ME19a.

HOMEWORK.

PROBLEM 5

The L-shaped gate shown in the figure can rotate about the hinge. As the water level rises the gate will automatically open when the water level rises to a certain height, h. If the length of the lower arm of the gate is 1 m find the critical height, h. (Assume that when the gate is closed, as shown in the figure, there is a seal at the point S. Neglect the weight of the gate.)

PROBLEM 6

A cube with sides, L, and density, ρ_S , floats in a pool of water whose density is ρ_L and whose surface tension is S. The acceleration due to gravity is denoted by g. The cube is made of hydrophobic material with a contact angle of $\pi - \alpha$ so that it floats in the following configuration:

Because the material is hydrophobic the density of the cube can be greater than that of the water and it will still float. Assuming that

- [1] $\alpha = \pi/4$
- [2] The surface tension, S, is such that $S/(\rho_L g L^2) = 0.1$
- [3] The elevation difference, h, between the line of contact on the sides of the cube and the water surface far from the cube is given by $h = (S/(\rho_L g))^{1/2} \cot \alpha$.
- [4] It is stipulated that the water surface can only contact the cube along the vertical faces of that cube.

determine the maximum specific gravity of the cube (ρ_S/ρ_L) for which the cube will still float.

PROBLEM 7

A soap bubble hangs from a horizontal circular ring of radius equal to 3 cm:

The mass of the soapy water comprising the bubble is $0.0014 \ kg$. Assuming the bubble is spherical and neglecting any contact angle effects at the junction of the ring and the bubble, find:

- [1] The angle, θ , between a tangent to the bubble at the ring and the vertical if the surface tension of the soapy water is 0.05 kg/s^2 . Assume the acceleration due to gravity is 9.8 m/s^2 .
- [2] The radius of the soap bubble.
- [3] The thickness of the soap bubble given that the density of the soapy water is 1000 kg/m^3 .

PROBLEM 8

A plane wall is immersed in a large body of liquid of density ρ which is at rest:

The surface tension of the liquid surface is denoted by S and the contact angle with the wall by θ . Find the equation of the water surface in the form y = y(x); the function should contain the quantities S, θ , ρ and the acceleration due to gravity, g. To simplify the problem assume that the curvature of the water surface can be approximated by d^2y/dx^2 . Find the height, h, in terms of S, θ , ρ and g.