
ME19a. SOLUTIONS. Oct. 6, 2009. Due Oct. 13

PROBLEM 5

The L-shaped gate shown in the figure can rotate about the hinge. As the water level rises the gate will
automatically open when the water level rises to a certain height, h. If the length of the lower arm of the gate
is 1 m find the critical height, h. (Assume that when the gate is closed, as shown in the figure, there is a seal at
the point S. Neglect the weight of the gate.)
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SOLUTION 5

There are two forces acting on the L-shaped gate both due to pressure:

(1) For the horizontal part, pA acts down from the air side, and a pressure of pA + ρgh acts up from the water
side. The net pressure is therefore, p1 = ρgh acting up. A differential force, dF1, on the horizontal part follows
from the pressure

dF1 = p1bdx = ρghbdx,

where dx is a differential length along the horizontal section, and b is the dimension into the page (this is
arbitrary).

The moment about the hinge due to this force acts in the counter-clockwise direction and is

M1 =
∫
xdF1 = ρghb

∫ L

0

xdx = ρghb
L2

2
,

where L = 1 m is the length of the horizontal section

(2) For the vertical section of the gate, pA acts to the left from the air side, and a pressure that varies with depth
pA + ρgy acts to the right from the water side. The net pressure at depth y (measured from the water surface)
is p2 = ρgy pushing to the right. The associated force is

dF2 = p2bdy = ρgybdy,

The moment about the hinge due to this force acts in the clockwise direction (opposite from M1) and can be
found from the force as

M2 =
∫

(h− y)dF2 = ρgb

∫ h

0

(h− y)ydy = ρgb(h3/2− h3/3) = ρgb
h3
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As h increases, M2 increases faster than M1 (h3 versus h, respectively). The gate opens when M2 = M1, so that
the critical height, h, is:

h =
√

3L = 1.73 m

PROBLEM 6

A cube with sides, L, and density, ρS , floats in a pool of water whose density is ρL and whose surface tension is
S. The acceleration due to gravity is denoted by g. The cube is made of hydrophobic material with a contact
angle of π − α so that it floats in the following configuration:
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Because the material is hydrophobic the density of the cube can be greater than that of the water and it will
still float. Assuming that

[1] α = π/4

[2] The surface tension, S, is such that S/(ρLgL2) = 0.1

[3] The elevation difference, h, between the line of contact on the sides of the cube and the water surface far
from the cube is given by h = (S/(ρLg))1/2 cotα.

[4] It is stipulated that the water surface can only contact the cube along the vertical faces of that cube.

determine the maximum specific gravity of the cube (ρS/ρL) for which the cube will still float.

SOLUTION 6

Three vertical forces act on the cube:

• The weight of the cube, ρsgL3

• The vertical component of the surface tension force acting along the contact line on the sides of the cube,
4LS cosα

• The combination of the atmospheric pressure on the top of the cube and the water pressure on the bottom
of the cube. The pressure on the bottom is atmospheric pressure plus ρLg(h+ x) where x is the distance
from the bottom up the side to the contact line. The upward force will be greatest when x is greatest
and this condition will support the heaviest cube. Thus the heaviest cube will be supported when x = L.
Under this condition, the upward force resulting from the pressures on the top and bottom is ρLg(h+L)L2

The balance of these three forces yields

ρLg(h+ L)L2 + 4LS cosα = ρSgL
3
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Substituting for h and α and doing some algebra will give

ρS/ρL = 1 + (S/(ρLgL2))1/2 + 4(S/(ρLgL2))/21/2

which for S/(ρLgL2) = 0.1 yields ρS/ρL = 1.6

PROBLEM 7

A soap bubble hangs from a horizontal circular ring of radius equal to 3 cm:
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The mass of the soapy water comprising the bubble is 0.0014 kg. Assuming the bubble is spherical and neglecting
any contact angle effects at the junction of the ring and the bubble, find:

[1] The angle, θ, between a tangent to the bubble at the ring and the vertical if the surface tension of the soapy
water is 0.05 kg/s2. Assume the acceleration due to gravity is 9.8 m/s2.

[2] The radius of the soap bubble.

[3] The thickness of the soap bubble given that the density of the soapy water is 1000 kg/m3.

SOLUTION 7

[1] The weight of the soap film must balance the component of the surface tension force, S. Note that there
are two surfaces to consider.

r
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mg = 2(2πrS cos θ)

θ = cos−1
[ mg

4πrS

]
= cos−1

[
(0.0014 kg)(9.81 m/s2)
4π(0.03 m)(0.05 kg/s2

]
→ θ ≈ 43.3◦

[2] The radius of the soap bubble can be found with a bit of geometry:

r

R

cos θ =
r

R

R =
r

cos θ

=
3 cm

cos 43.3◦
→ R ≈ 4.12 cm

[3] The thickness of the soap bubble can be found by using the density of the soapy water (ρ = 1000 kg/m3)
and the mass (m = .0014 kg). By assuming t � R, the approximate volume is given by the (sur-
face area)×(thickness).
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Consider the system of spherical polar coordinates given in the figure. Typically, to cover the entire surface
of the sphere, the range of angles in the figure are 0 ≤ β ≤ π and 0 ≤ φ ≤ 2π. The differential area of
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the shaded surface element is R2 sinβdφdβ. For the bubble geometry, we want to integrate over the entire
range of φ, but we only want to integrate β from π/2− θ, to the maximum angle π. Thus,

A(θ) =
∫ π

π
2−θ

∫ 2π

0

R2 sinβdφdβ

= 2πR2

∫ π

π
2−θ

sinβdβ

= 2πR2
(

cos
[π

2
− θ
]
− cosπ

)
= 2πR2 (sin θ + 1)

∴ m = ρV ≈ ρA(θ)t

→ t =
m

ρA(θ)
=

0.0014 kg
(1000 kg/m3)(2π)(0.0412 m)2(sin[43.3◦] + 1)

t = 7.78× 10−5 m

Alternatively (and perhaps a bit more confusing), the surface area can be found by a similar integration over
the angle φ defined in the figure below. The horizontal rings have circumference 2πR cosφ and differential
thickness Rdφ where the integration angle φ varies from −π/2 to the contact angle θ:

Rcosφ

φ

R

Rdφ

A(θ) = 2πR2

∫ θ

−π/2
cosφ dφ

= 2πR2 (sin θ + 1)
∴ m = ρV ≈ ρA(θ)t

→ t =
m

ρA(θ)
=

0.0014 kg
(1000 kg/m3)(2π)(0.0412 m)2(sin[43.3◦] + 1)

t = 7.78× 10−5 m

Yet another method (and perhaps the most accurate, but definitely more math-intensive) is to find the
difference in volume between the outer and inner parts of the bubble. Using the same spherical coordinates
as in the first method, we now include integration over the radius to give

Vout(θ) =
∫ π

π
2−θ

∫ 2π

0

∫ R+t

0

r2 sinβdrdφdβ

= 2π
(R+ t)3

3

∫ π

π
2−θ

sinβdβ
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= 2π
(R+ t)3

3
(sin θ + 1)

Vin(θ) =
∫ π

π
2−θ

∫ 2π

0

∫ R

0

r2 sinβdrdφdβ

= 2π
R3

3

∫ π

π
2−θ

sinβdβ

= 2π
R3

3
(sin θ + 1)

∴ m = ρV = ρ(Vout(θ)− Vin(θ))

= ρ
2π
3

(sin θ + 1)
[
(R+ t)3 −R3

]
Inverting this result to obtain a function for the thickness t is complicated, but it can be done. It can just
as easily be solved numerically to give three possible solutions (because of the 3rd-order dependence on
the thickness). Two of the solutions are imaginary, and the third gives t = 7.777× 10−5 m. This confirms
that the volume is well approximated by (surface area)×(thickness).

PROBLEM 8

A plane wall is immersed in a large body of liquid of density ρ which is at rest:
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The surface tension of the liquid surface is denoted by S and the contact angle with the wall by θ. Find the
equation of the water surface in the form y = y(x) ; the function should contain the quantities S, θ, ρ and the
acceleration due to gravity, g. To simplify the problem assume that the curvature of the water surface can be
approximated by d2y/dx2. Find the height, h, in terms of S, θ, ρ and g.

SOLUTION 8

Consider the four points in the figure:

1. On the surface

2. Just below the surface of point 1

3. Vertically below point 2 on the horizontal line

4. Bottom most point of curvature.

The pressure at each point is given as

p1 = pA = p2 + S/R = p2 + S
d2y

dx2

p2 = p3 − ρgy
p3 = pA

p4 = pA
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where S is the surface tension and y = y(x) is the equation of the meniscus. In the equation for p1, we have used
the following relationship between the radius of curvature R and the equation describing the meniscus y = y(x)

1
R

=
d2y/dx2

[1 + (dy/dx)2]3/2
.

If we assume the gradients are small on the meniscus, i.e. dy/dx � 1, then the denominator of the above
relationship is unity and we are left with 1/R ≈ d2y/dx2.

At point 4 as R→∞, S d2y
dx2 = S

R → 0. From these equations,

p1 = pA = p2 + S
d2y

dx2

= (p3 − ρgy) + S
d2y

dx2

= pA − ρgy + S
d2y

dx2

→ d2y

dx2
=

ρgy

S

For a nth order, constant-coefficient, homogeneous linear differential equation of the form

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0,

where the subscripts (n) indicate the nth derivative of the function y, we can use the method of undetermined
coefficients to find a solution. Our equation is of the form y′′+a0y = 0 where a0 = −ρg/S, and we try a solution
of the form y = eλx to produce the characteristic equation (by substitution of y = eλx into y′′ − (ρg/S)y = 0)

λ2 − ρg

S
= 0.

The general solution y = eλx will result in exponential functions for real eigenvalues λ, and trigonometric
functions (i.e. cos, sin) for imaginary values of λ. We see here that the two eigenvalues (this is expected because
we have a second-order differential equation!) are λ = ±

√
ρg/S. Each of these is real because ρ, g, and S are

all positive quantities.
Therefore, the solution to the second order differential equation has the form:

y(x) = Ae(
√
ρg/S)x +Be−(

√
ρg/S)x

where the constants A and B can be found using the boundary conditions

@ x = 0 :
dy

dx
= − cot(θ)
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@ x =∞ : y = 0

→ A = 0, B =

√
S

ρg
cot θ

∴ y =

√
S

ρg
cot θ e−(

√
ρg/S)x

and

h =

√
S

ρg
cot θ
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