ME19a. SOLUTIONS. Oct. 13, 2009. Due Oct. 20

PROBLEM 9

Consider the flow of a fluid in which the fluid elements are traveling with velocity, u, in the x direction (this is
the only non-zero velocity of the fluid which it is necessary to consider in this problem). A succession of fluid
elements travel through the Eulerian point, x = x, with a velocity u = u, and subsequently accelerate according
to

u = (uo/3)a’

However the flow is steady. Chemical constituents within the fluid are reacting in such a way that the con-
centration, ¢, of one of the constituents is increasing with time at a rate denoted by « (a constant). If the
concentration at the point x = z, has a known and constant value denoted by ¢, find an expression for the
concentration elsewhere as a function of z, z,, u,, ¢, and a.

SOLUTION 9

Since chemical constituents are carried along with the fluid, they follow material path lines described by the
Lagrangian time derivative
Dc  dc dc
Dt ot lor
Here, we see the total rate of change of ¢ with respect to time depends explicitly on the time-derivative %
(nonzero for unsteady flow, for sources/sinlgs7 etc.), and also depends on the convection of ¢ at velocity u in the
C

flow. But the flow is steady and therefore 57 = 0 and c(z) is only a function of x. Therefore,
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PROBLEM 10

Construct from first principles an equation for the conservation of mass which governs the planar flow (in the
zy plane) of an incompressible liquid lying on a flat horizontal plane:
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The depth, h(x,t), is a function of z and time, ¢t. Examine an Eulerian element of width, dz, as shown above
(it extends from y = 0 to y = oo) and assume that the velocity, u(z,t), of the water in the positive x direction
is independent of y. Then utilize conservation of mass to obtain a partial differential equation connecting the
depth, h(z,t), and the velocity, u(x,t). Neglect surface tension. [This is one of the equations of what is known
as “shallow water wave theory”.]

SOLUTION 10

To find an equation for the shallow water wave, a mass balance for the element dx will be used. The mass
balance is given by

mass flow in — mass flow out = rate of change of mass in dx
or )
dm&x
dt
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The three contributions can be identified as:

rate of change

of mass
A
mass mass h(x+dx,t)
h(x,t) flowin flow out
—> —>
u(x,t) u(x+ox,t)
- v—

OX

® 171;,, mass flow in per unit depth into the page:
pu(z, t)h(x,t) = puh
® 7i1,,¢, mass flow out per unit depth into the page:
pu(z+dz, t)h(z+0z,t) ~ p [u(z,t) + %&c] [h(z,t) + %&n] ~ p [uh + h%éx + u%&x] =p [uh + %ﬁx

Note that the term involving (6x)? can be neglected for small dx.

o drng,/dt, rate of change of mass in dz per unit depth into the page:
p%}g&c

Note that if we were sitting at fixed x position and watching the flow, the depth h(z,¢) would be changing
in time. This change is a result of the difference of mass flow in and out of the control volume.

The three contributions can be substituted into the mass conservation relation to yield

O(uh) _ 0h
uh — [uh + e 5%] = Eéaz
O(uh) _ 0Oh



or

oh  d(uh)

ot ox =0

PROBLEM 11

A planar, incompressible flow within a wedge-shaped region bounded by solid walls at y = 0 and y = bx has a
velocity, u, in the x direction given by u = A(y — ax) where A and a are constants:

y y=bx
Flow
X
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Find expressions for the streamfunction, ¥, and the velocity, v, in the y direction. Determine the relation between
a and b. Sketch some of the streamlines of the flow.

[Do not use the no-slip condition which is violated in the above problem. Later, in class, we shall discuss the
issues associated with the no-slip condition.]

SOLUTION 11

Given u = A(y — ax)
Recall that u = %’, which implies that g—f = Ay — ax)
Integrating the equation, we find that

A 2
U= Ty — Aazy + c(z)
Solving for v,
oy
= —_—— = A /
v o ay + ' (x)
Apply the boundary condition that v|y—o = 0 — ¢/(z) = 0, so ¢(x) is an arbitrary constant, which we can set to

zero. The streamfunction and velocities are

A 2
Y = Ty — Aaxy
u = A(y—ax)
= Aay
Consider the effects of the sloping wall
dy v Aay
dz u Aly — az)’ where y = o
b Aabzx
~ A(bz — ax)
ab
b =
(b—a)
b = 2a



Or, we note that the stream function ¢ is constant along boundaries, so that

Ay?
¥ = constant = — Aaxy, where y = bz
AbZ 2
constant = 21: — Aabz?
b 2
constant = Ab ix —ax

But this can only be true if the term in parenthesis is zero (otherwise, something that is supposed to be equal
to a constant would depend on z?).

0 = 222_ 422
g% —aT

b = 2a

The u velocity is zero everywhere on y = ax (from the equation for u). The relationship between b and a tells
us that u will always be zero along a line at the half-angle between the bottom wall and the line y = bz that
defines our wedge shape. Thus, streamlines must be vertical along this line.
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PROBLEM 12
Consider the following streamfunction, v, for a planar incompressible flow:
2
Y ="Ur (1— Tg) sin 6
r
where U and 7o are constants and r, 8 are polar coordinates.

(a) Find and sketch the streamline corresponding to r = ryg.

(b) Find and add to your sketch the streamlines for § = 0,7 > rg and for § = 7,r > ry. Note on your sketch
the value of ¢ along these lines and along the streamline for r = ry.

(c) Make a rough estimate of some other streamlines with 1) > 0 and show the form of these streamlines in your
sketch.

(d) What is the magnitude and direction of the flow for r > r¢?



(e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and € directions, denoted respectively by w, and ug, are given

by
1w o
T ree 0 YT T or

SOLUTION 12

The streamfunction for planar incompressible flow is given by
2
r
Y ="Ur (1— g) sin 6
T

where U and rg are constants and 7,60 are polar coordinates. The velocities, given by the derivatives of the

streamfunction are 9 9 2
1 1 T T
Uy = ~30 = ;Ur (1— Tg) cosf =U (1 - rg> cos 6

2 2 2
ua:—%:— U 1—7;O +Ur QT—O sinf = -U 1—1—7;0 sin 6
or r2 r3 72

() 0=7%:  u,=0, uez—U(1+:—§)
(d) 7> ro: ur = Ucos®  ug — —Usinf

Magnitude: |id] = J/u2 +uj =U

Direction: transform into Cartesian coordinates

Uy = Uy 080 — ugsinf = U(cos® O +sin® §) = U
Uy = UpSinf + ugcost =0

The far field looks like a uniform stream U in the x direction.

(e) The flow around a stationary cylinder. The streamlines are shown below (for U =1, 7 = 1).






