
ME19a. SOLUTIONS. Oct. 20, 2009. Due Oct. 29

PROBLEM 13

The velocity, u, in the x direction for a planar incompressible shear flow near a wall as shown in the following
sketch,

Velocity

Profile
u(x,y)

x

y

and is given by the expression

u = U

(
2y
ax
− y2

a2x2

)
where a is a constant. Find the corresponding expression for the velocity, v, assuming that v = 0 at the wall,
y = 0.

SOLUTION 13

Since the velocity, u, in the x direction for this planar incompressible flow is

u = U

(
2y
ax
− y2

a2x2

)
where a is a constant. Since u = ∂ψ/∂y, where ψ is the streamfunction, it follows that

∂ψ

∂y
= U

(
2y
ax
− y2

a2x2

)
and this can be integrated with respect to y to yield

ψ = U

(
y2

ax
− y3

3a2x2

)
+ c(x)

where c(x) is the integration constant, an unknown function of x alone. Then, differentiating with respect to x
we obtain the velocity, v, in the y direction:

v = −∂ψ
∂x

= U

(
y2

ax2
− 2y3

3a2x3

)
+
dc

dx

where dc/dx will also just be a function of x.
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But we also know that, at the wall y = 0, we must have zero velocity, v, normal to the wall and therefore, from
the last equation, dc/dx must be zero at the wall, y = 0. But since dc/dx is only a function of x dc/dx must
therefore be zero everywhere and hence

v = −∂ψ
∂x

= U

(
y2

ax2
− 2y3

3a2x3

)

PROBLEM 14

A particular planar, incompressible flow is given by:

ψ = Axyt

where A is constant in time and space.

(a) Sketch the streamlines for this flow at a particular instant in time (say t = 1). What is the typical equation
for such a streamline?

(b) Write down expressions for the velocity components, u(x, y, t) and v(x, y, t).

(c) Find the parametric equations, x(x0, y0, t) and y(x0, y0, t), for the pathline of a particle whose position at
time t = 0 is (x0, y0).

SOLUTION 14

The streamfunction for planar incompressible flow is given by

ψ = Axyt

where A is a known constant in time and space.

a) For t = 1, we get ψ = Axy. These are hyperbolic functions, typically given by

ψ = Axy = const

→ y =
B

x
,

with constant B. The streamlines are shown below (for A = 1, t = 1)
b) Velocity:

u(x, y, t) =
∂ψ

∂y
= Axt

v(x, y, t) = −∂ψ
∂x

= −Ayt

c) For a Lagrangian element,

u =
dx

dt
= Axt

v =
dy

dt
= −Ayt
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Integrating from 0 to t and from x0 or y0 to x or y,

x = x0e
At2/2

y = y0e
−At2/2

PROBLEM 15

In spherical coordinates, (r, θ, φ), the equations of motion for an inviscid fluid, Euler’s equations, become:

ρ

(
Dur
Dt
−
u2
θ + u2

φ

r

)
= −∂p

∂r
+ fr

ρ

(
Duθ
Dt

+
uθur
r
−
u2
φ cot θ
r

)
= −1

r

∂p

∂θ
+ fθ

ρ

(
Duφ
Dt

+
uφur
r

+
uθuφ cot θ

r

)
= − 1

r sin θ
∂p

∂φ
+ fφ

where ur, uθ, uφ are the velocities in the r, θ, φ directions, p is the pressure, ρ is the fluid density and fr, fθ, fφ
are the body force components. The Lagrangian or material derivative is

D
Dt

=
∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+

uφ
r sin θ

∂

∂φ

****************************************************

For an incompressible fluid the equation of continuity in spherical coordinates is
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1
r2

∂

∂r

(
r2ur

)
+

1
r sin θ

∂

∂θ
(uθ sin θ) +

1
r sin θ

∂uφ
∂φ

= 0

****************************************************

An underwater explosion creates a purely radial flow (uθ = uφ = 0 and ∂/∂θ = 0 and ∂/∂φ = 0) in water
surrounding a bubble whose radius, denoted by R(t), is increasing with time. Since the ur velocity at the surface
of the bubble must be equal to dR/dt show that the equation of continuity requires that

ur =
R2

r2
dR
dt

Assume that the water is incompressible. Also note that, since R is a function only of time, there is no ambiguity
about its time derivative and hence dR/dt is just an ordinary time derivative.

****************************************************

Now use the equations of motion to find the pressure, p(r, t), at any position, r, in the water. Neglect all body
forces. One integration step has to be performed which introduces an integration constant; this can be evaluated
by assuming the pressure far from the bubble (r →∞) is known (denoted by p∞).

Finally show that, if one neglects surface tension so that the pressure in the bubble, pB , is the same as the
pressure in the water at r = R, then

pB − p∞ = ρ

[
R

d2R

dt2
+

3
2

(
dR
dt

)2
]

This is known as the Rayleigh equation for bubble dynamics.

SOLUTION 15

Purely radial flow ⇒ uθ = uφ = 0, ∂∂θ = 0, ∂∂φ = 0

continuity: 1
r2

∂
∂r

(
r2ur

)
+ 1

r sin θ
∂
∂θ (uθ sin θ) + 1

r sin θ
∂uφ

∂φ = 0

Since the flow is purely radial, this reduces to:

∂

∂r

(
r2ur

)
= 0

Integrating with respect to r:
r2ur = f(t)

At r = R(t), ur = dR
dt so:

f(t) = R2 dR
dt

⇒ ur =
R2

r2
dR
dt

For purely radial flow, Euler’s equations in the θ and φ directions are automatically satisfied. In the r direction,
the equation reduces to:

ρ
Dur
Dt

= ρ

(
∂ur
∂t

+ ur
∂ur
∂r

)
= −∂p

∂r

Substituting the expression derived for ur:

−∂p
∂r

= ρ

([
2R
r2

(
dR
dt

)2

+
R2

r2
d2R

dt2

]
+
R2

r2
dR
dt

[
−2

R2

r3
dR
dt

])
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Separating and integrating:∫
∂p =

∫
−ρ

(
1
r2

[
2R
(

dR
dt

)2

+R2 d2R

dt2

]
− 2

R4

r5

(
dR
dt

)2
)
∂r

⇒ p(r, t) = ρ

(
1
r

[
2R
(

dR
dt

)2

+R2 d2R

dt2

]
− 1

2
R4

r4

(
dR
dt

)2
)

+ c(t)

The unknown function c(t) is evaluated as r →∞:

p(r →∞, t) = c(t) = p∞

⇒ p(r, t) = ρ

(
1
r

[
2R
(

dR
dt

)2

+R2 d2R

dt2

]
− 1

2
R4

r4

(
dR
dt

)2
)

+ p∞

pB is equal to p(r, t) evaluated at r = R:

pB = p(R, t) = ρ

[
2
(

dR
dt

)2

+R
d2R

dt2
− 1

2

(
dR
dt

)2
]

+ p∞

⇒ pB − p∞ = ρ

[
3
2

(
dR
dt

)2

+R
d2R

dt2

]

PROBLEM 16

The following is the streamfunction for a particular steady, planar, incompressible and inviscid flow:

ψ = A(x2y − y3/3)

where A is a known constant.

(a) Find expressions for the velocity components u and v in this flow.

(b) Find an expression for the vorticity.

(c) Make a rough sketch of the streamlines of this flow.

(d) Find an expression for the pressure in this flow assuming that the pressure, p , at the origin is known.
Denote the fluid density by ρ and neglect all body forces. What shape are the lines of constant pressure
(isobars) ?

SOLUTION 16

The streamfunction for planar incompressible flow is given by

ψ = A(x2y − y3/3)

where A is a known constant.

a) u = ∂ψ
∂y = A(x2 − y2)

v = −∂ψ∂x = −2Axy
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b) Vorticity:
ω = ∂v

∂x −
∂u
∂y = 0,

c) Solve for ψ = 0:

y(x2 − y2/3) = 0

→ y = 0 or y = ±
√

3x,

Along y = 0:
u = Ax2

v = 0 → at (0, 0), (u, v) = (0, 0)
Along x = 0:

u = −Ay2

v = 0 → at (0, 0), (u, v) = (0, 0)
The streamlines are shown below (for A = 1)
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d) Pressure:
The flow is irrotational, inviscid and incompressible so we will use Bernoulli’s eqn:

p+
1
2
ρ|u|2 = const

|u|2 = u2 + v2 = A2(x2 + y2)2

∴ p+
1
2
ρA2(x2 + y2)2 = const

Set p = p0 at (x, y) = (0, 0) → const = p0

p = p0 −
1
2
ρA2(x2 + y2)2

A line of constant pressure is a circle centered at the origin.
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Alternatively, you can solve for the pressure from the equations of motions for an inviscid, incompressible
fluid. The two of interest are:

ρ
Du
Dt

= −∂p
∂x

ρ
Dv
Dt

= −∂p
∂y

The steady-flow assumption means ∂/∂t = 0 so that only convective terms are left in the Lagrangian derivative.
The two equations become:

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y

Now we use u = A(x2− y2) and v = −2Axy from part a) and take appropriate derivatives to obtain two coupled
partial differential equations for the pressure p. For the x component:

ρ
[
A(x2 − y2)(2Ax) + (−2Axy)(−2Ay)

]
= −∂p

∂x

∴
∂p

∂x
= −2ρA2

(
x3 + xy2

)
For the y component:

ρ
[
A(x2 − y2)(−2Ay) + (−2Axy)(−2Ax)

]
= −∂p

∂y

∴
∂p

∂y
= −2ρA2

(
x2y + y3

)
How do we solve this system of coupled PDE’s? Let’s start by integrating the expression for ∂p/∂x with respect
to x to obtain

p = −2ρA2

(
x4

4
+
x2y2

2

)
+ c(y)

We don’t know what the function c(y) is, but we can differentiate the expression for p above with respect to y
and set this equal to the relation for ∂p/∂y we obtained from the equations of motion.

∂p

∂y
= −2ρA2(x2y) + c′(y) = −2ρA2

(
x2y + y3

)
Immediately we see that c′(y) = −2ρA2y3 so that integration gives us

c(y) = −2ρA2

(
y4

4

)
+ c

where c now represents a constant to be determined from the boundary conditions. Substituting this into the
equation for p

p = −2ρA2

(
x4

4
+
x2y2

2
+
y4

4

)
+ c

= −1
2
ρA2(x4 + 2x2y2 + y4) + c

= −1
2
ρA2(x2 + y2)2 + c

Using p = p0 at (x, y) = (0, 0) → c = p0 and the final expression is exactly the same as the one we obtained
through Bernoulli’s equation

p = p0 −
1
2
ρA2(x2 + y2)2
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Remember, Bernoulli’s equation only works here because the flow is irrotational (vorticity ω = 0), inviscid (no
viscous forces, shear layers, etc.), and incompressible (constant density ρ). You can always start with the full
equations of motion, make the necessary assumptions, and proceed from there. Generally that is the best starting
point.
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