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Making amends
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Antiferromagnetic He3: expectations
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Doug’s data
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Doug’s data
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NMR in solid He3: spectrum
Osheroff, MCC, Fisher (1980)

�̇S = γ �S × �H − λ(d̂ · l̂)(d̂ × l̂)

˙̂
d = d̂ × (γ �H − γ 2χ−1
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Antiferromagnetic He3: U2D2 Phase

nances, but we always saw three high-
frequency resonances. The existence of
just three domain orientations immedi-
ately suggests that the sublattice has a
symmetry axis that can orient only
along the three principal axes of the
cubic structure—that is, that the ar-
rangement is tetragonal and not cubic.

The nmr spectrum leads to precise
deductions of symmetries of the spin
alignments and sublattice structure.6

For example, one of the modes coming
from each domain has a vanishing
frequency at zero field, which indicates
a rotational symmetry of the sublattice
structure; the existence of shifts at all
tells us the symmetry is not cubic.
From these data one can construct a
simple, quantitative theory that is as-
ymptotically exact for frequencies
small compared with exchange fre-
quencies. It involves a single tempera-
ture-dependent parameter ft0 that
measures the magnitude of the dipole
energy in the unperturbed antiferro-
magnetic states. The theory leads to
two resonance modes for each sublat-
tice, described by the roots of the
following equation:

(2)

Here cos 0t is the angle between the
domain's symmetry axis and the mag-
netic field and wL is the Larmor fre-
quency. The absolute values of the 0t

are not initially known, but if the three
domain axes are mutually perpendicu-
lar, the sum of the three cos2<9; terms
must be 1. This indeed is accurately
confirmed. These roots are plotted as
the solid lines in figure 2. In fact, one
can use these resonances to determine
the precise orientation of the crystal
axes with respect to the magnetic field
save for a rotation about that field.

By applying an external field in two
different directions, one can determine
the orientation of the crystal uniquely,
and with a precision that rivals an x-
ray Bragg scattering determination.

Because fl0 depends on tempera-
ture—varying from about 520 kHz at
the transition to the disordered phase
to about 800 kHz at zero temperature—
these resonances can be used as a
precise contactless probe of the tem-
perature of the He3 spin system in

The probable antiferromagnetic state of low-field solid He3, u2d2 in the notation used in
the text. The spins are arranged in ferromagnetically aligned (100) type planes in the
sequence up-up-down-down. The vector djs the spin symmetry axis, and /is the lattice
symmetry axis; the dipole interaction orients d perpendicular to /" Figure 3

other experiments such as measure-
ments of magnon (spin wave) thermal
conductivity, or perhaps in an effort to
observe magnon second sound.

To proceed with an identification of
the magnetic structure at this point
one must simply try various sublattice
structures and see if they satisfy all the
criteria set down by the nmr results.
The only states known to satisfy all
these criteria are those in which the
planes of spins are normal to the (1,0,0)
direction and are arranged in the
following pattern: a set of N planes in
which the spins are pointing up, fol-
lowed by iV planes with spins pointing
down, repeated throughout the crystal.
We denote such an ordering by the
notation uNdN. The simplest state is
obviously the u2d2 structure shown in
figure 3. (The uldl phase is the cubic
normal antiferromagnet.) We stress
that nmr probes the global symmetries
of the magnetic structure, but does not
definitively probe the microscopic
structure to determine it uniquely.

A direct quantitative test of any
possible structure can, in principle, be
made by comparing an estimate of the
antiferromagnetic resonant frequen-
cy—calculated by summing all the
dipole energies throughout the lat-
tice—with the observed frequency Cl0,
but poorly known spin and lattice zero-
point corrections prevent such a com-
parison from being very useful. Fortu-
nately, other evidence supporting the
u2d2 identification exists. In fact, even

before the nmr experiments on the low-
field phase were carried out, studies
were begun to measure the magnetic
structure directly with polarized neu-
tron scattering. These experiments are
exceedingly difficult because of the low
temperatures required and because of
the high neutron absorption cross sec-
tion of the He3 nucleus. After five
years a French group at CNRS in
Grenoble7 has been able to observe a
magnetic Bragg peak corresponding to
a (V2,0,0) wavevector that disappeared
as the crystal warmed above the Neel
temperature TN. The crystal re-
mained below TN for only about 500
seconds while exposed to the neutron
beam, and during that time only about
50 excess neutrons were scattered into
the (V2AO) Bragg peak. Other scatter-
ing directions were not probed in the
Grenoble experiment. Although the
neutron results thus appear to support
the identification of the low-field phase
with the u2d2 structure, we must
regard this conclusion as preliminary.

Other experiments

There is clear experimental evidence
of the richness of the magnetic proper-
ties of solid He3 in the field-tempera-
ture phase diagram at melting pressure
shown in figure 4. The antiferromag-
netic phase exists only in a small
corner of the diagram, below the Neel
temperature, 1 mK, and a critical field
Hc of 0.4 tesla. In this phase the
magnetization is suppressed below that

PHYSICS TODAY / FEBRUARY 1987 37
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NMR in the high field phase(s)
Osheroff and MCC (1987)

Solid
He3

− d
2ψ

dz2 + 2π M0
�−H(z)∇2

⊥ψ = (−1)∇2
⊥ψ
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Magnetic Resonance Force Microscopy (MRFM)
Midzor, Wigen, Pelekhov, Chen, Hammel, Roukes, 2000
Urban, Putilin, Wigen, Liou, MCC, Hammel, Roukes, 2007

An improved detection cantilever !used for H ! YIG
film" was developed using a commercial AFM cantilever3
( f c#18 kHz" onto which 1200 Å NiFe !from a Ni89Fe19
target" was sputter deposited solely in the region of the ul-
trasharp scanning tip, which was approximately 10 $m tall
!Fig. 1, inset". A second type of detection cantilever !used
for H ! YIG film" consisted of a wedge-shaped NdFeB mag-
netic particle, approximately 50 $m!20 $m!15 $m, glued
to the end of a commercial AFM cantilever ( f c#8kHz" and
prepolarized in a 8 T field along the direction of H.

The force imposed on the detection cantilever is modu-
lated at f c using anharmonic modulation.4 In this technique,
the bias field H and the rf field H1 are separately modulated
such that the difference in their modulation frequencies
equals f c . At resonance, the nonlinear magnetic response
imparts a time-varying force on the cantilever, which is me-
chanically ‘‘amplified’’ by its Q. All experiments were per-
formed at room temperature and atmospheric pressure.

III. RESULTS AND DISCUSSION
A. H ¸ YIG film

In this geometry !Fig. 1", H is aligned parallel to the film
plane !directed along the 150 $m length of the sample" and
to the long axis of the NdFeB particle, and F"m•%HZ /%y
!‘‘perpendicular force geometry,’’1 i.e., the induced force
and cantilever motion are perpendicular to H". The external
field was greater than 2 kG, ensuring that both the sample
and gradient magnet were saturated. In this field configura-
tion higher-order modes are expected to occur upfield from
the fundamental mode,5 which was indeed observed. Figure

2 shows the evolution of the MRFM signal as the detection
cantilever was scanned from the center to the edge of the
YIG film. The largest feature, the fundamental mode, was
maximal when the gradient magnet was positioned over the
center of the sample, decreased to a minimum at the sam-
ple’s edges, then vanished when the gradient magnet was far
from the sample.

The smaller features correspond to higher-order magne-
tostatic modes, that were first modeled by Damon and
Eshbach6 !DE" for infinite thin films, and later calculated by
Storey et al.7 for the case of thin, finite YIG films. These
modes correspond to discrete standing wave vectors kz and
kx !ẑ and x̂in the plane of the film", which determine the
spatial variation of the magnetization and have wavelengths,
&, on the order of the linear dimensions of the sample.

Samples with finite dimension lz and lx !with lz ,lx#
thickness" lead to quantized values of kz and kx due to the
boundary conditions, !nz'/lz) and (nx'/lx), respectively.
For H! film, the resonance condition can be approximated
by8

(

)
*Hext$2'MS%'MSd" # nz'L $ 2$# nx'w $ 2%1/2, !1"

where )"2.8 MHz/G for YIG, M 0 is the magnetization, and
L, w, and d are the length, width, and thickness of the
sample. The effect of uniaxial anisotropy is neglected since it
does not alter the spacing of the modes, but solely introduces
a shift in the resonance frequency of all modes.5 The best fit
to the data gives 4'M 0"1.4 kG, rather than the bulk value
of 1.8 kG, which we attribute to the magnetic anisotropy
energy and the deviation of the film from an infinite sheet
due to its limited aspect ratio, i.e., the demagnetization factor
NZZ+4' .

The measured mode separations are 26–29 G, and the
predicted kz separations for the fundamental, third, and fifth
modes along the sample’s 150 $m length !k1, k3, k5" are 13,
23, and 31 G ,Eq. !1"-. The even kz modes do not couple to
the rf field due to absorption rules.5 The difference between

FIG. 1. Schematic of the FMRFM setup !not to scale". An external field, H,
parallel to the sample plane, is produced by a permanent magnet and swept
by the current in a solenoid. The microstrip produces a rf field perpendicular
to the applied field, H. The inset shows the tip of a commercial cantilever
that has been locally sputter coated with NiFe.

FIG. 2. The MRFM signal obtained from a small YIG film, H ! film plane,
as the cantilever is scanned from the center to the edge along the 150 $m
length.
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To demonstrate the subtle details of the effect of the in-
creasing tip field, the force intensity for modes !1,3" and
!1,5" is plotted in Fig. 2 as a function of the tip-sample
separation. As the tip field gradient increases with decreasing
distance, the FMRFM signal increases. However, the inten-
sity of the !1,3" mode decreases dramatically for z!3 "m
and at z=2.5 "m its intensity becomes even lower than the
intensity of the !1,5" mode. For z!2 "m, the intensity of the
!1,5" mode decreases as well. These effects can be explained
by the model proposed below.

htip!0. By reversing the orientation of the applied mag-
netic field without reversing htip, the magnetic field of the tip
subtracts from the homogeneous bias field. For a tip-sample
separation below 2 "m, the modes !1,3", !1,7", and !1,11" are
now stronger compared to modes !1,5" and !1,9", see Fig.
1!b". This is exactly opposite to what is observed for htip
#0. Table I summarizes the intensity ratios of the subse-
quent resonant modes when the tip field is weak and the
magnetostatic modes are practically unperturbed, htip#0

line, and for strong tip fields, htip#0 and htip!0. The values
in the first row are lower/higher/lower than values for htip
#0 while the values in the third row are higher/lower/higher
than the values for htip#0. This reinforces the conclusions
made earlier that for htip#0, the modes !1,5" and !1,9" are
enhanced, while for htip!0 the modes !1,3" and !1,7" are
enhanced.

The influence of the perturbation field of the probe mag-
net is further demonstrated in lateral scans taken along the
long axis of the sample at z#3 "m. Figure 3!a" shows the
experimental data of the force amplitudes for the !1,ny"
modes as a function of position. Three interesting features
are observed. !i" As the tip is moved from the center of the
sample, the field of the tip magnet has broken the even sym-
metry of the internal field. As a result, the “hidden” !1,2"
mode is excited. !ii" For the !1,3" mode, the intensity at y
=0 "m is strongly suppressed while at the position of the
next maxima in the magnetostatic mode at y= ±26 "m the
intensity is enhanced. !iii" Mode !1,5" shows very little varia-
tion as a function of position of the tip. Therefore, the lateral
resolution can be estimated to be better than 20 "m. This is
in good agreement with the theoretical predictions $Fig.
3!b"%.

FIG. 1. Typical FMRFM spectra measured in the center !y
=0 "m" of the 20$80 "m2 sample for !a" htip#0 and !b" htip!0,
respectively. The dashed and the solid lines in !a" correspond to the
tip-sample separation of 10 and 2 "m, respectively. Zero sweep
field corresponds to the resonance field of the homogeneous mode
% /&+4'Ms=4.4 kG. The modes are labeled by !nx ,ny", where nx
and ny represent the number of half-wavelengths along the sample
width and length, respectively.

FIG. 2. !a" Experimental and !b" theoretical mode intensity of
the !1,3" mode !circles" and !1,5" mode !triangles" as a function of
the tip-sample separation. The tip was placed above the middle of
the 20$80 "m2 sample. The solid lines in !a" are a spline fit to
data to guide the eye.

TABLE I. The intensity ratios for modes !1,3", !1,5", !1,7", and
!1,9" in the presence of a strong positive tip field !htip#0", a weak
tip field !htip#0", and a negative tip field !htip!0". Corresponding
spectra are plotted in Fig. 1.

I!1,3" / I!1,5" I!1,5" / I!1,7" I!1,7" / I!1,9"

htip#0 0.6±0.1 2.9±0.1 1.0±0.2
htip#0 1.6±0.1 1.9±0.1 1.5±0.2
htip!0 2.4±0.2 1.1±0.3 1.9±0.4

FIG. 3. The mode intensity for the !1,2", !1,3", and !1,5" modes
as the tip is scanned along the long axis of the 20$80 "m2 sample.
The external dc field and the probe field are parallel. The tip-sample
separation z#3 "m. !a" Measured response. !b" Calculated ampli-
tude. The dashed line represents the unperturbed !1,3" mode with
0.3 offset.
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Nonlinearity
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Amplitude v. frequency offset for different drives

Bill Brinkman: Landau and Lifshitz Mechanics §29
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Nanomechanical systems
Roukes group, courtesy Rassul Karabalin
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Nonlinearity in nanomechanical systems: Duffing response
Kozinsky, Postma, Kogan, Husain, and Roukes, 2007

Doubly-clamped platinum nanowire 2.25µm × 35nm

Frequency offset scaled to linear resonance width
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Phases in Superfluid He3

Superfluidity in the A phase

Phase is the broken symmetry variable of the quantum mechanical phase
∇ × l̂ gives supercurrents
∇� gives supercurrents — but reduced by (Tc/EF )2

Exotic Ginzburg-Landau theory

A and B phases: fun with interfaces (and nucleation)

NMR as Josephson effect coupling phases of different spin components
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Phases in a nanomechanical oscillator

Phase is the broken symmetry variable corresponding to the Hopf bifurcation to
oscillations (time translation symmetry)

!

x

p

Consequences for frequency stability of oscillators. . .

Michael Cross (Caltech) Phases: He3 to NEMS Osheroff65: October 2010 17 / 25



Nanomechanical resonators and oscillators
Roukes group, courtesy Luis Villanueva

Resonator Oscillator
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Nanomechanical resonators and oscillators
Roukes group, courtesy Luis Villanueva

Effective Q enhancement 1200 ⇒ 99000
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Evading amplifier noise in oscillators
Greywall, Yurke, Busch, Pargellis, and Willett, 1994

For saturated feedback loop: bias is constant phase

Φ

ω

Φ0
Phase response of driven
nonlinear resonator at the
Duffing critical amplitude.

Frequency fluctuations of oscillator reduced by tuning to nonlinear critical point
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Nanomechanical arrays
Roukes group, courtesy Rassul Karabalin
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Nanomechanical arrays
Roukes group
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Phases in many nanomechanical oscillators

Oscillator displacement (e.g. amplitude of fundamental mode of beam)

un = Re
�
ψn(t)eiω0t

�
with ψn = |ψn|eiφn

In long wavelength limit ψ(r) satisfies the Complex Ginzburg-Landau Equation

∂ψ

∂t
= ψ + (K + iβ)∇2ψ − (1 + iω(r) + iα)|ψ |2ψ

with ω(r) the random component of the frequencies

What are the phases (states) of the oscillator phases?
disorderd
frequency locked (finite fraction have same frequency)
phase locked (nonzero �ψ�lattice)
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Synchronized phases in mean field theory
MCC, Rogers, Lifshitz, Zumdieck, 2006

K=0; Top-hat frequency distribution, width = 1
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U = unlocked; S1, S2 = synchronized; L = locked
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Short range model (no randomness)

Phase Magnitude

∂ψ

∂t
= ψ + (K + iβ)∇2ψ − (1 + iα)|ψ |2ψ
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