ME19a.

HOMEWORK.

PROBLEM 9

Consider the flow of a fluid in which the fluid elements are traveling with velocity, u, in the x direction (this is the only non-zero velocity of the fluid which it is necessary to consider in this problem). A succession of fluid elements travel through the Eulerian point, $x = x_o$ with a velocity $u = u_o$ and subsequently accelerate according to

$$u = (u_o / x_o^2) x^2$$

However the flow is **steady**. Chemical constituents within the fluid are reacting in such a way that the concentration, c, of one of the constituents is increasing with time at a rate denoted by α (a constant). If the concentration at the point $x = x_o$ has a known and constant value denoted by c_o find an expression for the concentration elsewhere as a function of x, x_o , u_o , c_o and α .

PROBLEM 10

Construct from first principles an equation for the conservation of mass which governs the planar flow (in the xy plane) of an incompressible liquid lying on a flat horizontal plane:

The depth, h(x,t), is a function of x and time, t. Examine an Eulerian element of width, dx, as shown above (it extends from y = 0 to $y = \infty$) and assume that the velocity, u(x,t), of the water in the positive x direction is **independent of** y. Then utilize conservation of mass to obtain a partial differential equation connecting the depth, h(x,t), and the velocity, u(x,t). Neglect surface tension. [This is one of the equations of what is known as "shallow water wave theory".]

PROBLEM 11

A planar, incompressible flow within a wedge-shaped region bounded by solid walls at y = 0 and y = bx has a velocity, u, in the x direction given by u = A(y - ax) where A and a are constants:

Find expressions for the streamfunction, ψ , and the velocity, v, in the y direction. Determine the relation between a and b. Sketch some of the streamlines of the flow.

[Do **not** use the no-slip condition which is violated in the above problem. Later, in class, we shall discuss the issues associated with the no-slip condition.]

PROBLEM 12

Consider the following streamfunction, ψ , for a planar incompressible flow:

$$\psi = Ur\left(1 - \frac{r_0^2}{r^2}\right)\sin\theta$$

where U and r_0 are constants and r, θ are polar coordinates.

- (a) Find and sketch the streamline corresponding to $r = r_0$.
- (b) Find and add to your sketch the streamlines for $\theta = 0, r > r_0$ and for $\theta = \pi, r > r_0$. Note on your sketch the value of ψ along these lines and along the streamline for $r = r_0$.
- (c) Make a rough estimate of some other streamlines with $\psi > 0$ and show the form of these streamlines in your sketch.
- (d) What is the magnitude and direction of the flow for $r \gg r_0$?
- (e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_r and u_{θ} , are given by

$$u_r = rac{1}{r} rac{\partial \psi}{\partial heta} \quad ; \quad u_ heta = -rac{\partial \psi}{\partial r}$$