
ME19a. SOLUTIONS. Oct. 13, 2009. Due Oct. 20

PROBLEM 9

Consider the flow of a fluid in which the fluid elements are traveling with velocity, u, in the x direction (this is
the only non-zero velocity of the fluid which it is necessary to consider in this problem). A succession of fluid
elements travel through the Eulerian point, x = xo with a velocity u = uo and subsequently accelerate according
to

u = (uo/x2
o)x

2

However the flow is steady. Chemical constituents within the fluid are reacting in such a way that the con-
centration, c, of one of the constituents is increasing with time at a rate denoted by α (a constant). If the
concentration at the point x = xo has a known and constant value denoted by co find an expression for the
concentration elsewhere as a function of x, xo, uo, co and α.

SOLUTION 9

Since chemical constituents are carried along with the fluid, they follow material path lines described by the
Lagrangian time derivative

Dc
Dt

=
∂c

∂t
+ u

∂c

∂x
= α.

Here, we see the total rate of change of c with respect to time depends explicitly on the time-derivative ∂c
∂t

(nonzero for unsteady flow, for sources/sinks, etc.), and also depends on the convection of c at velocity u in the
flow. But the flow is steady and therefore ∂c

∂t = 0 and c(x) is only a function of x. Therefore,

dc
dx

=
α

u
=

α

u0

(x0

x

)2

Integrating,

c = −αx
2
0

u0

1
x

+ constant

But c = c0 at x = x0. Therefore

c− c0 =
αx2

0

u0

[
1
x0
− 1
x

]

PROBLEM 10

Construct from first principles an equation for the conservation of mass which governs the planar flow (in the
xy plane) of an incompressible liquid lying on a flat horizontal plane:

Liquid

Liquid

Surface

h(x,t)
u(x,t)

x

dx

y

1



The depth, h(x, t), is a function of x and time, t. Examine an Eulerian element of width, dx, as shown above
(it extends from y = 0 to y = ∞) and assume that the velocity, u(x, t), of the water in the positive x direction
is independent of y. Then utilize conservation of mass to obtain a partial differential equation connecting the
depth, h(x, t), and the velocity, u(x, t). Neglect surface tension. [This is one of the equations of what is known
as “shallow water wave theory”.]

SOLUTION 10

To find an equation for the shallow water wave, a mass balance for the element δx will be used. The mass
balance is given by

mass flow in−mass flow out = rate of change of mass in δx

or
ṁin − ṁout =

dṁδx

dt
.

The three contributions can be identified as:

h(x,t)

x

h(x+dx,t)

u(x,t) u(x+ x,t)

mass

flow in

mass

flow out

rate of change

of mass

• ṁin, mass flow in per unit depth into the page:

ρu(x, t)h(x, t) = ρuh

• ṁout, mass flow out per unit depth into the page:

ρu(x+δx, t)h(x+δx, t) ≈ ρ
[
u(x, t) + ∂u

∂xδx
] [
h(x, t) + ∂h

∂xδx
]
≈ ρ

[
uh+ h∂u∂xδx+ u∂h∂xδx

]
= ρ

[
uh+ ∂(uh)

∂x δx
]

Note that the term involving (δx)2 can be neglected for small δx.

• dṁδx/dt, rate of change of mass in δx per unit depth into the page:

ρ∂h∂t δx

Note that if we were sitting at fixed x position and watching the flow, the depth h(x, t) would be changing
in time. This change is a result of the difference of mass flow in and out of the control volume.

The three contributions can be substituted into the mass conservation relation to yield

uh−
[
uh+

∂(uh)
∂x

δx

]
=

∂h

∂t
δx

−∂(uh)
∂x

δx =
∂h

∂t
δx
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or
∂h

∂t
+
∂(uh)
∂x

= 0

PROBLEM 11

A planar, incompressible flow within a wedge-shaped region bounded by solid walls at y = 0 and y = bx has a
velocity, u, in the x direction given by u = A(y − ax) where A and a are constants:

Flow

x

y=0

y
y=bx

Find expressions for the streamfunction, ψ, and the velocity, v, in the y direction. Determine the relation between
a and b. Sketch some of the streamlines of the flow.

[Do not use the no-slip condition which is violated in the above problem. Later, in class, we shall discuss the
issues associated with the no-slip condition.]

SOLUTION 11

Given u = A(y − ax)
Recall that u = ∂ψ

∂y , which implies that ∂ψ
∂y = A(y − ax)

Integrating the equation, we find that

ψ =
Ay2

2
−Aaxy + c(x)

Solving for v,

v = −∂ψ
∂x

= Aay + c′(x)

Apply the boundary condition that v|y=0 = 0→ c′(x) = 0, so c(x) is an arbitrary constant, which we can set to
zero. The streamfunction and velocities are

ψ =
Ay2

2
−Aaxy

u = A(y − ax)
v = Aay

Consider the effects of the sloping wall

dy
dx

= b =
v

u
=

Aay

A(y − ax)
, where y = bx

b =
Aabx

A(bx− ax)

b =
ab

(b− a)
∴ b = 2a
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Or, we note that the stream function ψ is constant along boundaries, so that

ψ = constant =
Ay2

2
−Aaxy, where y = bx

constant =
Ab2x2

2
−Aabx2

constant = Ab

(
b

2
x2 − ax2

)
But this can only be true if the term in parenthesis is zero (otherwise, something that is supposed to be equal
to a constant would depend on x2).

0 =
b

2
x2 − ax2

∴ b = 2a

The u velocity is zero everywhere on y = ax (from the equation for u). The relationship between b and a tells
us that u will always be zero along a line at the half-angle between the bottom wall and the line y = bx that
defines our wedge shape. Thus, streamlines must be vertical along this line.

y=bx y=ax

y

x

PROBLEM 12

Consider the following streamfunction, ψ, for a planar incompressible flow:

ψ = Ur

(
1− r20

r2

)
sin θ

where U and r0 are constants and r, θ are polar coordinates.

(a) Find and sketch the streamline corresponding to r = r0.

(b) Find and add to your sketch the streamlines for θ = 0, r > r0 and for θ = π, r > r0. Note on your sketch
the value of ψ along these lines and along the streamline for r = r0.

(c) Make a rough estimate of some other streamlines with ψ > 0 and show the form of these streamlines in your
sketch.

(d) What is the magnitude and direction of the flow for r � r0?
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(e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by ur and uθ, are given
by

ur =
1
r

∂ψ

∂θ
; uθ = −∂ψ

∂r

SOLUTION 12

The streamfunction for planar incompressible flow is given by

ψ = Ur

(
1− r20

r2

)
sin θ

where U and r0 are constants and r, θ are polar coordinates. The velocities, given by the derivatives of the
streamfunction are

ur =
1
r

∂ψ

∂θ
=

1
r
Ur

(
1− r20

r2

)
cos θ = U

(
1− r20

r2

)
cos θ

uθ = −∂ψ
∂r

= −
[
U

(
1− r20

r2

)
+ Ur

(
2
r20
r3

)]
sin θ = −U

(
1 +

r20
r2

)
sin θ

(a) ur|r=r0 = 0
uθ|r=r0 = −2U sin θ

(b) θ = 0, r > r0: ψ = 0, ur = U
(

1− r20
r2

)
, Uθ = 0

θ = π, r > r0: ψ = 0, ur = −U
(

1− r20
r2

)
, Uθ = 0

(c) θ = π
2 : ur = 0, uθ = −U

(
1 + r20

r2

)
(d) r � r0: ur → U cos θ uθ → −U sin θ

Magnitude: |~u| =
√
u2
r + u2

θ = U
Direction: transform into Cartesian coordinates

ux = ur cos θ − uθ sin θ = U(cos2 θ + sin2 θ) = U
uy = ur sin θ + uθ cos θ = 0

The far field looks like a uniform stream U in the x direction.

(e) The flow around a stationary cylinder. The streamlines are shown below (for U = 1, r0 = 1).
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