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An Open System
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Patterns in Geophysics
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Patterns in Biology
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Pattern Formation

The spontaneous formation of spatial structure in open
systems driven far from equilibrium
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Origins of Pattern Formation

Fluid Instabilities

1900 Bénard’s experimentson convection in a dish of fluid
heated from below and with a free surface

1916 Rayleigh’s theoryexplaining the formation of convection
rolls and cells in a layer of fluid with rigid top and bottom
plates and heated from below

…

Chemical Instabilities

1952 Turing’s suggestionthat instabilities in chemical reaction
and diffusion equations might explain morphogenesis

1950+ Belousov and Zhabotinskii workon chemical reactions
showing oscillations and waves
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Bénard’s Experiments

(From the website of Carsten Jäger)
Movie
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http://www.physiology.rwth-aachen.de/user/jaeger/index_e.html


Ideal Hexagonal Pattern

From the website of Michael Schatz
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http://www.physics.gatech.edu/schatz/control/benard.html


Rayleigh’s Stability Analysis

Rayleigh made two simplifications:

In the present problem the case is much more complicated, unless we
arbitrarily limit it to two dimensions. The cells of Bénard are then reduced
to infinitely long strips, and when there is instability we may ask for what
wavelength (width of strip) the instability is greatest.

…and we have to consider boundary conditions. Those have been chosen
which aresimplest from the mathematical point of view, and they deviate
from those obtaining in Bénard’s experiment, where, indeed, the conditions
are different at the two boundaries.
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Rayleigh and his Solution
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Schematic of Instability

Fluid

Rigid plate

Rigid plate
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Schematic of Instability
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Schematic of Instability

HOT

COLD
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Rayleigh’s Solution

Linear stability analysis:

linear instability towards two dimensional mode with wave numberq

exponential time dependence with growth/decay rateσ(q)

Two important parameters:

Rayleigh numberR ∝ 1T (ratio of buoyancy to dissipative forces)

Prandtl numberP, a property of the fluid (ratio of viscous and thermal
diffusivities). For a gasP ∼ 1, for oil P ∼102, for mercuryP ∼ 10−2.
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Rayleigh’s Growth Rate

σ
q/π

21
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Rc = 27π4

4
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Pattern Formation: the Question

qx

qy q+

q−

σ > 0 qc

What spatial structures can be formed from the growth and saturation of the
unstable modes?
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Ideal Patterns from Experiment
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More Patterns From Experiment

From the website of EberhardBodenschatz
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What is Hard about Pattern Formation?

Why are we still working on this 50 or 100 years later?

The analysis of Rayleigh, Taylor, and Turing was largelylinear,and gave
interesting, but in the end unphysical solutions.

To understand the resulting patterns we need to understandnonlinearity.

One would like to be able to follow this more general [nonlinear]
process mathematically also. The difficulties are, however, such that
one cannot hope to have any very embracing theory of such processes,
beyond the statement of the equations. It might be possible, however,
to treat a few particular cases in detail with the aid of a
digital computer. [Turing]
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Lorenz Model (1963)
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Equations of Motion

Ẋ = −P(X − Y)

Ẏ = r X − Y − X Z
Ż = b (XY − Z)

(whereẊ = d X/dt, etc.).

The equations give the “velocity”V = (Ẋ, Ẏ, Ż) of the pointX = (X, Y, Z) in
thephase space

r = R/Rc, b = 8/3 andP is the Prandtl number.
Lorenz usedP = 10 andr = 27.
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Linear Equations

Ẋ = −P(X − Y)

Ẏ = r X − Y
Ż = −bZ

Solution (P = 1)

X = a1e(
√

r −1)t + a2e−(
√

r +1)t

Y = a1
√

re(
√

r −1)t − a2
√

re−(
√

r +1)t

Z = a3e−bt

with a1, a2, a3 determined by initial conditions.

This is exactly Rayleigh’s solution with an instability atr = 1
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Nonlinear Equations
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Spatiotemporal Chaos

Definitions
dynamics, disordered in time and space, of a large, uniform system
collective motion of many chaotic elements
breakdown of pattern to dynamics

Natural examples:
atmosphere and ocean (weather, climate etc.)
arrays of nanomechanical oscillators
heart fibrillation

Cultured monolayers of cardiac tissue (from Gil Bub, McGill)
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Spiral Chaos in Rayleigh-Bénard Convection

…and from experiment
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Domain Chaos in Rayleigh-Bénard Convection
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Rotating Rayleigh-Bénard Convection

Ω

Rotate
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Spiral and Domain Chaos in Rayleigh-Bénard Convection
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Theory, Experiment, and Simulation

Complex
System

Experiment

Theory

Simulations
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Summary of Results

Theory predicts

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1

Velocity scale v ∼ ε1/2

with ε = (R − Rc(Ä))/Rc(Ä)

Numerical Tests

model equationsX
full fluid dynamic simulationsX

Experiment× (but now we understand why)
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Theory for Domain Chaos: Amplitudes

Rayleigh, Turing etc., found solutions

u = u0eσ t cos(qx) . . . = A(t) cos(qx) . . .

so that in the linear approximation and forR nearRc

d A

dt
= σ A with σ ∝ ε = R − Rc

Rc

Useε as small parameter in expansion about threshold

Nonlinear saturation
d A

dt
= (ε − A2)A

Spatial variation
∂ A

∂t
= εA − A3 + ∂2A

∂x2
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Three Amplitudes + Rotation + Spatial Variation
Tu and MCC (1992)

A1 A2 A3

KLKL

KL

∂ A1/∂t = εA1 − A1(A2
1 + g+ A2

2 + g− A2
3) + ∂2A1/∂x2

1

∂ A2/∂t = εA2 − A2(A2
2 + g+ A2

3 + g− A2
1) + ∂2A2/∂x2

2

∂ A3/∂t = εA3 − A3(A2
3 + g+ A2

1 + g− A2
2) + ∂2A3/∂x2

3
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gives chaos!
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Simulations of Amplitude Equations
Tu and MCC (1992)

Length scale ξ ∼ ε−1/2

Time scale τ ∼ ε−1

Velocity scale v ∼ ε1/2

Grey: A1 largest; White:A2 largest; Black:A3 largest
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Model Equations
MCC, Meiron, and Tu (1994)

Real field of two spatial dimensionsψ(x, y; t)

∂ψ

∂t
= εψ + (∇2 + 1)2ψ − ψ3 gives stripes
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Model Equations
MCC, Meiron, and Tu (1994)

Real field of two spatial dimensionsψ(x, y; t)

∂ψ

∂t
= εψ + (∇2 + 1)2ψ − ψ3

+ g2ẑ·∇ × [(∇ψ)2∇ψ] + g3∇·[(∇ψ)2∇ψ]
gives chaos!

Stripes Orientations Domain Walls
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Full Fluid Simulations
MCC, Greenside, Fischer et al.

With modern supercomputers we can now simulate actual experiments

Spectral Element Method

Accurate simulation of long-time dynamics

Exponential convergence in space, third order in time

Efficient parallel algorithm, unstructured mesh

Arbitrary geometries, realistic boundary conditions

Conducting

ÿþýüû

Insulating

dT/dx=0

"Fin" Ramp
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Fluid Simulations Complement Experiments

Knowledge of full flow field and other diagnostics (e.g. total heat flow)

No experimental/measurement noise (roundoff “noise” very small)

Measure quantities inaccessible to experiment e.g. Lyapunov exponents
and vectors

Readily tune parameters

Turn on and off particular features of the physics (e.g. centrifugal effects,
mean flow, realistic v. periodic boundary conditions)
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Full Fluid Dynamic Simulations
Scheel, Caltech thesis (2006)

Realistic Boundaries

Periodic Boundaries
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Lyapunov Exponent
Jayaraman et al. (2005)

Temperature Temperature Perturbation
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Lyapunov Exponent
Jayaraman et al. (2005)

Aspect ratio0 = 40, Prandtl numberσ = 0.93, rotation rateÄ = 40

Michael Cross (Caltech, BNU) Pattern Formation and Spatiotemporal Chaos May 2006 55 / 57



Importance of Centrifugal Force…
Becker, Scheels, MCC, Ahlers (2006)

Aspect ratio0 = 20,ε ' 1.05,Ä = 17.6

Centrifugal force 0 Centrifugal force x4 Centrifugal force x10
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Conclusions

I have described the study of pattern formation and spatiotemporal chaos in
open systems driven far from equilibrium.

Linear stability analysis gives an understanding of the origin of the pattern
and the basic length scale

Nonlinearity is a vital ingredient, and makes the problem difficult

There has been significant progress in understanding patterns, although
many questions remain

I illustrated the approaches we use by describing attempts to reach a
quantitativeunderstanding of spatiotemporal chaos in rotating convection
experiments

Close interaction between experiment, theory, and numerical simulation is
important to understand complex systems
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