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Outline

Usenumerical simulationof Rayleigh-Bénard convectionin realistic

geometries to learn about complex spatial patterns and dynamics in

spatially extended systems.

Examples:

• Pattern chaos: power spectrum

• Lyapunov exponents

• Coarsening and wavenumber selection
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Rayleigh-Bénard Convection

RBC allows aquantitativecomparison to be made between theory and

experiment.
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Nondimensional Boussinesq Equations

• Momentum Conservation

1

σ

[
∂ Eu
∂t
+
(
Eu • E∇

)
Eu
]
= −E∇p + R T êz +∇2Eu+ 2�êz × Eu

• Energy Conservation

∂T

∂t
+
(
Eu • E∇

)
T = ∇2T

• Mass Conservation
E∇ • Eu = 0

Aspect Ratio:0 = r
h

BC: no-slip, insulating or conducting, and constant1T
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Spectral Element Numerical Solution

• Accurate simulation of long-time dynamics

• Exponential convergence in space, third order in time

• Efficient parallel algorithm, unstructured mesh

• Arbitrary geometries, realistic boundary conditions



Back Forward

Pattern Formation and Spatiotemporal Chaos -Chennai, 2004 6

Convection in an elliptical container

cf. Ercolani, Indik, and Newell, Physica D (2003)
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Pattern chaos: convection in small cylindrical geometries

• First experiments:0 = 5.27 cell, cryogenic (normal) liquidHe4 as

fluid. High precision heat flow measurements (no flow visualization).

• Onset of aperiodic time dependence in low Reynolds number flow:

relevance of chaos to “real” (continuum) systems.

• Power law decrease of power spectrumP(f ) ∼ f−4

G. Ahlers, Phys. Rev. Lett.30, 1185 (1974)

G. Ahlers and R.P. Behringer, Phys. Rev. Lett.40, 712 (1978)

H. Gao and R.P. Behringer, Phys. Rev. A30, 2837 (1984)

V. Croquette, P. Le Gal, and A. Pocheau, Phys. Scr. T13, 135 (1986)
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(from Ahlers and Behringer 1978)
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Numerical Simulations

• 0 = 4.72,σ = 0.78, 2600. R . 7000

• Conducting sidewalls

• Random thermal perturbation initial conditions

• Simulation time∼ 100τh

– Simulation time∼ 12 hours on 32 processors

– Experiment time∼ 172 hours or∼ 1 week
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R = 3127 R = 6949
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Power Spectrum

• Simulations oflow dimensional chaos(e.g. Lorenz model) show

exponential decaying power spectrum

• Power law power spectrum easily obtained fromstochasticmodels

(white-noise driven oscillator, etc.)
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Power Spectrum

• Simulations oflow dimensional chaos(e.g. Lorenz model) show

exponential decaying power spectrum

• Power law power spectrum easily obtained fromstochasticmodels

(white-noise driven oscillator, etc.)

Simulation Results

Simulations reproduce experimental results....
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Simulation yields a power law over the range accessible to experiment
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When larger frequencies are included an exponential tail is found
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Exponential tail not seen in experiment because of instrumental noise floor
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Where does the power law come from?

Power law arises fromquasi-discontinuous changes in the slopeof N(t)

on at = 0.1− 1 time scale associated with roll pinch-off events.

This is clearest to see for the low Rayleigh number where the motion is

periodic, but again the power spectrum has a power law fall off.

Sharp events similar in chaotic and periodic signals
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Spectrogram
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Role of mean flow

3 convection cells with different side wall conditions: (a) rigid; (b) finned;

and (c) ramped. Case (a) is dynamic, the others static.
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Sensitive dependence on initial conditions

• Lyapunov exponents:

� Quantify the sensitivity to initial conditions

� Define chaos

• Lyapunov vectors:

� Associate sensitivity with specific events (defect creation, etc.)

� Propagation of disturbances (Lorenz’s question!)

• Lyapunov dimension:

� Quantifies the number of active degrees of freedom

� Scaling with system size may perhaps be used to define

spatiotemporal chaos (microextensive chaos: Tajima and Greenside,

2002)
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Lyapunov exponents

δu0

δu1

δu2

δu = δu0e
λ1t , λ1 = lim

t→∞
1

t
ln
δu

δu0

Line lengths→ eλ1t , Areas→ e(λ1+λ2)t , Volumes→ e(λ1+λ2+λ3)t , . . .
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Lyapunov exponents

δu0

δu1

δu2

δu = δu0e
λ1t , λ1 = lim

t→∞
1

t
ln
δu

δu0

Line lengths→ eλ1t , Areas→ e(λ1+λ2)t , Volumes→ e(λ1+λ2+λ3)t , . . .

Lyapunov Dimension

DL = ν + 1

|λν+1|
ν∑
i=1

λi

whereν is the largest index such that the sum is positive.
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Numerical Approach
Chaotic Boussinesq driving solution:

1

σ

[
∂ Eu
∂t
+
(
Eu • E∇

)
Eu
]
= −E∇p + RT êz +∇2Eu

∂T

∂t
+
(
Eu • E∇

)
T = ∇2T

E∇ • Eu = 0

Linearized equations (tangent space equations):

(Eu, p, T )→ (Eu+ δEuk, p + δpk, T + δTk), for k = 1, . . . , n

1

σ

[
∂δEuk
∂t
+
(
Eu • E∇

)
δEuk +

(
δEuk • E∇

)
Eu
]
= −E∇δpk + RδT êz +∇2δEuk

∂δTk

∂t
+
(
Eu • E∇

)
δTk +

(
δEuk • E∇

)
T = ∇2δTk

E∇ • δEuk = 0
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Simulations in an experimental geometry

0 = 4.72,σ = 0.78,R = 6950
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Experimentally realistic system is trulychaotic.
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Lyapunov vector for spiral defect chaos

(from Keng-Hwee Chiam, Caltech thesis 2003)
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Coarsening

Development of ordered state from random initial conditions

Much studied in statistical mechanics for relaxation to an ordered state in

thermodynamic equilibrium.

Questions:

• Nature of asymptotic state

� Ideal pattern or frozen disordered state?

• Coarsening dynamics

� Often find power law growth of characteristic length scaleL ∝ tp
with p often, but not always12

� Phase diffusion or defect dynamics may be important
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Coarsening to a stripe state

Coarsening in stripe systems is a hard problem

• Many types of defects: dislocations, disclinations, grain boundaries:

hard to identify important dynamical processes

• A number of different arguments give slow growthp ' 1
4, roughly

consistent with numerical simulations,

• Recent experiments on very large relaxational systems suggest a

dominant mechanism that is consistent with the observed scaling

[Harrison et al. (2002)]
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Coarsening to a state far from equilibrium has additional
difficulties

• No energetic arguments to simplify discussion

• Asymptotic pattern not a priori known (wave number selection)

Progress so far

• Few experiments, none on rotationally invariant systems.

• Previous results are mainly based on numerical simulations of model

equations.

• Much of the work is on relaxational models [Elder, Vinals, and Grant

(1992)…]

• Two dimensional numerics on generalized Swift-Hohenberg models

[MCC and Meiron (1995)] — both relaxational and nonrelaxational

models.
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Rayleigh-Bénard simulations

Not very large! Limited to aspect ratios0 ∼ 50 to 100 — and therefore

not very long times before finite size affects the dynamics.

Main focus of work is on asymptotic state, and gross features of transient

(e.g. whetherγ = 1
4 or 1

2 not whetherγ = 1
4 or 1

5)
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R = 2169 ,σ = 1.4, and0 = 57
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Structure factor

(q - 〈q〉) tγ
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Orientation field correlation length

R = 2169,σ = 1.4,0 = 57, t = 203

C2

(
|Er − Er ′|, t

)
=
〈
ei2(θ(Er,t)−θ( Er ′,t))

〉
C2 ∼ e−r/ξo



Back Forward

Pattern Formation and Spatiotemporal Chaos -Chennai, 2004 32

Mean wave number evolution

t
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〉
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[qd from Bodenschatz et al., Ann. Rev. Fluid Mech. 32 2000]

Wave number appears to approach dislocation selected value, notqf .
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Correlation lengths
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Defect density

(defined as regions of large curvature)

R = 2169,σ = 1.4,0 = 57, t = 8, 128

Defect lines (grain boundaries) clearly evident
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Defect density

t

ρ d
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t-0.45

For isolated defectsLD ∼ ρ−1/2
D so thatLD ∝ t1/4.

For defect linesρd is the length of line, and the domain size scales ast1/2
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Conclusions

Numerical simulations on realistic experimental geometries complement experimental

work and yield new insights

• Pattern chaos

� Lower noise flows gives consistency of power spectrum with expectation based on

deterministic chaos

� Visualization of dynamics explains observed power law observed in spectrum

� Confirmation of role of mean flow

• Lyapunov exponents and eigenvectors

� Confirms early experiments were chaotic

� Promising tools for studying spatiotemporal chaos

• Coarsening

� Experiments needed!

� Results largely consistent with previous nonrelaxational model simulations

� Future work will investigate specific dynamics
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THE END
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Power law spectra
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Time seriesN(t)
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a) dislocation nucleation

b) dislocations climb

c) both dislocations are
at the lateral walls

one dislocation quickly glides
into a wall foci e) the other dislocation slowly glides

into the same wall foci
second
annihilation

Note: Dislocation glide alternates left and right,
the portion highlighted here goes right.

d) first annihilation

R = 2804, Γ = 4.72, σ = 0.78
Conducting

f) process repeats

t = 187 = 8.4 τh
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Compare periodic and chaotic events
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Mechanism of Dynamics

• Pan-Am texture with roll pinch-off events creating dislocation pairs

(Flow visualization, Pocheau, Le Gal, and Croquette 1985)

• Mean flow compresses rolls outside of stable band (Model equations,

Greenside, MCC, Coughran 1985)

• Theoretical analysis of mean flow (Pocheau and Davidaud 1997)

• Numerical simulation of importance of mean flow (Paul, MCC,

Fischer, and Greenside 2001)



Back Forward

Pattern Formation and Spatiotemporal Chaos -Chennai, 2004 43

Lyapunov dimension

Defineµ(n) =∑n
i=1 λi (λ1 ≥ λ2 · · · ) with λi theith Lyapunov

exponent.

DL is the interpolated value ofn givingµ = 0 (the dimension of the

volume that neither grows nor shrinks under the evolution)
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Lyapunov dimension for spiral defect chaos in a periodic geometry

(Egolf et al. 2000)
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Previous Results

• Phase diffusion + focus wavenumber selectionD⊥ → 0 [MCC and
Newell (1984)]

L ∝ tp, p = 1

4

• One dimensional numerics on Swift-Hohenberg model [Schober et al.
(1986)]

p = 1

4
Consistent with 1d phase diffusion with conserved phase winding
[Rutenberg and Bray (1995)]

• Two dimensional numerics on Swift-Hohenberg model [Elder et al.
(1992)…]

p ' 1

4
with noise; p ' 1

5
without noise
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Summary of results

• For all cases without noise the growth of the correlation length measured from the

width of the structure factor is consistent withL ∼ t1/5 (γ ' 0.2)

• For the non-relaxational models the correlation length measured from the

orientational correlation function appears to follow a different scalingLo ∼ t1/2
• The morphology and defect structure of the patterns appeared to be different in the

relaxational and non-relaxational cases

� Relaxational: predominance of patches of straight stripes with sharp boundaries

showing up as defect lines

� Non-relaxational: predominance of smoothly curved stripes with many isolated

dislocation defects

• For the non-relaxational models the asymptotic wave number isnot consistent with

D⊥(q) = 0 but appears to be the wave numberqd for which dislocation climb does

not occur.



Back Forward

Pattern Formation and Spatiotemporal Chaos -Chennai, 2004 47

Morphology
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Defects

(a),(b) relaxational; (c),(d) non-relaxational
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R = 2169,σ = 1.4,0 = 57, t = 16, 32, 64, and 128
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Conclusions

Numerical simulations on realistic experimental geometries complement experimental

work and yield new insights

• Pattern chaos

� Lower noise flows gives consistency of power spectrum with expectation based on

deterministic chaos

� Visualization of dynamics explains observed power law observed in spectrum

� Confirmation of role of mean flow

• Lyapunov exponents and eigenvectors

� Confirms early experiments were chaotic

� Promising tools for studying spatiotemporal chaos

• Coarsening

� Experiments needed!

� Results largely consistent with previous nonrelaxational model simulations

� Future work will investigate specific dynamics


