME19a.
SOLUTIONS.
Oct. 20, 2009. Due Oct. 29

## PROBLEM 13

The velocity, $u$, in the $x$ direction for a planar incompressible shear flow near a wall as shown in the following sketch,

and is given by the expression

$$
u=U\left(\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right)
$$

where $a$ is a constant. Find the corresponding expression for the velocity, $v$, assuming that $v=0$ at the wall, $y=0$.

## SOLUTION 13

Since the velocity, $u$, in the $x$ direction for this planar incompressible flow is

$$
u=U\left(\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right)
$$

where $a$ is a constant. Since $u=\partial \psi / \partial y$, where $\psi$ is the streamfunction, it follows that

$$
\frac{\partial \psi}{\partial y}=U\left(\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right)
$$

and this can be integrated with respect to $y$ to yield

$$
\psi=U\left(\frac{y^{2}}{a x}-\frac{y^{3}}{3 a^{2} x^{2}}\right)+c(x)
$$

where $c(x)$ is the integration constant, an unknown function of $x$ alone. Then, differentiating with respect to $x$ we obtain the velocity, $v$, in the $y$ direction:

$$
v=-\frac{\partial \psi}{\partial x}=U\left(\frac{y^{2}}{a x^{2}}-\frac{2 y^{3}}{3 a^{2} x^{3}}\right)+\frac{d c}{d x}
$$

where $d c / d x$ will also just be a function of $x$.

But we also know that, at the wall $y=0$, we must have zero velocity, $v$, normal to the wall and therefore, from the last equation, $d c / d x$ must be zero at the wall, $y=0$. But since $d c / d x$ is only a function of $x d c / d x$ must therefore be zero everywhere and hence

$$
v=-\frac{\partial \psi}{\partial x}=U\left(\frac{y^{2}}{a x^{2}}-\frac{2 y^{3}}{3 a^{2} x^{3}}\right)
$$

## PROBLEM 14

A particular planar, incompressible flow is given by:

$$
\psi=A x y t
$$

where $A$ is constant in time and space.
(a) Sketch the streamlines for this flow at a particular instant in time (say $t=1$ ). What is the typical equation for such a streamline?
(b) Write down expressions for the velocity components, $u(x, y, t)$ and $v(x, y, t)$.
(c) Find the parametric equations, $x\left(x_{0}, y_{0}, t\right)$ and $y\left(x_{0}, y_{0}, t\right)$, for the pathline of a particle whose position at time $t=0$ is $\left(x_{0}, y_{0}\right)$.

## SOLUTION 14

The streamfunction for planar incompressible flow is given by

$$
\psi=A x y t
$$

where $A$ is a known constant in time and space.
a) For $t=1$, we get $\psi=A x y$. These are hyperbolic functions, typically given by

$$
\begin{array}{r}
\psi=A x y=\text { const } \\
\rightarrow y=\frac{B}{x}
\end{array}
$$

with constant $B$. The streamlines are shown below (for $A=1, t=1$ )
b) Velocity:

$$
\begin{array}{r}
u(x, y, t)=\frac{\partial \psi}{\partial y}=A x t \\
v(x, y, t)=-\frac{\partial \psi}{\partial x}=-A y t
\end{array}
$$

c) For a Lagrangian element,

$$
\begin{gathered}
u=\frac{d x}{d t}=A x t \\
v=\frac{d y}{d t}=-A y t
\end{gathered}
$$



Integrating from 0 to $t$ and from $x_{0}$ or $y_{0}$ to $x$ or $y$,

$$
\begin{array}{r}
x=x_{0} e^{A t^{2} / 2} \\
y=y_{0} e^{-A t^{2} / 2}
\end{array}
$$

## PROBLEM 15

In spherical coordinates, $(r, \theta, \phi)$, the equations of motion for an inviscid fluid, Euler's equations, become:

$$
\begin{aligned}
\rho\left(\frac{\mathrm{D} u_{r}}{\mathrm{D} t}-\frac{u_{\theta}^{2}+u_{\phi}^{2}}{r}\right) & =-\frac{\partial p}{\partial r}+f_{r} \\
\rho\left(\frac{\mathrm{D} u_{\theta}}{\mathrm{D} t}+\frac{u_{\theta} u_{r}}{r}-\frac{u_{\phi}^{2} \cot \theta}{r}\right) & =-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta} \\
\rho\left(\frac{\mathrm{D} u_{\phi}}{\mathrm{D} t}+\frac{u_{\phi} u_{r}}{r}+\frac{u_{\theta} u_{\phi} \cot \theta}{r}\right) & =-\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}+f_{\phi}
\end{aligned}
$$

where $u_{r}, u_{\theta}, u_{\phi}$ are the velocities in the $r, \theta, \phi$ directions, $p$ is the pressure, $\rho$ is the fluid density and $f_{r}, f_{\theta}, f_{\phi}$ are the body force components. The Lagrangian or material derivative is

$$
\frac{\mathrm{D}}{\mathrm{D} t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}
$$

$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$

For an incompressible fluid the equation of continuity in spherical coordinates is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0
$$

An underwater explosion creates a purely radial flow ( $u_{\theta}=u_{\phi}=0$ and $\partial / \partial \theta=0$ and $\partial / \partial \phi=0$ ) in water surrounding a bubble whose radius, denoted by $R(t)$, is increasing with time. Since the $u_{r}$ velocity at the surface of the bubble must be equal to $\mathrm{d} R / \mathrm{d} t$ show that the equation of continuity requires that

$$
u_{r}=\frac{R^{2}}{r^{2}} \frac{\mathrm{~d} R}{\mathrm{~d} t}
$$

Assume that the water is incompressible. Also note that, since $R$ is a function only of time, there is no ambiguity about its time derivative and hence $\mathrm{d} R / \mathrm{d} t$ is just an ordinary time derivative.
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$

Now use the equations of motion to find the pressure, $p(r, t)$, at any position, $r$, in the water. Neglect all body forces. One integration step has to be performed which introduces an integration constant; this can be evaluated by assuming the pressure far from the bubble $(r \rightarrow \infty)$ is known (denoted by $p_{\infty}$ ).

Finally show that, if one neglects surface tension so that the pressure in the bubble, $p_{B}$, is the same as the pressure in the water at $r=R$, then

$$
p_{B}-p_{\infty}=\rho\left[R \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}+\frac{3}{2}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}\right]
$$

This is known as the Rayleigh equation for bubble dynamics.

## SOLUTION 15

Purely radial flow $\Rightarrow u_{\theta}=u_{\phi}=0, \frac{\partial}{\partial \theta}=0, \frac{\partial}{\partial \phi}=0$
continuity: $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0$
Since the flow is purely radial, this reduces to:

$$
\frac{\partial}{\partial r}\left(r^{2} u_{r}\right)=0
$$

Integrating with respect to r:

$$
r^{2} u_{r}=f(t)
$$

At $r=R(t), u_{r}=\frac{\mathrm{d} R}{\mathrm{~d} t}$ so:

$$
f(t)=R^{2} \frac{\mathrm{~d} R}{\mathrm{~d} t} \quad \Rightarrow \quad u_{r}=\frac{R^{2}}{r^{2}} \frac{\mathrm{~d} R}{\mathrm{~d} t}
$$

For purely radial flow, Euler's equations in the $\theta$ and $\phi$ directions are automatically satisfied. In the $r$ direction, the equation reduces to:

$$
\rho \frac{\mathrm{D} u_{r}}{\mathrm{D} t}=\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}\right)=-\frac{\partial p}{\partial r}
$$

Substituting the expression derived for $u_{r}$ :

$$
-\frac{\partial p}{\partial r}=\rho\left(\left[\frac{2 R}{r^{2}}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+\frac{R^{2}}{r^{2}} \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}\right]+\frac{R^{2}}{r^{2}} \frac{\mathrm{~d} R}{\mathrm{~d} t}\left[-2 \frac{R^{2}}{r^{3}} \frac{\mathrm{~d} R}{\mathrm{~d} t}\right]\right)
$$

Separating and integrating:

$$
\begin{aligned}
& \int \partial p=\int-\rho\left(\frac{1}{r^{2}}\left[2 R\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+R^{2} \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}\right]-2 \frac{R^{4}}{r^{5}}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}\right) \partial r \\
\Rightarrow & p(r, t)=\rho\left(\frac{1}{r}\left[2 R\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+R^{2} \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}\right]-\frac{1}{2} \frac{R^{4}}{r^{4}}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}\right)+c(t)
\end{aligned}
$$

The unknown function $c(t)$ is evaluated as $r \rightarrow \infty$ :

$$
\begin{gathered}
p(r \rightarrow \infty, t)=c(t)=p_{\infty} \\
\Rightarrow p(r, t)=\rho\left(\frac{1}{r}\left[2 R\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+R^{2} \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}\right]-\frac{1}{2} \frac{R^{4}}{r^{4}}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}\right)+p_{\infty}
\end{gathered}
$$

$p_{B}$ is equal to $p(r, t)$ evaluated at $r=R$ :

$$
\begin{gathered}
p_{B}=p(R, t)=\rho\left[2\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+R \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}-\frac{1}{2}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}\right]+p_{\infty} \\
\Rightarrow p_{B}-p_{\infty}=\rho\left[\frac{3}{2}\left(\frac{\mathrm{~d} R}{\mathrm{~d} t}\right)^{2}+R \frac{\mathrm{~d}^{2} R}{\mathrm{~d} t^{2}}\right]
\end{gathered}
$$

## PROBLEM 16

The following is the streamfunction for a particular steady, planar, incompressible and inviscid flow:

$$
\psi=A\left(x^{2} y-y^{3} / 3\right)
$$

where $A$ is a known constant.
(a) Find expressions for the velocity components $u$ and $v$ in this flow.
(b) Find an expression for the vorticity.
(c) Make a rough sketch of the streamlines of this flow.
(d) Find an expression for the pressure in this flow assuming that the pressure, $p$, at the origin is known. Denote the fluid density by $\rho$ and neglect all body forces. What shape are the lines of constant pressure (isobars) ?

## SOLUTION 16

The streamfunction for planar incompressible flow is given by

$$
\psi=A\left(x^{2} y-y^{3} / 3\right)
$$

where $A$ is a known constant.
a) $u=\frac{\partial \psi}{\partial y}=A\left(x^{2}-y^{2}\right)$
$v=-\frac{\partial \psi}{\partial x}=-2 A x y$
b) Vorticity:
$\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0$,
c) Solve for $\psi=0$ :

$$
\begin{array}{r}
y\left(x^{2}-y^{2} / 3\right)=0 \\
\rightarrow y=0 \text { or } y= \pm \sqrt{3} x
\end{array}
$$

Along $y=0$ :

$$
\begin{aligned}
& u=A x^{2} \\
& v=0 \rightarrow \text { at }(0,0),(u, v)=(0,0)
\end{aligned}
$$

Along $x=0$ :
$u=-A y^{2}$
$v=0 \rightarrow$ at $(0,0),(u, v)=(0,0)$
The streamlines are shown below (for $A=1$ )

d) Pressure:

The flow is irrotational, inviscid and incompressible so we will use Bernoulli's eqn:

$$
\begin{array}{r}
p+\frac{1}{2} \rho|u|^{2}=\text { const } \\
|u|^{2}=u^{2}+v^{2}=A^{2}\left(x^{2}+y^{2}\right)^{2} \\
\therefore p+\frac{1}{2} \rho A^{2}\left(x^{2}+y^{2}\right)^{2}=\text { const }
\end{array}
$$

Set $p=p_{0}$ at $(x, y)=(0,0) \rightarrow$ const $=p_{0}$

$$
p=p_{0}-\frac{1}{2} \rho A^{2}\left(x^{2}+y^{2}\right)^{2}
$$

A line of constant pressure is a circle centered at the origin.

Alternatively, you can solve for the pressure from the equations of motions for an inviscid, incompressible fluid. The two of interest are:

$$
\begin{aligned}
\rho \frac{\mathrm{D} u}{\mathrm{D} t} & =-\frac{\partial p}{\partial x} \\
\rho \frac{\mathrm{D} v}{\mathrm{D} t} & =-\frac{\partial p}{\partial y}
\end{aligned}
$$

The steady-flow assumption means $\partial / \partial t=0$ so that only convective terms are left in the Lagrangian derivative. The two equations become:

$$
\begin{aligned}
\rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right) & =-\frac{\partial p}{\partial x} \\
\rho\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right) & =-\frac{\partial p}{\partial y}
\end{aligned}
$$

Now we use $u=A\left(x^{2}-y^{2}\right)$ and $v=-2 A x y$ from part a) and take appropriate derivatives to obtain two coupled partial differential equations for the pressure $p$. For the $x$ component:

$$
\begin{gathered}
\rho\left[A\left(x^{2}-y^{2}\right)(2 A x)+(-2 A x y)(-2 A y)\right]=-\frac{\partial p}{\partial x} \\
\therefore \frac{\partial p}{\partial x}=-2 \rho A^{2}\left(x^{3}+x y^{2}\right)
\end{gathered}
$$

For the y component:

$$
\begin{gathered}
\rho\left[A\left(x^{2}-y^{2}\right)(-2 A y)+(-2 A x y)(-2 A x)\right]=-\frac{\partial p}{\partial y} \\
\therefore \frac{\partial p}{\partial y}=-2 \rho A^{2}\left(x^{2} y+y^{3}\right)
\end{gathered}
$$

How do we solve this system of coupled PDE's? Let's start by integrating the expression for $\partial p / \partial x$ with respect to $x$ to obtain

$$
p=-2 \rho A^{2}\left(\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}\right)+c(y)
$$

We don't know what the function $c(y)$ is, but we can differentiate the expression for $p$ above with respect to $y$ and set this equal to the relation for $\partial p / \partial y$ we obtained from the equations of motion.

$$
\frac{\partial p}{\partial y}=-2 \rho A^{2}\left(x^{2} y\right)+c^{\prime}(y)=-2 \rho A^{2}\left(x^{2} y+y^{3}\right)
$$

Immediately we see that $c^{\prime}(y)=-2 \rho A^{2} y^{3}$ so that integration gives us

$$
c(y)=-2 \rho A^{2}\left(\frac{y^{4}}{4}\right)+c
$$

where $c$ now represents a constant to be determined from the boundary conditions. Substituting this into the equation for $p$

$$
\begin{aligned}
p & =-2 \rho A^{2}\left(\frac{x^{4}}{4}+\frac{x^{2} y^{2}}{2}+\frac{y^{4}}{4}\right)+c \\
& =-\frac{1}{2} \rho A^{2}\left(x^{4}+2 x^{2} y^{2}+y^{4}\right)+c \\
& =-\frac{1}{2} \rho A^{2}\left(x^{2}+y^{2}\right)^{2}+c
\end{aligned}
$$

Using $p=p_{0}$ at $(x, y)=(0,0) \rightarrow c=p_{0}$ and the final expression is exactly the same as the one we obtained through Bernoulli's equation

$$
p=p_{0}-\frac{1}{2} \rho A^{2}\left(x^{2}+y^{2}\right)^{2}
$$

Remember, Bernoulli's equation only works here because the flow is irrotational (vorticity $\omega=0$ ), inviscid (no viscous forces, shear layers, etc.), and incompressible (constant density $\rho$ ). You can always start with the full equations of motion, make the necessary assumptions, and proceed from there. Generally that is the best starting point.

