PROBLEM 9

Consider the flow of a fluid in which the fluid elements are traveling with velocity, u, in the x direction (this is the only non-zero velocity of the fluid which it is necessary to consider in this problem). A succession of fluid elements travel through the Eulerian point, $x=x_{o}$ with a velocity $u=u_{o}$ and subsequently accelerate according to

$$
u=\left(u_{o} / x_{o}^{2}\right) x^{2}
$$

However the flow is steady. Chemical constituents within the fluid are reacting in such a way that the concentration, c, of one of the constituents is increasing with time at a rate denoted by α (a constant). If the concentration at the point $x=x_{o}$ has a known and constant value denoted by c_{o} find an expression for the concentration elsewhere as a function of x, x_{o}, u_{o}, c_{o} and α.

SOLUTION 9

Since chemical constituents are carried along with the fluid, they follow material path lines described by the Lagrangian time derivative

$$
\frac{\mathrm{D} c}{\mathrm{D} t}=\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}=\alpha
$$

Here, we see the total rate of change of c with respect to time depends explicitly on the time-derivative $\frac{\partial c}{\partial t}$ (nonzero for unsteady flow, for sources/sinks, etc.), and also depends on the convection of c at velocity u in the flow. But the flow is steady and therefore $\frac{\partial c}{\partial t}=0$ and $c(x)$ is only a function of x. Therefore,

$$
\frac{\mathrm{d} c}{\mathrm{~d} x}=\frac{\alpha}{u}=\frac{\alpha}{u_{0}}\left(\frac{x_{0}}{x}\right)^{2}
$$

Integrating,

$$
c=-\frac{\alpha x_{0}^{2}}{u_{0}} \frac{1}{x}+\text { constant }
$$

But $c=c_{0}$ at $x=x_{0}$. Therefore

$$
c-c_{0}=\frac{\alpha x_{0}^{2}}{u_{0}}\left[\frac{1}{x_{0}}-\frac{1}{x}\right]
$$

PROBLEM 10

Construct from first principles an equation for the conservation of mass which governs the planar flow (in the $x y$ plane) of an incompressible liquid lying on a flat horizontal plane:

The depth, $h(x, t)$, is a function of x and time, t. Examine an Eulerian element of width, $\mathrm{d} x$, as shown above (it extends from $y=0$ to $y=\infty$) and assume that the velocity, $u(x, t)$, of the water in the positive x direction is independent of y. Then utilize conservation of mass to obtain a partial differential equation connecting the depth, $h(x, t)$, and the velocity, $u(x, t)$. Neglect surface tension. [This is one of the equations of what is known as "shallow water wave theory".]

SOLUTION 10

To find an equation for the shallow water wave, a mass balance for the element δx will be used. The mass balance is given by
mass flow in - mass flow out $=$ rate of change of mass in δx
or

$$
\dot{m}_{i n}-\dot{m}_{o u t}=\frac{\mathrm{d} \dot{m}_{\delta x}}{\mathrm{~d} t}
$$

The three contributions can be identified as:

- $\dot{m}_{i n}$, mass flow in per unit depth into the page:

$$
\rho u(x, t) h(x, t)=\rho u h
$$

- $\dot{m}_{\text {out }}$, mass flow out per unit depth into the page:

$$
\rho u(x+\delta x, t) h(x+\delta x, t) \approx \rho\left[u(x, t)+\frac{\partial u}{\partial x} \delta x\right]\left[h(x, t)+\frac{\partial h}{\partial x} \delta x\right] \approx \rho\left[u h+h \frac{\partial u}{\partial x} \delta x+u \frac{\partial h}{\partial x} \delta x\right]=\rho\left[u h+\frac{\partial(u h)}{\partial x} \delta x\right]
$$

Note that the term involving $(\delta x)^{2}$ can be neglected for small δx.

- $\mathrm{d} \dot{m}_{\delta x} / \mathrm{d} t$, rate of change of mass in δx per unit depth into the page:
$\rho \frac{\partial h}{\partial t} \delta x$
Note that if we were sitting at fixed x position and watching the flow, the depth $h(x, t)$ would be changing in time. This change is a result of the difference of mass flow in and out of the control volume.

The three contributions can be substituted into the mass conservation relation to yield

$$
\begin{aligned}
u h-\left[u h+\frac{\partial(u h)}{\partial x} \delta x\right] & =\frac{\partial h}{\partial t} \delta x \\
-\frac{\partial(u h)}{\partial x} \delta x & =\frac{\partial h}{\partial t} \delta x
\end{aligned}
$$

or

$$
\frac{\partial h}{\partial t}+\frac{\partial(u h)}{\partial x}=0
$$

PROBLEM 11

A planar, incompressible flow within a wedge-shaped region bounded by solid walls at $y=0$ and $y=b x$ has a velocity, u, in the x direction given by $u=A(y-a x)$ where A and a are constants:

Find expressions for the streamfunction, ψ, and the velocity, v, in the y direction. Determine the relation between a and b. Sketch some of the streamlines of the flow.
[Do not use the no-slip condition which is violated in the above problem. Later, in class, we shall discuss the issues associated with the no-slip condition.]

SOLUTION 11

Given $u=A(y-a x)$
Recall that $u=\frac{\partial \psi}{\partial y}$, which implies that $\frac{\partial \psi}{\partial y}=A(y-a x)$
Integrating the equation, we find that

$$
\psi=\frac{A y^{2}}{2}-A a x y+c(x)
$$

Solving for v,

$$
v=-\frac{\partial \psi}{\partial x}=\operatorname{Aay}+c^{\prime}(x)
$$

Apply the boundary condition that $\left.v\right|_{y=0}=0 \rightarrow c^{\prime}(x)=0$, so $c(x)$ is an arbitrary constant, which we can set to zero. The streamfunction and velocities are

$$
\begin{aligned}
\psi & =\frac{A y^{2}}{2}-\text { Aaxy } \\
u & =A(y-a x) \\
v & =\text { Aay }
\end{aligned}
$$

Consider the effects of the sloping wall

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x}=b=\frac{v}{u} & =\frac{A a y}{A(y-a x)}, \text { where } y=b x \\
b & =\frac{A a b x}{A(b x-a x)} \\
b & =\frac{a b}{(b-a)} \\
\therefore b & =2 a
\end{aligned}
$$

Or, we note that the stream function ψ is constant along boundaries, so that

$$
\begin{aligned}
\psi=\text { constant } & =\frac{A y^{2}}{2}-A a x y, \text { where } y=b x \\
\text { constant } & =\frac{A b^{2} x^{2}}{2}-A a b x^{2} \\
\text { constant } & =A b\left(\frac{b}{2} x^{2}-a x^{2}\right)
\end{aligned}
$$

But this can only be true if the term in parenthesis is zero (otherwise, something that is supposed to be equal to a constant would depend on x^{2}).

$$
\begin{aligned}
0 & =\frac{b}{2} x^{2}-a x^{2} \\
\therefore b & =2 a
\end{aligned}
$$

The u velocity is zero everywhere on $y=a x$ (from the equation for u). The relationship between b and a tells us that u will always be zero along a line at the half-angle between the bottom wall and the line $y=b x$ that defines our wedge shape. Thus, streamlines must be vertical along this line.

PROBLEM 12

Consider the following streamfunction, ψ, for a planar incompressible flow:

$$
\psi=U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
$$

where U and r_{0} are constants and r, θ are polar coordinates.
(a) Find and sketch the streamline corresponding to $r=r_{0}$.
(b) Find and add to your sketch the streamlines for $\theta=0, r>r_{0}$ and for $\theta=\pi, r>r_{0}$. Note on your sketch the value of ψ along these lines and along the streamline for $r=r_{0}$.
(c) Make a rough estimate of some other streamlines with $\psi>0$ and show the form of these streamlines in your sketch.
(d) What is the magnitude and direction of the flow for $r \gg r_{0}$?
(e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_{r} and u_{θ}, are given by

$$
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_{\theta}=-\frac{\partial \psi}{\partial r}
$$

SOLUTION 12

The streamfunction for planar incompressible flow is given by

$$
\psi=U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
$$

where U and r_{0} are constants and r, θ are polar coordinates. The velocities, given by the derivatives of the streamfunction are

$$
\begin{gathered}
u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{1}{r} U r\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \cos \theta=U\left(1-\frac{r_{0}^{2}}{r^{2}}\right) \cos \theta \\
u_{\theta}=-\frac{\partial \psi}{\partial r}=-\left[U\left(1-\frac{r_{0}^{2}}{r^{2}}\right)+U r\left(2 \frac{r_{0}^{2}}{r^{3}}\right)\right] \sin \theta=-U\left(1+\frac{r_{0}^{2}}{r^{2}}\right) \sin \theta
\end{gathered}
$$

(a) $\left.u_{r}\right|_{r=r_{0}}=0$
$\left.u_{\theta}\right|_{r=r_{0}}=-2 U \sin \theta$
(b) $\theta=0, r>r_{0}: \quad \psi=0, \quad u_{r}=U\left(1-\frac{r_{0}^{2}}{r^{2}}\right), \quad U_{\theta}=0$
$\theta=\pi, r>r_{0}: \quad \psi=0, \quad u_{r}=-U\left(1-\frac{r_{0}^{2}}{r^{2}}\right), \quad U_{\theta}=0$
(c) $\theta=\frac{\pi}{2}: \quad u_{r}=0, \quad u_{\theta}=-U\left(1+\frac{r_{0}^{2}}{r^{2}}\right)$
(d) $r \gg r_{0}: \quad u_{r} \rightarrow U \cos \theta \quad u_{\theta} \rightarrow-U \sin \theta$

Magnitude: $|\vec{u}|=\sqrt{u_{r}^{2}+u_{\theta}^{2}}=U$
Direction: transform into Cartesian coordinates

$$
\begin{aligned}
& u_{x}=u_{r} \cos \theta-u_{\theta} \sin \theta=U\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=U \\
& u_{y}=u_{r} \sin \theta+u_{\theta} \cos \theta=0
\end{aligned}
$$

The far field looks like a uniform stream U in the x direction.
(e) The flow around a stationary cylinder. The streamlines are shown below (for $U=1, r_{0}=1$).

