ME19a.

SOLUTIONS.

PROBLEM 9

Consider the flow of a fluid in which the fluid elements are traveling with velocity, u, in the x direction (this is the only non-zero velocity of the fluid which it is necessary to consider in this problem). A succession of fluid elements travel through the Eulerian point, $x = x_o$ with a velocity $u = u_o$ and subsequently accelerate according to

$$u = (u_o / x_o^2) x^2$$

However the flow is **steady**. Chemical constituents within the fluid are reacting in such a way that the concentration, c, of one of the constituents is increasing with time at a rate denoted by α (a constant). If the concentration at the point $x = x_o$ has a known and constant value denoted by c_o find an expression for the concentration elsewhere as a function of x, x_o , u_o , c_o and α .

SOLUTION 9

Since chemical constituents are carried along with the fluid, they follow material path lines described by the Lagrangian time derivative

$$\frac{\mathrm{D}c}{\mathrm{D}t} = \frac{\partial c}{\partial t} + u\frac{\partial c}{\partial x} = \alpha.$$

Here, we see the total rate of change of c with respect to time depends explicitly on the time-derivative $\frac{\partial c}{\partial t}$ (nonzero for unsteady flow, for sources/sinks, etc.), and also depends on the convection of c at velocity u in the flow. But the flow is steady and therefore $\frac{\partial c}{\partial t} = 0$ and c(x) is only a function of x. Therefore,

$$\frac{\mathrm{d}c}{\mathrm{d}x} = \frac{\alpha}{u} = \frac{\alpha}{u_0} \left(\frac{x_0}{x}\right)^2$$

Integrating,

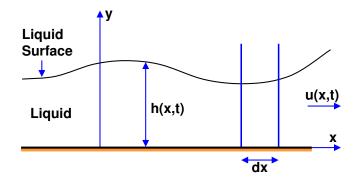
$$c = -\frac{\alpha x_0^2}{u_0} \frac{1}{x} + constant$$

But $c = c_0$ at $x = x_0$. Therefore

$$c - c_0 = \frac{\alpha x_0^2}{u_0} \left\lfloor \frac{1}{x_0} - \frac{1}{x} \right\rfloor$$

PROBLEM 10

Construct from first principles an equation for the conservation of mass which governs the planar flow (in the xy plane) of an incompressible liquid lying on a flat horizontal plane:



The depth, h(x,t), is a function of x and time, t. Examine an Eulerian element of width, dx, as shown above (it extends from y = 0 to $y = \infty$) and assume that the velocity, u(x,t), of the water in the positive x direction is **independent of** y. Then utilize conservation of mass to obtain a partial differential equation connecting the depth, h(x,t), and the velocity, u(x,t). Neglect surface tension. [This is one of the equations of what is known as "shallow water wave theory".]

SOLUTION 10

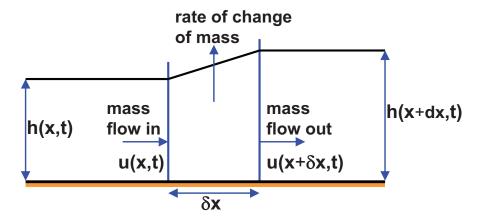
To find an equation for the shallow water wave, a mass balance for the element δx will be used. The mass balance is given by

mass flow in – mass flow out = rate of change of mass in δx

or

$$\dot{m}_{in} - \dot{m}_{out} = \frac{\mathrm{d}\dot{m}_{\delta x}}{\mathrm{d}t}.$$

The three contributions can be identified as:



• \dot{m}_{in} , mass flow in per unit depth into the page:

 $\rho u(x,t)h(x,t) = \rho uh$

• \dot{m}_{out} , mass flow out per unit depth into the page:

 $\rho u(x+\delta x,t)h(x+\delta x,t) \approx \rho \left[u(x,t) + \frac{\partial u}{\partial x} \delta x \right] \left[h(x,t) + \frac{\partial h}{\partial x} \delta x \right] \approx \rho \left[uh + h \frac{\partial u}{\partial x} \delta x + u \frac{\partial h}{\partial x} \delta x \right] = \rho \left[uh + \frac{\partial (uh)}{\partial x} \delta x \right]$

Note that the term involving $(\delta x)^2$ can be neglected for small δx .

• $d\dot{m}_{\delta x}/dt$, rate of change of mass in δx per unit depth into the page:

 $\rho \frac{\partial h}{\partial t} \delta x$

Note that if we were sitting at fixed x position and watching the flow, the depth h(x,t) would be changing in time. This change is a result of the difference of mass flow in and out of the control volume.

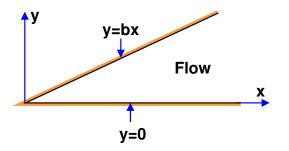
The three contributions can be substituted into the mass conservation relation to yield

$$uh - \left[uh + \frac{\partial(uh)}{\partial x}\delta x\right] = \frac{\partial h}{\partial t}\delta x$$
$$-\frac{\partial(uh)}{\partial x}\delta x = \frac{\partial h}{\partial t}\delta x$$

$$\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0$$

PROBLEM 11

A planar, incompressible flow within a wedge-shaped region bounded by solid walls at y = 0 and y = bx has a velocity, u, in the x direction given by u = A(y - ax) where A and a are constants:



Find expressions for the streamfunction, ψ , and the velocity, v, in the y direction. Determine the relation between a and b. Sketch some of the streamlines of the flow.

[Do **not** use the no-slip condition which is violated in the above problem. Later, in class, we shall discuss the issues associated with the no-slip condition.]

SOLUTION 11

Given u = A(y - ax)Recall that $u = \frac{\partial \psi}{\partial y}$, which implies that $\frac{\partial \psi}{\partial y} = A(y - ax)$ Integrating the equation, we find that

$$\psi = \frac{Ay^2}{2} - Aaxy + c(x)$$

Solving for v,

$$v = -\frac{\partial \psi}{\partial x} = Aay + c'(x)$$

Apply the boundary condition that $v|_{y=0} = 0 \rightarrow c'(x) = 0$, so c(x) is an arbitrary constant, which we can set to zero. The streamfunction and velocities are

$$\psi = \frac{Ay^2}{2} - Aaxy$$
$$u = A(y - ax)$$
$$v = Aay$$

Consider the effects of the sloping wall

$$\frac{dy}{dx} = b = \frac{v}{u} = \frac{Aay}{A(y - ax)}, \text{ where } y = bx$$

$$b = \frac{Aabx}{A(bx - ax)}$$

$$b = \frac{ab}{(b - a)}$$

$$\therefore b = 2a$$

or

Or, we note that the stream function ψ is constant along boundaries, so that

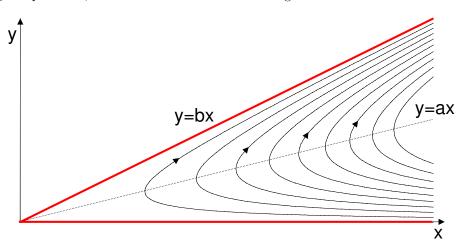
$$\psi = constant = \frac{Ay^2}{2} - Aaxy, \text{ where } y = bx$$
$$constant = \frac{Ab^2x^2}{2} - Aabx^2$$
$$constant = Ab\left(\frac{b}{2}x^2 - ax^2\right)$$

But this can only be true if the term in parenthesis is zero (otherwise, something that is supposed to be equal to a constant would depend on x^2).

$$0 = \frac{b}{2}x^2 - ax^2$$

$$\therefore b = 2a$$

The *u* velocity is zero everywhere on y = ax (from the equation for *u*). The relationship between *b* and *a* tells us that *u* will always be zero along a line at the half-angle between the bottom wall and the line y = bx that defines our wedge shape. Thus, streamlines must be vertical along this line.



PROBLEM 12

Consider the following streamfunction, ψ , for a planar incompressible flow:

$$\psi = Ur\left(1 - \frac{r_0^2}{r^2}\right)\sin\theta$$

where U and r_0 are constants and r, θ are polar coordinates.

- (a) Find and sketch the streamline corresponding to $r = r_0$.
- (b) Find and add to your sketch the streamlines for $\theta = 0, r > r_0$ and for $\theta = \pi, r > r_0$. Note on your sketch the value of ψ along these lines and along the streamline for $r = r_0$.
- (c) Make a rough estimate of some other streamlines with $\psi > 0$ and show the form of these streamlines in your sketch.
- (d) What is the magnitude and direction of the flow for $r \gg r_0$?

(e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_r and u_{θ} , are given by

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_\theta = -\frac{\partial \psi}{\partial r}$$

SOLUTION 12

The streamfunction for planar incompressible flow is given by

$$\psi = Ur\left(1 - \frac{r_0^2}{r^2}\right)\sin\theta$$

where U and r_0 are constants and r, θ are polar coordinates. The velocities, given by the derivatives of the streamfunction are

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{1}{r} Ur \left(1 - \frac{r_0^2}{r^2} \right) \cos \theta = U \left(1 - \frac{r_0^2}{r^2} \right) \cos \theta$$
$$u_\theta = -\frac{\partial \psi}{\partial r} = -\left[U \left(1 - \frac{r_0^2}{r^2} \right) + Ur \left(2\frac{r_0^2}{r^3} \right) \right] \sin \theta = -U \left(1 + \frac{r_0^2}{r^2} \right) \sin \theta$$

(a) $u_r|_{r=r_0} = 0$ $u_{\theta}|_{r=r_0} = -2U\sin\theta$

(b)
$$\theta = 0, r > r_0$$
: $\psi = 0, \quad u_r = U\left(1 - \frac{r_0^2}{r^2}\right), \quad U_\theta = 0$
 $\theta = \pi, r > r_0$: $\psi = 0, \quad u_r = -U\left(1 - \frac{r_0^2}{r^2}\right), \quad U_\theta = 0$

(c)
$$\theta = \frac{\pi}{2}$$
: $u_r = 0$, $u_{\theta} = -U\left(1 + \frac{r_0^2}{r^2}\right)$

(d)
$$r \gg r_0$$
: $u_r \to U \cos \theta$ $u_\theta \to -U \sin \theta$

Magnitude: $|\vec{u}| = \sqrt{u_r^2 + u_\theta^2} = U$ Direction: transform into Cartesian coordinates

 $u_x = u_r \cos \theta - u_\theta \sin \theta = U(\cos^2 \theta + \sin^2 \theta) = U$ $u_y = u_r \sin \theta + u_\theta \cos \theta = 0$

The far field looks like a uniform stream U in the x direction.

(e) The flow around a stationary cylinder. The streamlines are shown below (for $U = 1, r_0 = 1$).

