PROBLEM 8.14

The 20-lb block A and the 40-lb block B are at rest on an incline as shown. Knowing that the coefficient of static friction is 0.25 between all surfaces of contact, determine the value of θ for which motion is impending.

SOLUTION

FBD's:

A:

\[\Sigma F_y = 0: \quad N_1 - 20 \text{ lb} = 0, \quad N_1 = 20 \text{ lb} \]

Impending slip: \[F_1 = \mu_s N_1 = (0.25)(20 \text{ lb}) = 5 \text{ lb} \]

\[\Sigma F_x = 0: \quad -T + 5 \text{ lb} = 0, \quad T = 5 \text{ lb} \]

\[\Sigma F_y' = 0: \quad N_2 - (20 \text{ lb} + 40 \text{ lb}) \cos \theta - (5 \text{ lb}) \sin \theta = 0 \]

\[N_2 = (60 \text{ lb}) \cos \theta - (5 \text{ lb}) \sin \theta \]

Impending slip: \[F_2 = \mu_s N_2 = (0.25)(60 \cos \theta - 5 \sin \theta) \text{ lb} \]

\[\Sigma F_x' = 0: \quad -F_2 - 5 \text{ lb} - (5 \text{ lb}) \cos \theta + (20 \text{ lb} + 40 \text{ lb}) \sin \theta = 0 \]

\[-20 \cos \theta + 58.75 \sin \theta - 5 = 0 \]

Solving numerically, \[\theta = 23.4^\circ \]
PROBLEM 8.67

The square-threaded worm gear shown has a mean radius of 1.5 in. and a lead of 0.375 in. The larger gear is subjected to a constant clockwise couple of 7.2 kip·in. Knowing that the coefficient of static friction between the two gears is 0.12, determine the couple that must be applied to shaft AB to rotate the large gear counterclockwise. Neglect friction in the bearings at A, B, and C.

SOLUTION

FBD large gear:

\[\Sigma M_C = 0: \quad (12 \text{ in.}) W - 7.2 \text{ kip·in.} = 0, \quad W = 0.600 \text{ kips} \]
\[= 600 \text{ lb} \]

Block on incline:

\[\theta = \tan^{-1} \frac{0.375 \text{ in.}}{2\pi (1.5 \text{ in.})} = 2.2785^\circ \]
\[\phi_s = \tan^{-1} \mu_s = \tan^{-1} 0.12 = 6.8428^\circ \]
\[Q = W \tan(\theta + \phi_s) \]
\[= (600 \text{ lb}) \tan 9.1213^\circ = 96.333 \text{ lb} \]

FBD worm gear:

\[\Sigma M_B = 0: \quad (1.5 \text{ in.})(96.333 \text{ lb}) - M = 0 \]
\[M = 144.5 \text{ lb·in.} \]
PROBLEM 8.114

A differential band brake is used to control the speed of a drum. Determine the minimum value of the coefficient of static friction for which the brake is self-locking when the drum rotates counterclockwise.

SOLUTION

FBD Lever:

If brake is self-locking, no force P is required

\[\Sigma M_B = 0: \quad (2 \text{ in.})T_C - (7.5 \text{ in.})T_A = 0 \]

\[T_C = 3.75T_A \]

For impending slip on drum: $T_C = T_A e^{\mu_s \beta}$

\[: \quad e^{\mu_s \beta} = 3.75, \quad \text{or} \quad \mu_s = \frac{1}{\beta} \ln(3.75) \]

With $\beta = \frac{7\pi}{6}$,

\[\mu_s = 0.361 \]

PROBLEM 10.37

Knowing that the constant of spring CD is k and that the spring is unstretched when $\theta = 0$, determine the value of θ, where $0 \leq \theta \leq 90^\circ$, corresponding to equilibrium for the given data.

$P = 600 \text{ N}$, $l = 800 \text{ mm}$, $k = 4 \text{ kN/m}$

SOLUTION

From geometry:

$y_A = l \sin \theta$

$\delta y_A = l \cos \theta \delta \theta$

$x_C = l \cos \theta + l \sin \theta$

$= l (\cos \theta + \sin \theta)$

$y_C = l \sin \theta - l \cos \theta$

$= l (\sin \theta - \cos \theta)$

$l_{CD} = l \sqrt{(\cos \theta + \sin \theta)^2 + [(\sin \theta - \cos \theta) - (-1)]^2}$

$= l \sqrt{3 + 2 \sin \theta - 2 \cos \theta}$

$\delta l_{CD} = \frac{\cos \theta + \sin \theta}{\sqrt{3 + 2 \sin \theta - 2 \cos \theta}} \delta \theta$

and

$F_{SP} = k (l_{CD} - l)$

$= kl \left(\sqrt{3 + 2 \sin \theta - 2 \cos \theta} - 1\right)$

Virtual Work:

$\frac{\delta U}{\delta \theta} = 0: \quad P \delta y_A - F_{SP} \delta l_{CD} = 0$

or

$P (l \cos \theta \delta \theta) - kl \left(\sqrt{3 + 2 \sin \theta - 2 \cos \theta} - 1\right) \left[l \frac{\cos \theta + \sin \theta}{\sqrt{3 + 2 \sin \theta - 2 \cos \theta}} \delta \theta\right] = 0$

or

$\left(1 - \frac{1}{\sqrt{3 + 2 \sin \theta - 2 \cos \theta}}\right) (1 + \tan \theta) = \frac{P}{kl}$

$= \frac{600 \text{ N}}{(4000 \text{ N/m})(0.8 \text{ m})}$

$= 0.1875$

Solving numerically

$\theta = 10.77^\circ$
PROBLEM 10.50

Denoting by μ_s the coefficient of static friction between the block attached to rod ACE and the horizontal surface, derive expressions in terms of P, μ_s, and θ for the largest and smallest magnitudes of the force Q for which equilibrium is maintained.

SOLUTION

For the linkage:

$$+\Sigma M_B = 0: \quad -x_A + \frac{x_A}{2}P = 0 \quad \text{or} \quad A = \frac{P}{2}$$

Then:

$$F = \mu_s A = \mu_s \frac{P}{2} = \frac{1}{2} \mu_s P$$

Now

$$x_A = 2l \sin \theta$$

$$\delta x_A = 2l \cos \theta \delta \theta$$

and

$$y_F = 3l \cos \theta$$

$$\delta y_F = -3l \sin \theta \delta \theta$$

Virtual Work:

$$\delta U = 0: \quad (Q_{\text{max}} - F) \delta x_A + P \delta y_F = 0$$

$$\left(Q_{\text{max}} - \frac{1}{2} \mu_s P \right) (2l \cos \theta \delta \theta) + P (-3l \sin \theta \delta \theta) = 0$$

or

$$Q_{\text{max}} = \frac{3}{2} P \tan \theta + \frac{1}{2} \mu_s P$$

$$Q_{\text{max}} = \frac{P}{2} (3 \tan \theta + \mu_s)$$

For Q_{min}, motion of A impedes to the right and F acts to the left. We change μ_s to $-\mu_s$ and find

$$Q_{\text{min}} = \frac{P}{2} (3 \tan \theta - \mu_s)$$