PROBLEM 9

Consider the flow of a fluid in which the fluid elements are traveling with velocity, u, in the x direction (this is the only non-zero velocity of the fluid which it is necessary to consider in this problem). A succession of fluid elements travel through the Eulerian point, $x=x_{o}$ with a velocity $u=u_{o}$ and subsequently accelerate according to

$$
u=\left(u_{o} / x_{o}^{2}\right) x^{2}
$$

However the flow is steady. Chemical constituents within the fluid are reacting in such a way that the concentration, c, of one of the constituents is increasing with time at a rate denoted by α (a constant). If the concentration at the point $x=x_{o}$ has a known and constant value denoted by c_{o} find an expression for the concentration elsewhere as a function of x, x_{o}, u_{o}, c_{o} and α.

PROBLEM 10

Construct from first principles an equation for the conservation of mass which governs the planar flow (in the $x y$ plane) of an incompressible liquid lying on a flat horizontal plane:

The depth, $h(x, t)$, is a function of x and time, t. Examine an Eulerian element of width, $\mathrm{d} x$, as shown above (it extends from $y=0$ to $y=\infty$) and assume that the velocity, $u(x, t)$, of the water in the positive x direction is independent of y. Then utilize conservation of mass to obtain a partial differential equation connecting the depth, $h(x, t)$, and the velocity, $u(x, t)$. Neglect surface tension. [This is one of the equations of what is known as "shallow water wave theory".]

PROBLEM 11

A planar, incompressible flow within a wedge-shaped region bounded by solid walls at $y=0$ and $y=b x$ has a velocity, u, in the x direction given by $u=A(y-a x)$ where A and a are constants:

Find expressions for the streamfunction, ψ, and the velocity, v, in the y direction. Determine the relation between a and b. Sketch some of the streamlines of the flow.
[Do not use the no-slip condition which is violated in the above problem. Later, in class, we shall discuss the issues associated with the no-slip condition.]

PROBLEM 12

Consider the following streamfunction, ψ, for a planar incompressible flow:

$$
\psi=U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
$$

where U and r_{0} are constants and r, θ are polar coordinates.
(a) Find and sketch the streamline corresponding to $r=r_{0}$.
(b) Find and add to your sketch the streamlines for $\theta=0, r>r_{0}$ and for $\theta=\pi, r>r_{0}$. Note on your sketch the value of ψ along these lines and along the streamline for $r=r_{0}$.
(c) Make a rough estimate of some other streamlines with $\psi>0$ and show the form of these streamlines in your sketch.
(d) What is the magnitude and direction of the flow for $r \gg r_{0}$?
(e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_{r} and u_{θ}, are given by

$$
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_{\theta}=-\frac{\partial \psi}{\partial r}
$$

