PROBLEM 2.127

Collars A and B are connected by a $1-\mathrm{m}$-long wire and can slide freely on frictionless rods. If a force $\mathbf{P}=(680 \mathrm{~N}) \mathbf{j}$ is applied at A, determine (a) the tension in the wire when $y=300 \mathrm{~mm}$, (b) the magnitude of the force \mathbf{Q} required to maintain the equilibrium of the system.

SOLUTION

Free-Body Diagrams of collars

For both Problems 2.127 and 2.128:

Here

$$
(A B)^{2}=x^{2}+y^{2}+z^{2}
$$

or

$$
\begin{aligned}
(1 \mathrm{~m})^{2} & =(0.40 \mathrm{~m})^{2}+y^{2}+z^{2} \\
y^{2}+z^{2} & =0.84 \mathrm{~m}^{2}
\end{aligned}
$$

Thus, with y given, z is determined.
Now

$$
\lambda_{A B}=\frac{\overrightarrow{A B}}{A B}=\frac{1}{1 \mathrm{~m}}(0.40 \mathbf{i}-y \mathbf{j}+z \mathbf{k}) \mathrm{m}=0.4 \mathbf{i}-y \mathbf{j}+z \mathbf{k}
$$

Where y and z are in units of meters, m.
From the F.B. Diagram of collar A :

$$
\Sigma \mathbf{F}=0: \quad N_{x} \mathbf{i}+N_{z} \mathbf{k}+P \mathbf{j}+T_{A B} \lambda_{A B}=0
$$

Setting the \mathbf{j} coefficient to zero gives:

$$
P-y T_{A B}=0
$$

With $P=680 \mathrm{~N}$,

$$
T_{A B}=\frac{680 \mathrm{~N}}{y}=2267 \mathrm{~N}
$$

Now, from the free body diagram of collar B :

$$
\Sigma \mathbf{F}=0: \quad N_{x} \mathbf{i}+N_{y} \mathbf{j}+Q \mathbf{k}-T_{A B} \lambda_{A B}=0
$$

$$
\text { so } \mathrm{Q}=(2267) *(\operatorname{sqrt}(.75))=1963 \mathrm{~N}
$$

PROBLEM 3.21

A small boat hangs from two davits, one of which is shown in the figure. The tension in line $A B A D$ is 369 N . Determine the moment about C of the resultant force \mathbf{R}_{A} exerted on the davit at A.

SOLUTION

With

$$
\mathbf{T}_{A B}=-(369 \mathrm{~N}) \mathbf{j}
$$

$$
\mathrm{T}_{A B}=T_{A D} \frac{\overrightarrow{A D}}{A D}=(369 \mathrm{~N}) \frac{(2.4 \mathrm{~m}) \mathbf{i}-(3.1 \mathrm{~m}) \mathbf{j}-(1.2 \mathrm{~m}) \mathbf{k}}{\sqrt{(2.4 \mathrm{~m})^{2}+(-3.1 \mathrm{~m})^{2}+(-1.2 \mathrm{~m})^{2}}}
$$

$$
\mathrm{T}_{A D}=(216 \mathrm{~N}) \mathbf{i}-(279 \mathrm{~N}) \mathbf{j}-(108 \mathrm{~N}) \mathbf{k}
$$

Then

$$
\begin{aligned}
\mathbf{R}_{A} & =2 \mathbf{T}_{A B}+\mathbf{T}_{A D} \\
& =(216 \mathrm{~N}) \mathbf{i}-(1017 \mathrm{~N}) \mathbf{j}-(108 \mathrm{~N}) \mathbf{k}
\end{aligned}
$$

Also

$$
\mathbf{r}_{A / C}=(3.1 \mathrm{~m}) \mathbf{i}+(1.2 \mathrm{~m}) \mathbf{k}
$$

Have

$$
\mathbf{M}_{C}=\mathbf{r}_{A / C} \times \mathbf{R}_{A}
$$

$$
=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 3.1 & 1.2 \\
216 & -1017 & -108
\end{array}\right| \mathrm{N} \cdot \mathrm{~m}
$$

$$
=(885.6 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{i}+(259.2 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{j}-(669.6 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}
$$

$$
\mathbf{M}_{C}=(886 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{i}+(259 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{j}-(670 \mathrm{~N} \cdot \mathrm{~m}) \mathbf{k}
$$

PROBLEM 3.25

In an arm wrestling contest, a $150-1 \mathrm{~b}$ force \mathbb{P} is applied to the hand of one of the contestants by his opponent. Knowing that $A B=15.2 \mathrm{in}$. and $B C=16$ in., determine the moment of the force about C.

SOLUTION

Have $\mathbf{M}_{C}=\mathbf{r}_{A / C} \times \mathbf{P}$
where

$$
\begin{aligned}
\mathbf{r}_{A / C}= & \mathbf{r}_{B / C}+\mathbf{r}_{A / B} \\
= & (16 \text { in. })\left(-\cos 80^{\circ} \cos 15^{\circ} \mathbf{i}-\sin 80^{\circ} \mathbf{j}-\cos 80^{\circ} \sin 15^{\circ} \mathbf{k}\right) \\
& +(15.2 \text { in. })\left(-\sin 20^{\circ} \cos 15^{\circ} \mathbf{i}+\cos 20^{\circ} \mathbf{j}-\sin 20^{\circ} \sin 15^{\circ} \mathbf{k}\right) \\
= & -(7.7053 \text { in. }) \mathbf{i}-(1.47360 \text { in. }) \mathbf{j}-(2.0646 \text { in. }) \mathbf{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{P} & =(150 \mathrm{lb})\left(\cos 5^{\circ} \cos 70^{\circ} \mathbf{i}+\sin 5^{\circ} \mathbf{j}-\cos 5^{\circ} \sin 70^{\circ} \mathbf{k}\right) \\
& =(51.108 \mathrm{lb}) \mathbf{i}+(13.0734 \mathrm{lb}) \mathbf{j}-(140.418 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Then

$$
\mathbf{M}_{C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-7.7053 & -1.47360 & -2.0646 \\
51.108 & 13.0734 & -140.418
\end{array}\right| \mathbf{l b} \cdot \mathrm{in} .
$$

$$
=(233.91 \mathrm{lb} \cdot \mathrm{in} .) \mathbf{i}-(1187.48 \mathrm{lb} \cdot \mathrm{in} .) \mathbf{j}-(25.422 \mathrm{lb} \cdot \mathrm{in} .) \mathbf{k}
$$

$$
\text { or } \mathbf{M}_{C}=(19.49 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{i}-(99.0 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{j}-(2.12 \mathrm{lb} \cdot \mathrm{ft}) \mathbf{k}
$$

PROBLEM 3.53

The frame $A C D$ is hinged at A and D and is supported by a cable that passes through a ring at B and is attached to hooks at G and H. Knowing that the tension in the cable is 1125 N , determine the moment about the diagonal $A D$ of the force exerted on the frame by portion $B H$ of the cable.

SOLUTION

Have

$$
M_{A D}=\lambda_{A D} \cdot\left(\mathbf{r}_{B / A} \times \mathbf{T}_{B H}\right)
$$

where

$$
\begin{aligned}
& \lambda_{A D}=\frac{(0.8 \mathrm{~m}) \mathbf{i}-(0.6 \mathrm{~m}) \mathbf{k}}{\sqrt{(0.8 \mathrm{~m})^{2}+(-0.6 \mathrm{~m})^{2}}}=0.8 \mathbf{i}-0.6 \mathbf{k} \\
& \mathbf{r}_{B B A}=(0.4 \mathrm{~m}) \mathbf{i} \\
& \mathbf{T}_{B H}=T_{B H} \frac{\overrightarrow{B H}}{B H}=(1125 \mathrm{~N}) \frac{[(0.3 \mathrm{~m}) \mathbf{i}+(0.6 \mathrm{~m}) \mathbf{j}-(0.6 \mathrm{~m}) \mathbf{k}]}{\sqrt{(0.3)^{2}+(0.6)^{2}+(-0.6)^{2}} \mathrm{~m}}
\end{aligned}
$$

Then

$$
M_{A D}=\left|\begin{array}{ccc}
0.8 & 0 & -0.6 \\
0.4 & 0 & 0 \\
375 & 750 & -750
\end{array}\right|=-180 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
\text { or } M_{A D}=-180.0 \mathrm{~N} \cdot \mathrm{~m}
$$

PROBLEM 3.59

A mast is mounted on the roof of a house using bracket $A B C D$ and is guyed by cables $E F, E G$, and $E H$. Knowing that the force exerted by cable $E F$ at E is 29.7 lb , determine the moment of that force about the line joining points D and I.

SOLUTION

Have

$$
M_{D I}=\lambda_{D I} \cdot\left(\mathbf{r}_{F / I} \times \mathbf{T}_{E F}\right)
$$

where

$$
\begin{aligned}
\lambda_{D I} & =\frac{\overrightarrow{D I}}{D I}=\frac{(4.8 \mathrm{ft}) \mathbf{i}-(1.2 \mathrm{ft}) \mathbf{j}}{\sqrt{(4.8 \mathrm{ft})^{2}+(-1.2 \mathrm{ft})^{2}}} \\
& =0.97014 \mathbf{i}-0.24254 \mathbf{j} \\
\mathbf{r}_{F I I} & =(16.2 \mathrm{ft}) \mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{T}_{E F} & =T_{E F} \frac{\overrightarrow{E F}}{E F}=(29.7 \mathrm{lb}) \frac{[(3.6 \mathrm{ft}) \mathbf{i}-(10.8 \mathrm{ft}) \mathbf{j}+(16.2 \mathrm{ft}) \mathbf{k}]}{\sqrt{(3.6 \mathrm{ft})^{2}+(-10.8 \mathrm{ft})^{2}+(16.2 \mathrm{ft})^{2}}} \\
& =(5.4 \mathrm{lb}) \mathbf{i}-(16.2 \mathrm{lb}) \mathbf{j}+(24.3 \mathrm{lb}) \mathbf{k}
\end{aligned}
$$

Then

$$
\begin{aligned}
M_{D I} & =\left|\begin{array}{ccc}
0.97014 & -0.24254 & 0 \\
0 & 0 & 16.2 \\
5.4 & -16.2 & 24.3
\end{array}\right| \mathrm{lb} \cdot \mathrm{ft} \\
& =-21.217+254.60 \\
& =233.39 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

