PROBLEM 5

The L-shaped gate shown in the figure can rotate about the hinge. As the water level rises the gate will automatically open when the water level rises to a certain height, h. If the length of the lower arm of the gate is 1 m find the critical height, h. (Assume that when the gate is closed, as shown in the figure, there is a seal at the point S. Neglect the weight of the gate.)

PROBLEM 6

A cube with sides, L, and density, ρ_{S}, floats in a pool of water whose density is ρ_{L} and whose surface tension is S. The acceleration due to gravity is denoted by g. The cube is made of hydrophobic material with a contact angle of $\pi-\alpha$ so that it floats in the following configuration:

Because the material is hydrophobic the density of the cube can be greater than that of the water and it will still float. Assuming that
[1] $\alpha=\pi / 4$
[2] The surface tension, S, is such that $S /\left(\rho_{L} g L^{2}\right)=0.1$
[3] The elevation difference, h, between the line of contact on the sides of the cube and the water surface far from the cube is given by $h=\left(S /\left(\rho_{L} g\right)\right)^{1 / 2} \cot \alpha$.
[4] It is stipulated that the water surface can only contact the cube along the vertical faces of that cube.
determine the maximum specific gravity of the cube $\left(\rho_{S} / \rho_{L}\right)$ for which the cube will still float.

PROBLEM 7

A soap bubble hangs from a horizontal circular ring of radius equal to 3 cm :

The mass of the soapy water comprising the bubble is 0.0014 kg . Assuming the bubble is spherical and neglecting any contact angle effects at the junction of the ring and the bubble, find:
[1] The angle, θ, between a tangent to the bubble at the ring and the vertical if the surface tension of the soapy water is $0.05 \mathrm{~kg} / \mathrm{s}^{2}$. Assume the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
[2] The radius of the soap bubble.
[3] The thickness of the soap bubble given that the density of the soapy water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

PROBLEM 8

A plane wall is immersed in a large body of liquid of density ρ which is at rest:

The surface tension of the liquid surface is denoted by S and the contact angle with the wall by θ. Find the equation of the water surface in the form $y=y(x)$; the function should contain the quantities S, θ, ρ and the acceleration due to gravity, g. To simplify the problem assume that the curvature of the water surface can be approximated by $\mathrm{d}^{2} y / \mathrm{d} x^{2}$. Find the height, h, in terms of S, θ, ρ and g.

